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Abstract. This paper deals with the numerical solution of nonlinear Black-Scholes equation modeling
European vanilla call option pricing under transaction costs. Using an explicit finite difference scheme
consistent with the partial differential equation valuation problem, a sufficient condition for the stability
of the solution is given in terms of the stepsize discretization variables and the parameter measuring the
transaction costs. This stability condition is linked to some properties of the numerical approximation
of the Gamma of the option, previously obtained. Results are illustrated with numerical examples.
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1. Introduction

It is well-known that Black-Scholes (B-S) model is acceptable in idealized financial markets where one assumes
that volatility is observable or transaction costs are not taken into account.

These unrealistic assumptions have been shown too restrictive in practice and this fact motivates the search
of alternative models expressed by parabolic diffusion-convection equations for the option value V as a function
of the underlying security S and the time

Vt +
1
2

(σ(S, t, VS , VSS))2 S2VSS + rSVS − rV = 0, S > 0, t ∈ [0, T [, (1.1)

with final and boundary conditions. Here r ≥ 0 denotes the riskless interest rate and σ means the volatility.
Equations of this type arise frequently in mathematical finance, not only in option pricing, for instance in the
modeling of transaction costs [2,5], optimal portfolios in incomplete markets [13] and inverse problems [9].

For the particular case where the volatility function σ appearing in (1.1) is a constant, the model (1.1) turns
out the B-S. In the B-S model for the pricing of options the influence of transaction costs was neglected and
it was possible to construct a riskless portfolio that perfectly replicates the option pay-off. If transaction costs
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are taken into account perfect replication of the contingent claim is no longer possible and it has been shown
in [18] that further restrictions have to be imposed in the model.

If bid-ask spreads and other transaction costs are also taken into account, each adjustment of the portfolio
implies an additional cost and the replication property of the B-S hedge no longer holds. Making frequent
adjustments to maintain the theoretical hedge can increase costs considerably. On the other hand, if only a
few adjustments are made, the B-S exact hedge cannot be maintained due to movements in the price of the
underlying asset between trades. Therefore, transaction costs cannot be ignored without incurring risk or loss.
This is an important practice problem, especially in emerging markets where round-trip transaction costs of 1%
and higher are not uncommon.

There are two competing approaches behind modeling transaction costs. One is the so called local in time
methods [21] characterized by the assumption of hedging strategies taking place at discrete times. The second
approach based on the work [10], the so called global in time methods, characterized by the use of optimal-
ity techniques and utility functions. Practical drawbacks of this last approach have motivated the search of
asymptotic techniques to derive manageable option pricing formulae.

Starting with the local in time methods, Leland [14] introduced a theory for pricing a call option with
transaction costs showing that the price of a call is given by the B-S formula with an augmented volatility

σA = σ0

√
1 + A, A =

√
2
π
· k

σ0

√�t
· (1.2)

Here, σ0 represents the volatility of the underlying security, k is the round-trip transaction cost (a percentage)
and �t is the time interval between successive adjustments of the portfolio. This time interval is considered
fixed and is assumed to be much smaller than the time-to-expiration. We shall refer to the parameter A as the
Leland number.

Boyle and Vorst [3] derived a similar option pricing formula using a binomial model. Both approaches are
restricted to derivative securities with convex payoffs.

In practice, there are many derivative securities of interest which have non-convex payoffs. The foremost
example is a portfolio of standard options combining short and long positions. In [11] Hoggard et al. proposed
an extension of Leland’s result which applies to derivative securities with arbitrary payoff functions. Their
model involves the solution of an equation of type (1.1) where

σ = σ(VSS) = σ0

√
1 + A sign(VSS). (1.3)

Note that if A ≥ 1, then by (1.3), σ2 = σ2
0(1+A sign(VSS)) is nonpositive if VSS < 0 which is unrealistic and

ill-posed mathematically. From (1.2), A ≥ 1 occurs when �t is enough small or k is enough big. Avellaneda
and Parás in [1] obtain the adjusted volatility (1.3) by proposing new hedging strategies to control effectively
the hedging risk and transaction costs.

The global in time methods pioneered by Hodges and Neuberger [10] and developed by Davis et al. [5]
achieve an element of optimality, since they are based on the approach of utility maximization. Since there
are no explicit solutions for the utility based hedging with transaction costs and the numerical methods are
computationally hard, for practical applications a suitable alternative is the use of an asymptotic solution. In
asymptotic analysis one studies the solution to a problem when some parameters in the problem assume large
or small values.

