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A POSTERIORI ESTIMATES FOR THE CAHN–HILLIARD EQUATION
WITH OBSTACLE FREE ENERGY ∗

L’uboḿır Baňas1 and Robert Nürnberg2

Abstract. We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard
equation with a double obstacle free energy. The derived estimates are robust and efficient, and in
practice are combined with a heuristic time step adaptation. We present numerical experiments in two
and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation
algorithm.
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1. Introduction

In this paper we derive spatial a posteriori error estimates for a piece-wise linear finite element approximation
of the following Cahn–Hilliard equation:

γ
∂u

∂t
= Δw in ΩT := Ω × [0, T ],

w = −γΔu+
1
γ

Ψ′(u) in ΩT ,

∇u · ν = ∇w · ν = 0 on ∂Ω × (0, T ],
u(·, 0) = u0 in Ω,

(1.1)

where Ω is a convex polyhedral domain in Rd, d = 2, 3, and T > 0 is a fixed positive time. Moreover, Ψ is a
given energy potential, and in this paper we will take Ψ to be the so called double obstacle potential

Ψ(s) :=
{

1
2 (1 − s2) if s ∈ [−1, 1] ,
∞ if s /∈ [−1, 1] . (1.2)
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We note that other choices of Ψ are also possible, see e.g. (1.4) below. In addition, the parameter γ > 0 is an
interaction length, which is small compared to the dimensions of Ω.

Equation (1.1) was originally introduced by Cahn and Hilliard to model spinodal decomposition and coars-
ening phenomena in binary alloys, see [11,12]. Here u is defined to be the difference of the local concentrations
of the two components of an alloy and hence u is restricted to lie in the interval [−1, 1]. More recently, the
Cahn–Hilliard equation has been used e.g. as a phase field model for sharp interface evolutions and to study
phase transitions and interface dynamics in multiphase fluids, see e.g. [7,22,23] and the references therein. We
note that in (1.1) we have used a time scaling, so that in the limit γ → 0, we recover the well known sharp
interface motions by Mullins–Sekerka. We recall that this limit was first formally shown in [26], and later proved
rigorously in [1].

We note that as properties of commercially produced materials depend on microstructures which are generated
using special processing techniques, such as phase separation and coarsening mechanisms, accurate predictions of
microstructure or the evolution of pattern formation during phase separation and coarsening are of considerable
interest in materials science. As it is difficult to obtain such information by real-life experiments, reliable
numerical computations are very important. It is the aim of this paper to prove suitable a posteriori estimates
for the discrete approximation of the considered problem that can be used to construct robust and reliable
mesh refinement algorithms in two and three space dimensions, which allow for efficient and reliable numerical
simulations.

The theory of Cahn and Hilliard is based on the following Ginzburg–Landau free energy

E(u) :=
∫

Ω

(
γ
2 |∇u|

2 + γ−1 Ψ(u)
)
dx. (1.3)

The first term in the free energy penalizes large gradients and the second term is the homogeneous free energy.
Then (1.1) can be derived from mass balance considerations as a gradient flow for the free energy E(u), with
the chemical potential w := δE

δu being the variational derivative of the energy E with respect to u.
For notational convenience in (1.1) it was implicitly assumed that the free energy Ψ is differentiable. An

example for such a potential function is
Ψ(s) = 1

4 (s2 − 1)2, (1.4)
which has the advantage of being smooth but the disadvantage that physically non-admissible values with
|u| > 1 can be attained during the evolution. Of course, the obstacle free energy (1.2) forces u to stay within
the interval [−1, 1] of physically meaningful values. This is a clear advantage over a formulation involving (1.4).
Hence, in this paper we will from now on consider the obstacle free energy (1.2). Then the chemical potential w
needs to be computed with the help of a variational inequality, see (2.1) below. It is this variational inequality
which requires special attention in developing an a posteriori error estimate.

