We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows. Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes. Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is inf-sup stable; in addition, we prove that a stabilization involving pressure jumps only across the internal edges of the clusters yields a stable scheme with the usual collocated discretization (i.e., in particular, with control-volume-wide constant pressures), for the Stokes and the Navier-Stokes problem. An analysis of this stabilized scheme yields the existence of the discrete solution (and uniqueness for the Stokes problem). The convergence of the approximate solution toward the solution to the continuous problem as the mesh size tends to zero is proven, provided, in particular, that the approximation of the mass balance flux is second order accurate; this condition imposes some geometrical conditions on the mesh. Under the same assumption, an error analysis is provided for the Stokes problem: it yields first-order estimates in energy norms. Numerical experiments confirm the theory and show, in addition, a second order convergence for the velocity in a discrete L norm.
Mots clés : finite volumes, collocated discretizations, Stokes problem, Navier-Stokes equations, incompressible flows, analysis
@article{M2AN_2009__43_5_889_0, author = {Eymard, Robert and Herbin, Rapha\`ele and Latch\'e, Jean-Claude and Piar, Bruno}, title = {Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {889--927}, publisher = {EDP-Sciences}, volume = {43}, number = {5}, year = {2009}, doi = {10.1051/m2an/2009031}, mrnumber = {2559738}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009031/} }
TY - JOUR AU - Eymard, Robert AU - Herbin, Raphaèle AU - Latché, Jean-Claude AU - Piar, Bruno TI - Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 889 EP - 927 VL - 43 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009031/ DO - 10.1051/m2an/2009031 LA - en ID - M2AN_2009__43_5_889_0 ER -
%0 Journal Article %A Eymard, Robert %A Herbin, Raphaèle %A Latché, Jean-Claude %A Piar, Bruno %T Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 889-927 %V 43 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009031/ %R 10.1051/m2an/2009031 %G en %F M2AN_2009__43_5_889_0
Eymard, Robert; Herbin, Raphaèle; Latché, Jean-Claude; Piar, Bruno. Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 889-927. doi : 10.1051/m2an/2009031. http://www.numdam.org/articles/10.1051/m2an/2009031/
[1] Code saturne: A finite volume code for turbulent flows. International Journal of Finite Volumes 1 (2004), http://www.latp.univ-mrs.fr/IJFV/. | MR
, and ,[2] Provably good mesh generation. J. Comput. System Sci. 48 (1994) 384-409. | MR | Zbl
, and ,[3] Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques et Applications 52. Springer-Verlag (2006). | MR | Zbl
and ,[4] A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457-491. | MR | Zbl
and ,[5] Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows. Numer. Heat Transf. Part B: Fundam. 49 (2006) 259-276.
, and ,[6] Collocated finite volume schemes for the simulation of natural convective flows on unstructured meshes. Int. J. Num. Methods Fluids 56 (2008) 2045-2068. | MR | Zbl
, , and ,[7] Discrete Sobolev inequalities and error estimates for finite volume solutions of convection diffusion equations. ESAIM: M2AN 35 (2001) 767-778. | Numdam | MR | Zbl
, and ,[8] Nonlinear functional analysis. Springer-Verlag (1985). | MR | Zbl
,[9] H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal. 41 (2003) 539-562. | MR | Zbl
and ,[10] A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non-matching grids. C. R. Acad. Sci., Sér. I Math. 344 (2007) 659-662. | MR | Zbl
and ,[11] Finite volume methods, Handbook of Numerical Analysis VII. North Holland (2000) 713-1020. | Zbl
, and ,[12] A finite volume scheme for anisotropic diffusion problems. C. R. Acad. Sci., Sér. I Math. 339 (2004) 299-302. | MR | Zbl
, and ,[13] On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN 40 (2006) 501-528. | Numdam | MR | Zbl
, and ,[14] Analysis tools for finite volume schemes. Acta Mathematica Universitatis Comenianae 76 (2007) 111-136. | Zbl
, , and ,[15] Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | MR | Zbl
, and ,[16] On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem. Calcolo 44 (2007) 219-234. | MR | Zbl
, , and ,[17] Error analysis of some Galerkin Least Squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. | MR | Zbl
and ,[18] Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935-1972. | MR | Zbl
, and ,[19] Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag (1986). | MR | Zbl
and ,[20] Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). | Zbl
,[21] An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. | MR | Zbl
and ,[22] PELICANS : Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN/DPAM/SEMIC (2004).
,[23] Navier-Stokes Equations, Studies in mathematics and its applications. North-Holland (1977). | MR | Zbl
,[24] Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695-713. | Numdam | MR | Zbl
,Cité par Sources :