Whalley and Wilmott [21] were the first to provide an asymptotic analysis of the model of Hodges and
Neuberger, assuming that transaction costs are small. Barles and Soner [2] performed an alternative method
assuming that both the transaction costs and the hedger’s risk tolerance are small. While Whalley and Wilmott
derive only an optimal form of the hedging bandwith which is centered about the B-S delta, Barles and Soner
show a particular form of the hedging bandwith and provide a nonlinear adjusted volatility of the form

σ2 = σ2
0(1 + Ψ[exp(r(T − t)a2S2VSS)]), (1.4)



CONSISTENT STABLE DIFFERENCE SCHEMES FOR NONLINEAR BLACK-SCHOLES EQUATIONS 1047

where μ is the proportional transaction cost; a = μ
√

γN , with risk aversion factor γ and the number N of
options to be sold. The transaction costs increases with the higher values of a. When a = 0, there is no
transaction cost and classical Black-Scholes equation is recovered. The volatility correction function Ψ is the
solution of the nonlinear initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A) − A
, A �= 0, Ψ(0) = 0. (1.5)

In the mathematical literature, only a few results can be found on the numerical discretization of B-S
equation, mainly for linear B-S equations. The numerical approaches vary from finite element discretizations
[8,15], to finite difference approximations [6]. The numerical discretization of the B-S equation with the nonlinear
volatility (1.3) has been performed using explicit finite-difference schemes in [1] and with the volatility given
by (1.4) in [2]. However, explicit schemes have the disadvantage that restrictive conditions on the discretization
parameters (for instance, the ratio of the time and the space step) are needed in order to obtain stable, convergent
schemes [19]. [7] combines high-order compact difference schemes derived by [16] and techniques to construct
numerical solutions with frozen values of the nonlinear coefficient of the non-linear B-S equation to make the
formulation linear. Reasonable numerical strategies like the consideration of more discretization nodes near
the maturity and the strike price, are not sufficient to guarantee reliability and accuracy of the numerical
approximations. Careless numerical computations may waste a good mathematical model.

In this paper we deal with an European vanilla call option pricing equation (1.1) where σ is given by (1.4)–(1.5),
together with final and boundary conditions taking the form

Vt +
1
2
σ2

0

(
1 + Ψ
[
er(T−t)a2S2VSS

])
S2VSS + rSVS − rV = 0, S > 0, t ∈ [0, T [ ,

V (S, T ) = max(0, S − E), S > 0,

V (0, t) = 0, lim
s→∞

V (S, t)
S − Ee−r(T−t)

= 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.6)

In [4] a semidiscretization technique is used to compute numerical solutions of problem (1.6) but no analysis of
the numerical solution is developed.

From both the computational point of view and the numerical analysis, it is convenient the transformation
of problem (1.6) into another simpler nonlinear parabolic problem.

In this paper we use an explicit finite difference scheme applied to the transformed problem. This scheme no
only has the advantage that not uses frozen values of nonlinearities, such as in [7], but also guarantees that no
spurious oscillations appear under certain stability condition previously determined.

In order to compute the numerical solution, it is necessary to work in a bounded domain. Once this numer-
ical domain has been chosen, the boundary conditions of the continuous problem can be translated from the
asymptotic condition to the boundary of the numerical domain, as it is done for instance in [2] or [7], or the
boundary values of the numerical domain must be found together with the solution and they are linked with
the rest of the numerical solution in the interior of the numerical domain by using extrapolation techniques.
Here we use the second approach to keep the approximation order of the scheme.

This paper is organized as follows. In Section 2, the original problem (1.6) is transformed into a simpler
nonlinear parabolic problem using appropriate change of variables. Some growth properties of the volatility
correction function Ψ defined by (1.5) are derived from an implicit formula. The function g(A) = AΨ(A) plays
an important role in the numerical treatment of the problem because leads the behavior of the nonlinear term
of both the original and the transformed equation. Smoothness properties of function g(A) are also obtained
in this Section 2. In Section 3, the finite-difference scheme is introduced for the computation of the numerical
solution of the transformed problem. The scheme is first order forward in time τ and second order centered in
the space variable X . Since suitable monotonic properties of the numerical solution of the problem are linked
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with the behaviour of the numerical approximation of the Gamma of the option
∂2V

∂S2
, a numerical scheme for

this approximation of the Gamma is also introduced in Section 3. Section 4 gives a sufficient condition between
the stepsize variables in order to guarantee the monotonic behaviour of the numerical solution of the problem
with respect to the space variable at each time stage. This property means that the price of the European call
option increases with the values of the asset variable, at every fixed time, as it is shown in Section 5, and it also
guarantees the stability of the numerical solution. Section 5 includes the consistency of the numerical scheme
with the equation of the transformed problem. Illustrative examples of results of previous sections are included
in Section 6. Finally, references are mentioned.