Typical evolutions of (1.1) starting from a well mixed initial state begin with a relatively short early phase,
called spinodal decomposition, in which the local concentrations u grow towards the minimizers ± 1 of (1.2).
This leads to a setup, where large parts of the domain are occupied by regions where u = ± 1, which are
separated by interfacial regions where |u| < 1, in which u smoothly varies from −1 to 1. Then follows a
much slower evolution phase, in which the total volume of these interfacial regions is decreased. This phase is
called coarsening. The thickness of the interfacial regions, i.e., the region where |u| < 1, is asymptotically of
order O(γ). As mentioned earlier, it can be shown that in the sharp interface limit (i.e., when γ → 0) the long
time dynamics of equations (1.1) correspond to the Mullins–Sekerka equation.

Finite element methods for equation (1.1) with (1.2) have been proposed and analyzed in [9], see also [5,6].
In addition, existence and uniqueness of the solution u,w to (1.1), as well as regularity results, were shown
in [8]. In [7] a finite element approximation for a related, so called degenerate, Cahn–Hilliard equation was
considered, and in addition a heuristic adaptive mesh refinement algorithm was used for numerical simulations
in two space dimensions, in order to increase the efficiency of the computations. This approximation and
the corresponding mesh refinement have recently been extended to three space dimensions in [3], see also [4].
There exist numerous works on finite element approximations of (1.1) with smooth potentials such as (1.4).
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Here we refer to e.g. [16–18] and the references therein. A posteriori estimates for the Cahn–Hilliard equation
with the smooth potential (1.4) have very recently been obtained in [19], where the estimates for a continuous
in time semi-discrete approximation only depend on polynomial powers of γ−1, a result which crucially depends
on the spectral estimate from [13]. To our knowledge, so far there is no work on a posteriori estimates for
the Cahn–Hilliard equation with the obstacle potential (1.4), apart from the numerical results in [2], which are
based on results related to the work in this paper.

It is the aim of this paper to prove a posteriori estimates and examine adaptive finite element methods
for (1.1) in two and three space dimensions. Since there is no spectral estimate corresponding to that from [13]
available for the non-smooth model, we only examine the error due to the spatial discretization. Therefore we
restrict our analysis to spatial a posteriori error estimates for a discrete in time analogue of (1.1). In particular,
we will derive estimates for a coupled system that consists of an elliptic variational inequality involving two
constant obstacles, and a linear elliptic problem; see (2.1) below.

By using the ideas of [27], where error estimates for linear finite element approximations of elliptic obsta-
cle problems are introduced, we are able to obtain an estimate with localized interior residual, which enables
effective and reliable error control by refinement that is mainly concentrated in the interfacial region, where
|u| < 1. The a posteriori analysis of elliptic obstacle problems is a relatively new field. A residual a posteriori
estimate with non-localized interior residual was obtained in [14]. A sharper estimate with localized interior
residual was constructed in [28] for constant obstacles and in [27] for general obstacles. A short review on
a posteriori estimates for elliptic obstacle problems is given in [10]. A posteriori estimates for parabolic varia-
tional inequalities were derived in [24] by extending the ideas of [27]. We also refer to work in optimal control
theory, where very recently an error estimator for a control problem with side constraints involving PDEs and
inequality constraints has been introduced in [20,21]. However, we stress that a crucial difference between work
on optimal control theory and work on obstacle problems involving variational inequalities is that the former
only applies the inequality constraints on the right hand side of the control PDE, and that the localization of
the interior residual is not essential to obtain a lower bound for the error, e.g. see [21].

The paper is organized as follows. In Section 2, we introduce the continuous in space and discrete in
time Cahn–Hilliard equation and its finite element approximation by conforming piece-wise linear elements.
In Section 3, we establish an a posteriori estimate with non-localized residual, which can potentially lead to
extensive mesh refinement outside of the interfacial region, i.e. in the region where the solution u is constant. In
Section 4, we construct upper and lower bounds for the error with localized interior residual. In Section 5, we
discuss a number of adaptive algorithms for numerical computations. Finally, Section 6 is devoted to numerical
experiments, where we examine the performance of the adaptive algorithms in two and three space dimensions.

2. Finite element approximation

We consider the following continuous in space semi-discrete counterpart of the Cahn–Hilliard equation ob-
tained by a backward-Euler time discretization of (1.1): Find u ∈ K := {v ∈ H1(Ω) : |v| ≤ 1} and w ∈ H1(Ω)
such that

(u, φ) +
τ

γ
(∇w,∇φ) = (f, φ) ∀φ ∈ H1(Ω),

γ (∇u,∇(ψ − u)) − (w,ψ − u) ≥ (g, ψ − u) ∀ψ ∈ K,
(2.1)

where (φ, ψ) =
∫
Ω
φψ is the L2-inner product over Ω. Throughout this paper, we denote the L2-norm over

D ⊂ Ω by ‖ · ‖D, and similarly use ‖ · ‖1,D for the H1-norm. For notational convenience, we drop the subscript
in the case D = Ω. In addition, we denote the norm in the dual space (H1(Ω))′ by ‖ · ‖−1 and use 〈·, ·〉 for the
duality pairing between H1(Ω) and its dual.

On introducing the linear finite element space

V h := {φ ∈ C(Ω) : φ |T is linear ∀T ∈ T h} ⊂ H1(Ω) ,
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where Ω = ∪T∈T hT , we consider the following finite element approximation of (2.1): Find uh ∈ Kh and wh ∈ V h

such that
(uh, φ) +

τ

γ
(∇wh,∇φ) = (f, φ) ∀φ ∈ V h,

γ (∇uh,∇(ψ − uh)) − (wh, ψ − uh) ≥ (g, ψ − uh) ∀ψ ∈ Kh,
(2.2)

where Kh := K ∩ V h. Note that in view of the derivation of (2.1), we usually have f = uold
h , g = 1

γu
old
h

in (2.2), where uold
h is the solution from the previous time step. Then (2.2) corresponds to one time step of the

unconditionally stable, fully discrete approximation in [9]. Also, in that case f, g ∈ V hold are piecewise linear
functions, where V hold is the finite element space corresponding to the previous time step. This case will simplify
some steps in the analysis below, in particular when V hold ⊂ V h.

We denote by
eu = u− uh,
ew = w − wh.

(2.3)

We recall the following well-known result concerning V h:

|(φ, χ) − (φ, χ)h| ≤ C‖h2 ∇φ‖ ‖∇χ‖ ∀φ, χ ∈ V h ; (2.4)

where (φ, χ)h =
∫
Ω
Ih(φχ) for φ, χ ∈ C(Ω) is the usual mass lumped inner product, and Ih is the usual

Lagrange interpolation operator onto V h.
In addition to the triangulation T h, we introduce the set of its nodes Ph and edges Eh. We denote the nodal

basis functions of V h as (χph)p∈Ph
, where χph(q) = 1 if p = q and χph(q) = 0 otherwise. Moreover, for each

T ∈ T h and e ∈ Eh we denote their diameter by hT and he, respectively. We also introduce the local mesh size
function h : Ω → R, which is piecewise constant and such that h|T = hT for all T ∈ T h. For any set D ⊂ Ω,
we define the discrete neighbourhood of D by D̃ = ∪{T ∈ T h; T ∩D �= ∅}. In addition, in a slight abuse of
notation, we also introduce the short hand notation ‖hα[∇uh]‖2 :=

∑
e∈Eh

‖hαe [∇uh]e‖2
e, where α ∈ R.

3. A POSTERIORI estimate with positivity preserving interpolation

In this section we extend the ideas of [14], in order to show how it is possible to derive an upper bound for
the error of the finite element approximation in a relatively simple manner. The obtained estimate, however,
does not take into account certain special properties of the solution, and may lead to excessive mesh refinement
in practice, in areas where the solution u is constant.