2. Transformation of the problem and properties of Ψ

For the sake of convenience the PDE (1.1) is going to be transformed into a nonlinear diffusion equation.
Although the authors of [2] do not use such a change to study the PDE (1.6), in some way it is suggested by
them in [2], p. 379. Let us consider the substitution defined by

X = er(T−t)S; τ =
σ2

0

2
(T − t); U = er(T−t)V. (2.1)

Hence,

S = e−2ρτX ; t = T − 2τ

σ2
0

; V = e−2ρτU ; ρ =
r

σ2
0

, (2.2)

and
∂V

∂t
= e−2ρτ

(
rU − σ2

0

2
∂U

∂τ
− rX

∂U

∂X

)
, (2.3)

∂V

∂S
=

∂U

∂X
,

∂2V

∂S2
= er(T−t) ∂2U

∂X2
· (2.4)

From (1.6) and (2.1)–(2.4) one gets

L(U) =
∂U

∂τ
−
(

1 + Ψ
(

a2X2 ∂2U

∂X2

))
X2 ∂2U

∂X2
= 0, 0 < X < ∞, 0 < τ ≤ σ2

0T

2
, (2.5)

together with the boundary conditions

U(0, τ) = 0; lim
X→+∞

U(X, τ) = X − E, (2.6)

and the initial condition
U(X, 0) = max(0, X − E). (2.7)

Dealing with numerical analysis of difference schemes presented in the next section, is going to be convenient

to bound the approximation of the nonlinear term Ψ
(

a2X2 ∂2U

∂X2

)
appearing in (2.5).

From Theorem 1.1 of [4] it is known that Ψ(A) is an increasing function mapping the real line onto the
interval ]−1, +∞[ and Ψ(A) is implicitly defined by

A =

(
−Arcsinh

√
Ψ√

Ψ + 1
+
√

Ψ

)2

, if Ψ > 0, (2.8)

A = −
(

arcsin
√

(−Ψ )√
Ψ + 1

−√−Ψ

)2

, if − 1 < Ψ < 0. (2.9)
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From (2.8), taking two times derivatives of the inverse function A(Ψ) it is easy to check that

d2A

dΨ2
> 0 if Ψ > 0,

and
d2Ψ
dA2

= −
(

d2A

dΨ2

)(
dΨ
dA

)3

< 0, if A > 0.

Hence Ψ(A) is a convex function for A > 0. As lim
A→∞

Ψ(A)
A

= 1 see [2], p. 377, and from the convexity of Ψ(A),

taking

A2 =

(
sinh 2 − 2√

(sinh 2)2 + 1

)2

	 9.58 , Ψ(A2) = (sinh 2)2,

Ψ′(A2) =
(e8 + 2e4 + 1)2

e16 − 66e8 + 1
≈ 1.10, d2 = Ψ(A2) − Ψ′(A2) A2 	 2.62,

(2.10)

one gets the upper bound
0 < Ψ(A) ≤ Ψ′(A2) A + d2, A > 0. (2.11)

The next lemma will play an important role in Section 5 to study the consistency of a numerical scheme.

Lemma 2.1. Let Ψ(A) be the volatility correction function appearing in (1.6) verifying equation (1.5) and let
us consider g(A) = AΨ(A). Then g(A) is continuously differentiable at A = 0 and satisfies

|g′(A)| ≤ max{G, 2|A|Ψ′(A2) + d2}, A ∈ R (2.12)

where A2 and d2 are given by (2.10),

A1 = − (4π − 3
√

3)2

36
; G = max{|g′(A)|; A1 ≤ A ≤ A2}· (2.13)

Proof. From (2.9), taking two times derivatives of the inverse function A(Ψ) one gets

d2A

dΨ2
< 0, −1 < Ψ < 0,

and
d2Ψ
dA2

= −
(

d2A

dΨ2

)(
dΨ
dA

)3

> 0, A < 0.

Hence Ψ(A) is concave in the domain A < 0 and as lim
A→−∞

Ψ(A) = −1 from the concavity of Ψ(A) for A < 0,

taking A1 defined in (2.13) and d1 = Ψ′(A1) A1 − Ψ(A1) 	 0.64 one gets

|Ψ(A)| ≤ Ψ′(A1) |A| + d1, A < 0. (2.14)

Let us take the Taylor expansions

Arcsinh x + x
√

x2 + 1 = 2x + O(x2),

−Arcsinh x + x
√

x2 + 1 =
2x3

3
+ O(x4),

arcsin x + x
√

1 − x2 = 2x + O(x2),

arcsin x − x
√

1 − x2 =
2x3

3
+ O(x4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)
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Using (2.8), (2.9) together with (2.15) for both x =
√

Ψ and x =
√−Ψ one gets the left-hand and right-hand

derivatives

lim
A→0±

g′(A) = lim
A→0±

AΨ′(A) = lim
Ψ→0±

A(Ψ)
A′(Ψ)

= 0. (2.16)

Hence,
lim
A→0

g′(A) = 0. (2.17)

Otherwise

g′(0) = lim
A→0

g(A) − g(0)
A

= lim
A→0

A Ψ(A)
A

= Ψ(0) = 0. (2.18)

From (2.17)–(2.18) one gets that g(A) is continuously differentiable at A = 0.
Since Ψ(A) is increasing positive and concave for A > 0, from (2.11) one gets