We recall the definition of the positivity preserving interpolation operator Πh0 : L1(Ω) → V h ∩ H1
0 (Ω)

from [14], i.e., we have that u ≥ 0 ⇒ Πh
0u ≥ 0 for all u ∈ L1(Ω). It is then a straightforward matter to extend

this definition to the Neumann boundary condition and double obstacle present here, to obtain an analogous
operator Πh : L1(Ω) → V h such that

u ∈ K ⇒ Πhu ∈ Kh. (3.1)
In fact, we can choose Πh to be the operator given in [25], Example 1.1.

We have the following approximation properties of Πh for u ∈ H1(Ω) and uh ∈ V h:

‖∇Πhu‖ ≤ ‖∇u‖, (3.2a)

‖u− Πhu‖T ≤ ChT ‖∇u‖T̃ , (3.2b)

‖u− Πhu‖e ≤ Ch1/2
e ‖∇u‖ẽ, (3.2c)

‖uh − Πhuh‖T ≤ C‖h3/2[∇uh]e‖T̃ , (3.2d)

‖uh − Πhuh‖e ≤ C‖he[∇uh]e‖ẽ, (3.2e)

cf. [14], where we recall that T̃ is the union of all the elements surrounding T , and similarly for ẽ.
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Choosing φ = ew in (2.1) and φ = Πhew in (2.2), we obtain that

(eu, ew) +
τ

γ
‖∇ew‖2 = (f, ew − Πhew) − (uh, ew − Πhew) − τ

γ

(
∇wh,∇(ew − Πhew)

)
. (3.3)

Next, we take ψ = uh in (2.1), leading to

γ (∇u,∇eu) − (w, eu) − (g, eu) ≤ 0, (3.4)

and ψ = Πhu ∈ Kh, recall (3.1), in (2.2), which gives

γ (∇uh,∇eu) − (wh, eu) − (g, eu) ≥
(
g,Πhu− u

)
− γ

(
∇uh,∇(Πhu− u)

)
+

(
wh,Πhu− u

)
. (3.5)

We have the simple identity Πhu−u = (Πheu−eu)+(Πhuh−uh). Therefore, after we subtract (3.5) from (3.4),
we obtain

γ‖∇eu‖2 − (ew, eu) ≤
(
g, eu − Πheu

)
− γ

(
∇uh,∇(eu − Πheu)

)
+

(
wh, eu − Πheu

)
+

(
g + wh,Πhuh − uh

)
− γ

(
∇uh,∇(Πhuh − uh)

)
.

(3.6)

Further, after employing integration by parts, since Δuh|T = 0, we observe that

(∇uh,∇ψ) =
∑
T∈Th

∫
T

∇uh · ∇ψ =
∑
T∈Th

{∫
∂T

∇uh · νTψ −
∫
T

Δuhψ
}

=
∑
e∈Eh

∫
e

[∇uh]eψ ∀ψ ∈ H1(Ω),
(3.7)

where νT denotes the outward unit vector to T ∈ Th.
Hence it follows from (3.3), on applying the Cauchy–Schwartz and Young inequalities together with (3.2b)

and (3.7), that

(eu, ew) +
τ

γ
‖∇ew‖2 ≤ C

γ

τ
‖h(uh − f)‖2 +

τ

4γ
‖∇ew‖2 + C

τ

γ
‖h1/2[∇wh]e‖2 +

τ

4γ
‖∇ew‖2. (3.8)

Similarly, it follows from (3.6) that

γ‖∇eu‖2 − (ew, eu) ≤ C

γ
‖h(g + wh)‖2 +

γ

4
‖∇eu‖2 + γC‖h1/2[∇uh]‖2 +

γ

4
‖∇eu‖2

+
(
g + wh,Πhuh − uh

)
− γ

(
∇uh,∇(Πhuh − uh)

)
.

(3.9)

The last two terms on the right-had side of (3.9) can be estimated, on noting (3.7) and (3.2d)-(3.2e), as

(
g + wh,Πhuh − uh

)
− γ

(
∇uh,∇(Πhuh − uh)

)
≤ C

(
γ‖h1/2[∇uh]‖2 +

1
γ
‖h(g + wh)‖2

)
.