0 < g′(A) = Ψ(A) + A Ψ′(A) ≤ 2A Ψ′(A2) + d2, A > A2. (2.19)
Since Ψ(A) is increasing negative and convex for A < 0, and (2.14) one gets

|g′(A)| ≤ |Ψ(A)| + |A| |Ψ′(A)| ≤ 2|A| Ψ′(A1) + d1, A < A1. (2.20)

As d2 > d1 > 0 and Ψ′(A2) > Ψ′(A1) > 0, from (2.19), (2.20) is clear that

|g′(A)| ≤ 2|A| Ψ′(A2) + d2, A ∈ ] −∞, A1[ ∪ ]A2, +∞[. (2.21)

From definition of G given by (2.13) and (2.21) one gets (2.12). �

3. Numerical scheme construction

The bounded numerical domain can be chosen according with different criteria, but taking into account [12]
the interval [0, 2E] for the spatial variable X related to the underlying asset variable S is appropriate.

In order to construct numerical solutions of problem (2.5)–(2.7), let us consider the bounded numerical

domain [0, 2E] ×
[
0,

σ2
0T

2

]
and the approximation of the partial derivatives

∂2U

∂X2
and

∂U

∂τ
at the mesh points

(Xj , τ
n), with Xj = j(�X) = jh; τn = n(�τ) = nk, 0 ≤ j ≤ N, 0 ≤ n ≤ l, such that N is even and

Nh = 2E, lk = τ, (3.1)

∂2U

∂X2
(Xj , τ

n) = �n
j + O(h2), (3.2)

�n
j = �n

j (u) =
un

j−1 − 2un
j + un

j+1

h2
, 1 ≤ j ≤ N − 1, (3.3)

∂U

∂τ
(Xj , τ

n) =
un+1

j − un
j

k
+ O(k), 0 ≤ j ≤ N, (3.4)

where un
j denotes the approximation of the exact value of the solution of (2.5) at (Xj , τ

n). Disregarding the
errors in (3.2), (3.4) and substituting in (2.5) one gets the following scheme at the internal mesh points

un+1
j =
(

1 − 2k

h2
βn

j

)
un

j +
k

h2
βn

j

(
un

j−1 + un
j+1

)
, 1 ≤ j ≤ N − 1, 0 ≤ n ≤ l − 1 (3.5)

βn
j = (1 + Ψn

j )X2
j , Ψn

j = Ψ(a2X2
j �n

j ). (3.6)
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Remark 3.1. Note that from (3.6) and that Ψ takes values in the interval ]−1, +∞[, see Theorem 1.1 of [4],
the coefficients are nonnegative, βn

j ≥ 0.

With respect to the selection of the boundary values un
0 , un

N at the boundary of the numerical domain there
are two mainly approaches. One of them, using for instance by Düring et al. in [7] translate the limit boundary
condition (2.6) at the boundary of the numerical domain.

For problem (2.5)–(2.6), the translation of the boundary conditions to the boundary of the numerical domain
takes the form

un
0 = 0; un

N = XN − E = E, 0 ≤ n ≤ l. (3.7)

Another method computes the values at the numerical domain boundaries as a part of the solution [20], p. 63.
For this “purpose” they appear two artificial external mesh points X−1 = −h, XN+1 = (N + 1)h for which the
values un−1 and un

N+1 are assigned using Lagrange interpolation of an appropriate degree passing throughout
the closest internal mesh points.

Approximation (3.2) suggests that linear Lagrange interpolation is sufficient in this case, taking

un
−1 = 2un

0 − un
1 ; un

N+1 = 2un
N − un

N−1, 0 ≤ n ≤ l. (3.8)

Note that using scheme (3.5) for j = 0, and the extrapolation conditions (3.8) one gets

un+1
0 =
(

1 − 2k

h2
βn

0

)
un

0 +
k

h2
βn

0

(
un
−1 + un

1

)
= un

0 , 0 ≤ n ≤ l − 1. (3.9)

In an analogous way, for j = N , one gets

un+1
N = un

N , 0 ≤ n ≤ l − 1. (3.10)

Since from the initial condition (2.7) u0
0 = 0 and u0

N = XN −E = E, using (3.9) and (3.10) it follows that both
treatment of the boundaries give the same values at the numerical boundary at each stage n.