By combining the previous equation with (3.8), (3.9) we arrive at

τ

γ
‖∇ew‖2 + γ‖∇eu‖2 ≤ C

(
γ

τ
‖h(f − uh)‖2 +

τ

γ
‖h1/2[∇wh]‖2 +

1
γ
‖h(g + wh)‖2 + γ‖h1/2[∇uh]‖2

)
. (3.10)

Upon subsequently rescaling we obtain

τ ‖∇ew‖2 + γ2 ‖∇eu‖2 ≤ C

[
γ2

τ
‖h(uh − f)‖2 + τ ‖h1/2[∇wh]‖2 + ‖h(g + wh)‖2 + γ2‖h1/2[∇uh]‖2

]
. (3.11)
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Remark 3.1. The disadvantage of the above estimate is that the interior residual ‖h(g + wh)‖ corresponding
to the variational inequality in (2.2) is not localized to the noncontact set (see definition in the next section),
which can cause excessive mesh refinement in the contact set, where the solution uh is constant and where
wh usually attains large values. However, as the variational inequality in (2.2) trivially holds in the contact
set, ideally there should be no contribution from the interior residual to the a posteriori error estimate. This
problem will be addressed in the next section.

4. A POSTERIORI estimate with localized interior residual

In this section we derive an a posteriori estimate with an interior residual localized to the interface, i.e.
the interior residual induced by the variational inequality in (2.2) is zero in the region where |uh| = 1. This
result gives rise to more efficient a posteriori error based mesh refinement strategies, and it is furthermore a
theoretical justification for the construction of heuristical mesh adaptive algorithms, where the mesh refinement
is concentrated in the interfacial area, i.e. where |uh| < 1. We extend the ideas of [27,28] to the semi-discrete
formulation (2.1) of the Cahn–Hilliard equation. Here we define the discrete functions fh := Ihf , gh := Ihg
and note that by definition we have (gh, φ)h = (g, φ)h, (fh, φ)h = (f, φ)h for all φ ∈ C(Ω).

Instead of the discrete formulation (2.2), we consider the following discrete problem: Find uh ∈ Kh and
wh ∈ V h such that

(uh, φ)h +
τ

γ
(∇wh,∇φ) = (fh, φ)h ∀φ ∈ V h,

γ (∇uh,∇(ψ − uh)) − (wh, ψ − uh)h ≥ (gh, ψ − u)h ∀ψ ∈ Kh.
(4.1)

The above formulation only differs from (2.2) in the zero order terms, where we use the reduced discrete inner
product (·, ·)h.

Given the true solution u, and following the technique in [27] for a single obstacle, we obtain the partition
of the domain

Ω = C(u) ∪ N (u) ∪ F(u), (4.2)
where

– the contact set C(u) is the maximal open set A ⊂ Ω such that |u| ≡ 1 on A;
– the noncontact set N (u) := ∪ε>0Bε; where Bε is the maximal open set B ⊂ Ω such that |u| < 1 − ε;
– the free boundary F(u) is the set Ω \ (C(u) ∪ N (u)).

The contact set can be further decomposed as C(u) = C+(u) ∪ C−(u), where u = ± 1 on C±(u).
We define the continuous residual σ(u) ∈ (H1(Ω))′ as

〈σ(u), ψ〉 = (g, ψ) + (w,ψ) − γ(∇u,∇ψ) ∀ψ ∈ H1(Ω). (4.3)

The following properties can be obtained from the definition of σ (note, |u| ≡ 1 in C(u))

σ ≥ 0 in C+(u), (4.4a)

σ ≤ 0 in C−(u), (4.4b)

σ = g + w in C(u), (4.4c)

σ = 0 in N (u). (4.4d)

The discrete residual is defined as σh ∈ V h such that

(σh, ψ)h = (gh, ψ)h + (wh, ψ)h − γ(∇uh,∇ψ) ∀ψ ∈ V h . (4.5)
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Alternatively we can write
(σh, ψ)h = (gh, ψ)h + (wh, ψ)h + γ(Δhuh, ψ)h, (4.6)

where Δh : V h → V h is the usual discrete Laplacian on V h.
We define the jump across an inner element edge/face e = T1 ∩ T2 ∈ Eh as

[∇uh]e =
1
2
(∇uh|T1 −∇uh|T2) · νe,

where νe is a unit normal vector of e pointing from T1 to T2. For a Neumann boundary edge e ∈ Eh ∩ ∂Ω ⊂ T
we define

[∇uh]e = ∇uh|T · ν,
where ν is he outward unit vector to the boundary ∂Ω.