Let us denote the vector un = [un
0 , un

1 , ..., un
N ]t and let A, B(n) be the matrices in R

(N+1)×(N+1) defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0

. . . . . . . . . . . . . . .
0 · · · 0 1 −2 1 0
0 · · · 0 0 1 −2 1
0 · · · 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.11)

B(n) = diag(βn
0 , βn

1 , ..., βn
N ), (3.12)

where βn
j are defined like (3.6) also for j = 0, j = N , and taking into account from (3.3) and (3.8) that

�n
0 = �n

N = 0, 0 ≤ n ≤ l − 1, (3.13)

one gets

βn
0 = 0, βn

N = X2
N , 0 ≤ n ≤ l − 1. (3.14)
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For the sake of convenience we note the values of �n
j at the initial stage n = 0. From (2.7) we have

u0
j = max(0, jh − E), and

�0
j =

u0
j−1 − 2u0

j + u0
j+1

h2
=

⎧⎪⎪⎨
⎪⎪⎩

0, if j �= N

2

1
h

, if j =
N

2
·

(3.15)

Thus scheme (3.5), (3.9), (3.10) can be written in vector form as

un+1 =
(

I +
k

h2
B(n)A

)
un, 0 ≤ n ≤ l − 1, (3.16)

ul =

[
0∏

n=l−1

(
I +

k

h2
B(n)A

)]
u0. (3.17)

If we are interested in the computation of the numerical solution vl
j ≈ V (Sj , t) of the original problem (1.6)

at the point (Sj , t), where from (2.1)–(2.2) one gets

l k
σ2

0

2
= T − t (3.18)

vl
j = e−r(T−t)ul

j , 0 ≤ j ≤ N, (3.19)

being ul
j the j-th component of the numerical solution of (3.17) evaluated at

Xj = er(T−t)Sj . (3.20)

For the sake of clarity in the study of the properties of the numerical solution of (2.5)–(2.7) it is convenient
the study of behaviour of �n

j appearing in the coefficients of (3.5)–(3.6).
Let us introduce the vector

�n = [�n
0 , ...,�n

N ]t, 0 ≤ n ≤ l − 1, (3.21)
where �n

j is given by (3.3) for the internal mesh points 1 ≤ j ≤ N − 1, and from (3.13), �n
0 = �n

N = 0.
From (3.3) and (3.11), we can write

�n =
1
h2

Aun. (3.22)

From (3.16) and (3.22) one gets

�n+1 =
1
h2

A

(
I +

k

h2
B(n)A

)
un = �n +

k

h2
AB(n)

(
1
h2

Aun

)
= �n +

k

h2
AB(n)�n,

�n+1 =
(

I +
k

h2
AB(n)

)
�n, 0 ≤ n ≤ l − 1.

(3.23)

Componentwise expression of (3.23) takes the form

�n+1
j =

(
1 − 2k

h2
βn

j

)
�n

j +
k

h2
βn

j−1�n
j−1 +

k

h2
βn

j+1�n
j+1, 1 ≤ j ≤ N − 1.

�n
0 = 0, �n

N = 0, 0 ≤ n ≤ l − 1.

(3.24)
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We conclude this section by writing the link between the action of operator �l on the solutions of prob-
lem (1.6) and (2.5)–(2.7). From the previous comments, see (3.18)–(3.20), one gets the following approximation
of the Gamma of the option:

�l
j(v) = er(T−t)�l

j(u), 0 ≤ j ≤ N. (3.25)

4. Properties of the numerical solution

We begin this section by writing the componentwise expression of the scheme (3.5), (3.6), (3.9), (3.10), given by

un+1
j =

(
1 − 2k

h2
βn

j

)
un

j +
k

h2
βn

j (un
j−1 + un

j+1); 1 ≤ j ≤ N − 1, 0 ≤ n ≤ l − 1

un
0 = 0, un

N = XN − E = E, 0 ≤ n ≤ l

u0
j = max(0, jh − E), 0 ≤ j ≤ N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Note that from (3.19) the numerical solution vl
j of the original problem (1.6) is non-negative if and only if

the numerical solution un
j of (4.1) is also non-negative.

From (4.1) it is clear that assuming

un
j ≥ 0 for all j with 1 ≤ j ≤ N − 1, (4.2)

then it follows that

un+1
j ≥ 0 for all j with 1 ≤ j ≤ N − 1, (4.3)

if stepsizes h, k satisfy
k

h2
≤ 1

2βn
j

, 1 ≤ j ≤ N − 1. (4.4)

However, condition (4.4) is not manageable because it depends on the stages n and j. From a practical point
of view, it is convenient to find a condition of the type (4.4) but independent of j and n.

Since coefficients βn
j of scheme (4.1) are related to the operator �n

j throughout (3.6), the following lemma
studies properties of this operator whose behaviour is described by (3.24) and that will be used to show the
positiveness of un

j .

Lemma 4.1. Let a be the coefficient appearing in equation (2.5), let E be strike price and let A2 and d2 be
defined by (2.10). Then, if h = �X, k = �τ with Nh = 2E, satisfy the condition

k

h3

(
(1 + d2)h + 4a2E2Ψ′(A2)

) ≤ 1
8E2

, (4.5)

the following properties hold true:

(i) �n
j ≥ 0, 0 ≤ j ≤ N, 0 ≤ n ≤ l

(ii)
N∑

j=0

�n+1
j ≤

N∑
j=0

�n
j , 0 ≤ n ≤ l − 1.
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Proof. Both properties are proved using the induction principle on the index n. For n = 0, from (3.15) one gets
that �0

j ≥ 0 for all j = 0, 1, ..., N and from (3.24) one gets

N∑
j=0

�1
j = �1

N
2 −1 + �1

N
2

+ �1
N
2 +1 = �0

N
2

=
N∑

j=0

�0
j .

Thus (ii) is proved for n = 0.
Let us assume that properties (i) and (ii) hold true up n, i.e.,

�n
j ≥ 0, 0 ≤ j ≤ N

N∑
j=0

�0
j ≥

N∑
j=0

�1
j ≥ ... ≥

N∑
j=0

�n
j .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

Taking into account the induction hypothesis (4.6), (3.24) and that βn
j ≥ 0 by Remark 3.1, it follows that

N∑
j=0

�n+1
j = �n+1

0 +
N−1∑
j=1

(
1 − 2k

h2
βn

j

)
�n

j +
N−2∑
j=0

k

h2
βn

j �n
j +

N∑
j=2

k

h2
βn

j �n
j + �n+1

N

= 0 +
N−1∑
j=1

�n
j − k

h2
βn

1�n
1 − k

h2
βn

N−1�n
N−1 + 0 ≤

N∑
j=0

�n
j .

It remains to prove that �n+1
j ≥ 0, for 1 ≤ j ≤ N − 1. Note that from (3.6) and using (4.6) and the

monotonic increasing property of Ψ, see Theorem 1.1 of [4], one gets

βn
j =
(
1 + Ψ
(
a2X2

j �n
j

))
X2

j ≤
⎛
⎝1 + Ψ

⎛
⎝a2X2

j

⎛
⎝ N∑

j=0

�n
j

⎞
⎠
⎞
⎠
⎞
⎠X2

j

≤
⎛
⎝1 + Ψ

⎛
⎝a2X2

j

⎛
⎝ N∑

j=0

�0
j

⎞
⎠
⎞
⎠
⎞
⎠X2

j =
(
1 + Ψ
(
a2X2

j �0
N
2

))
X2

j . (4.7)

Let us denote

L(h) =
4E2

h

(
(1 + d2)h + 4a2E2Ψ′(A2)

)
. (4.8)

Since Xj ∈ [0, 2E] and from the upper bound of Ψ given by (2.11) and (4.7), (4.8) it follows that

βn
j ≤ L(h), 0 ≤ j ≤ N, 0 ≤ n ≤ l. (4.9)

Note that condition (4.5) means that
2k

h2
L(h) ≤ 1, (4.10)

and from (4.9), (4.10) one gets

1 − 2k

h2
βn

j ≥ 0, (4.11)

and from (4.11) and (3.24) one concludes that �n+1
j ≥ 0. Thus the result is established. �
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Note that under condition (4.5) that is independent of n and j, all the coefficients of scheme (4.1) are
non-negative, as it is clear from (4.11). The following result shows that the solution of scheme (4.1) is pos-
itive, monotonic increasing in the space-index j and that the vector scheme (3.16) has a norm bounded solution.

Theorem 4.2. Let {un
j } be the solution of (4.1) and let us assume condition (4.5). Then the following properties

hold:
(i) un

j ≥ 0, for 0 ≤ j ≤ N, 0 ≤ n ≤ l.

(ii) For n fixed with 0 ≤ n ≤ l, one gets

un
0 ≤ un

1 ≤ ... ≤ un
j ≤ un

j+1 ≤ ... ≤ un
N .

(iii) The vector solution {un} of system (3.16) given by (3.17) satisfies the time stability property

‖un‖ ≤
√

6 ‖u0‖, 1 ≤ n ≤ l.

Proof. From previous comments to the statement of Theorem 4.2, part (i) is proved. For the proof of part (ii)
we use the induction principle on the index n. For n = 0, from the initial condition of (4.1) one gets

u0
j+1 − u0

j = h, if
N

2
≤ j ≤ N − 1

and
u0

j+1 − u0
j = 0, if 0 ≤ j ≤ N

2
− 1.

Thus part (ii) holds true for n = 0. Let us assume that

un
j+1 ≥ un

j , 0 ≤ j ≤ N − 1. (4.12)

From (4.1) and (4.12), for 1 ≤ j ≤ N − 1, 0 ≤ n ≤ l − 1 one gets

un+1
j − un

j ≤ −2k

h2
βn

j un
j +

k

h2
βn

j (un
j + un

j+1) =
k

h2
βn

j (un
j+1 − un

j ), (4.13)

and
un+1

j − un
j ≥ −2k

h2
βn

j un
j +

k

h2
βn

j (un
j−1 + un

j ) = − k

h2
βn

j (un
j − un

j−1). (4.14)

Let us write

un+1
j+1 − un+1

j =
(
un+1

j+1 − un
j+1

)
+
(
un

j+1 − un
j

)− (un+1
j − un

j

)
. (4.15)

From (4.13)–(4.15) and (4.9) and (4.10) it follows that

un+1
j+1 − un+1

j ≥ − k

h2
βn

j+1(u
n
j+1 − un

j ) + (un
j+1 − un

j ) − k

h2
βn

j (un
j+1 − un

j )

=
(

1 − k

h2
(βn

j+1 + βn
j )
)

(un
j+1 − un

j )

≥
(

1 − k

h2
2L(h)
)

(un
j+1 − un

j ) ≥ 0.
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This proves (ii) for 1 ≤ j ≤ N − 2. For j = 0 we have un
0 = 0 ≤ un

1 by part (i) and from (4.15) for j = N − 1
and the induction hypothesis one gets

un+1
N − un+1

N−1 ≥
(

1 − k

h2
βn

N−1

)
(un

N − un
N−1) ≥

(
1 − 2k

h2
L(h)
)

(un
N − un

N−1) ≥ 0.

Thus part (ii) is established.
In order to prove (iii) note that from (ii) is follows that

un
0 = 0 ≤ un

j ≤ un
N = E , 1 ≤ j ≤ N − 1. (4.16)

From (4.16) one gets
‖un‖2 = ‖(un

0 , un
1 , ..., un

N)t‖2 ≤ ‖E(0, 1, 1, ..., 1)t‖2 = NE2. (4.17)

Note that u0 = [0, 0, ..., 0, h, 2h, ...,
N

2
h]t, where the first nonzero component corresponds to the position

N

2
+ 1, and thus

‖u0‖2 = h2

⎛
⎝ N

2∑
j=1

j2

⎞
⎠ = h2 N(N + 1)(N + 2)

24
· (4.18)

Taking into account that N =
2E

h
, from (4.17), (4.18) it follows that

‖un‖
‖u0‖ ≤ 2E

√
6

Nh
=

√
6.

Thus part (iii) is established. �

5. Numerical analysis and financial interpretation

With the notation of Section 3, the numerical solution vl
j of problem (1.6) at the point (Sj , t) is given by

vl
j = e−r(T−t)ul

j , Xj = er(T−t)Sj . (5.1)

From Theorem 4.2 and (5.1) the following result holds true and guarantees that the option pricing does not
has spurious oscillations under condition (4.5).

Corollary 5.1. With previous notation and under condition (4.5) the option pricing numerical solution vl
j of

problem (1.6) at (Sj , t) is nonnegative and monotonic increasing with the underlying asset Sj at a fixed time t.

The stability of the numerical solution {un} of scheme (3.16) guarantees that option pricing at time t is
bounded by a quantity which depends on the remaining time to maturity T − t. Note that from (5.1) and
part (ii) of Theorem 4.2, for Sj ∈ [0, 2E], 0 ≤ j ≤ N, one gets that vl

j ≈ V (Sj , t) satisfies

vl
j = e−r(T−t)ul

j ≤ e−r(T−t)ul
N = e−r(T−t)(XN − E) = e−r(T−t)

(
er(T−t) 2E − E

)
=
(
2 − e−r(T−t)

)
E.

The next result shows that numerical scheme (4.1) is consistent with equation (2.5)–(2.7). Consistency means
that the exact theoretical solution of the partial differential equation approximates well to the exact solution of
scheme as the stepsizes tends to 0 [17]. This property is important for the reliability of the numerical solution
because a bad numerical solution may waste a good mathematical model.
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Let F (un
j ) = 0 represent the approximating difference equation defined by

F (un
j ) =

un+1
j − un

j

k
+

2
h2

βn
j un

j − βn
j

h2
(un

j−1 + un
j+1) = 0, 1 ≤ j ≤ N − 1. (5.2)

In accordance with [17], p. 100, the scheme (4.1) is consistent with (2.5) if

T n
j (U) = F (Un

j ) − L(Un
j ) → 0, as h = �X → 0, k = �τ → 0, (5.3)

where Un
j denotes the theoretical solution of (2.5) evaluated at (Xj , τ

n).
Using operator �n

j introduced in (3.3), let us write

F (Un
j ) =

Un+1
j − Un

j

k
− βn

j (U)�n
j (U). (5.4)

Assuming that U is four times continuously differentiable with respect to X and using Taylor expansion about
(Xj , τ

n) it follows that

�n
j (U) =

∂2U

∂X2
(Xj , τ

n) +
h2

12
∂4U

∂X4
(η, τn) =

∂2U

∂X2
(Xj , τ

n) + h2En
j (1), Xj − h < η < Xj + h, (5.5)

where

|En
j (1)| ≤ 1

12
max
{∣∣∣∣ ∂4U

∂X4
(X, τn)

∣∣∣∣ ; 0 ≤ X ≤ XN = 2E

}
=

|Un(1)|max

12
· (5.6)

Assuming that U admits two times continuous partial derivatives with respect to τ , it follows that

Un+1
j − Un

j

k
=

∂U

∂τ
(Xj , τ

n) + kEn
j (2), (5.7)

where

En
j (2) =

1
2

∂2U

∂τ2
(Xj , δ), τn = nk < δ < τn+1 = (n + 1)k, (5.8)

|En
j (2)| ≤ 1

2
|Un

j (2)|max =
1
2

max
{∣∣∣∣∂2U

∂τ2
(Xj , τ)

∣∣∣∣ ; τn ≤ τ ≤ τn+1

}
· (5.9)

From (5.4), (5.5) and (5.7) one gets

T n
j (U) = F (Un

j ) − L(Un
j ) (5.10)

= −X2
j

{(
1 + Ψn

j (U)
)�n

j (U) −
(

1 + Ψ
(

a2X2
j

∂2U

∂X2
(Xj , τ

n)
))

∂2U

∂X2
(Xj , τ

n)
}

+ kEn
j (2),

where

Ψn
j (U) = Ψ

(
a2X2

j �n
j (U)
)
. (5.11)

Let us introduce the notation

An
j = a2X2

j

∂2U

∂X2
(Xj , τ

n); �An
j = a2X2

j En
j (1)h2. (5.12)
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Figure 1. Option pricing for several values of parameter a at time to maturity 1 year.

From (5.12) and using function g(A) introduced in Lemma 2.1 one gets

{(
1 + Ψn

j (U)
)�n

j (U) −
(

1 + Ψ
(

a2X2
j

∂2U

∂X2
(Xj , τ

n)
))

∂2U

∂X2
(Xj , τ

n)
}

=
{(

1 + Ψ(An
j + �An

j )
)
(An

j + �An
j ) − (1 + Ψ(An

j )
)
An

j

}
a−2X−2

j

=
{
g
(
An

j + �n
j

)− g
(
An

j

)
+ �An

j

}
a−2X−2

j .

(5.13)

From (5.10), (5.13) and the differentiability of g(A) given in Lemma 2.1 it follows that

T n
j (U) = −X2

j

(
1 + g′(An

j + θ(�An
j ))
)
En

j (1)h2 + kEn
j (2), (5.14)

for some θ with 0 < θ < 1.
From equation (2.12) of Lemma 2.1 together with (5.6), (5.9) and (5.14), it follows that

|T n
j (U)| ≤ h2E2

3
(1 + C(n, h))|Un(1)|max +

k

2
|Un

j (2)|max, (5.15)

where

C(n, h) = max
{

G, 8a2E2

(
h2

12
|Un(1)|max + |Un(3)|maxΨ′(A2) + d2

)}
, (5.16)

|Un(3)|max = max
{∣∣∣∣ ∂2U

∂X2
(X2

j , τn)
∣∣∣∣ ; 0 ≤ Xj ≤ 2E

}
· (5.17)

Summarizing, from (5.15)–(5.17) one gets

T n
j (U) = O(h2) + O(k), (5.18)

and the following result has been established:

Theorem 5.2. Assuming that the exact solution of (2.5)–(2.7) admits four times continuous partial derivatives
with respect to X and two times continuous partial derivatives with respect to τ , the scheme (4.1) is consistent
with (2.5) and behaves T n

j (U) = O(h2) + O(k) as h → 0, k → 0.
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Figure 2. Stable option pricing for h = 4, k = 3.2787× 10−5.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

S

O
pt

io
n 

P
ric

e

a=0
a=0.015
Pay−off

Figure 3. Wrong option pricing for h = 4, k = 2.7027× 10−4.

6. Examples

All the computations of the numerical solutions are performed using the scheme for the transformed prob-
lem (2.5)–(2.7) and further translation to the option price of the original problem (1.6), using (3.19).

The first example shows that the price of an European vanilla call option increases with the parameter a.

Example 6.1. Consider the option pricing of an European vanilla call option with data

E = 100; σ0 = 0.2; r = 0.02; T − t = 1 year

h = �X = 4; k = �τ = 1.7606 × 10−6.

Figure 1 shows the numerical solution for different values of the parameter a, as well as the Black-Scholes
solution for a = 0.
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Figure 4. Numerical values of the Gamma of the option for different values of a.

Remark 6.2. Note that parameter a has a direct influence in the stability condition (4.5). In particular, for a
fixed value of h, higher values of the parameter a imposes smaller values of the stepsize k.

The next example shows a situation where the numerical solution behaves well under the stability condi-
tion (4.5) and also that if such condition is not satisfied, then they appear spurious oscillations.

Example 6.3. With the same data as Example 6.1 with a = 0.015 and with several stepsizes for k and fixed
value h = 4, Figure 2 shows the good behaviour of the stable numerical solution and Figure 3 shows the wrong
numerical solution when the stability condition is not satisfied.

The following example shows the numerical value of the Gamma of an European vanilla call option showing
that the maximum of the quantity is achieved on the left of the strike price as the value of the parameter a
increases and that the maximum decreases with the value of a.

Example 6.4. With the data of Example 6.1, Figure 4 shows the numerical values of Gamma obtained
from (3.24) and (3.25).
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