Similarly to (4.2), the domain Ω can be decomposed into

Ω = Ch(uh) ∪ Fh(uh) ∪ Nh(uh), (4.7)

where
Ch(uh) := Ch(uh)+ ∪ Ch(uh)−, Ch(uh)± :=

⋃
{T ∈ T h; |uh| = ± 1 on T },

Nh(uh) :=
⋃
{T ∈ T h; |uh| < 1 on T },

Fh(uh) := Ω \ [Ch(uh) ∪Nh(uh)].
In our context, Ch denotes the subdomains with pure materials, Nh denotes the diffuse interface and Fh is the
so-called discrete free boundary between Ch and Nh.

Similarly as in (4.4), one can establish for all nodes p ∈ Ph that

σh(p) ≥ 0 if p ∈ C+
h , (4.8a)

σh(p) ≤ 0 if p ∈ C−
h , (4.8b)

σh(p) = gh(p) + wh(p) if |uh| = 1 on suppχph, (4.8c)

σh(p) = 0 if |uh(p)| < 1. (4.8d)

Note that Δhuh = 0 in Ch(uh).
Following [27], we define the Galerkin functional Gh ∈ (H1(Ω))′ as

〈Gh, ψ〉 = γ(∇(uh − u),∇ψ) − (wh, ψ) + (w,ψ) + (σh − σ, ψ) ∀ψ ∈ H1(Ω) . (4.9)

We directly have from (4.3) that

〈Gh, ψ〉 = γ(∇uh,∇ψ) − (wh + g, ψ) + (σh, ψ) ∀ψ ∈ H1(Ω) . (4.10)

Lemma 4.1 (perturbed Galerkin orthogonality). There exists a constant C depending only on the mesh regu-
larity, such that

‖Gh‖−1,h := sup
ψh∈V h,‖∇ψh‖=1

〈Gh, ψh〉 = C
(
γ‖h2∇Δhuh‖ + ‖gh − g‖−1,h

)
.

Proof. On recalling the definitions of (·, ·)h, σh and Gh, we have for any ψh ∈ V h that

〈Gh, ψh〉 = (g, ψh)h + [γ(∇uh,∇ψh) − (g + wh, ψh)h] + (wh, ψh)h − (wh + g, ψh) + (σh, ψh)
= (g, ψh)h − (g, ψh) + (wh, ψh)h − (wh, ψh) + (σh, ψh) − (σh, ψh)h
= (g + wh − σh, ψh)h − (gh + wh − σh, ψh) + (gh − g, ψh)
= −γ(Δhuh, ψh)h + γ(Δhuh, ψh) + (gh − g, ψh).

(4.11)
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Furthermore, it follows from (2.4) that

−γ(Δhuh, ψh)h + γ(Δhuh, ψh) ≤ γ‖h2∇Δhuh‖‖∇ψh‖,

which yields the desired result. �
Also the following is just a generalisation of [27], Lemma 3.4, except that the term ‖σh − σ‖2

−1 does not
appear on the left hand side of (4.12).

Lemma 4.2. The following inequality holds

γ‖∇(uh − u)‖2 − 2 (wh − w, uh − u) ≤ C1

γ
‖Gh‖2

−1 − C2(σh − σ, uh − u). (4.12)

Proof. It follows from (4.9) that

γ‖∇(uh − u)‖2 − (wh − w, uh − u) = 〈Gh, uh − u〉 − (σh − σ, uh − u)
≤ ‖Gh‖−1‖∇(uh − u)‖ − (σh − σ, uh − u).

Hence by Young’s inequality we get

γ‖∇(uh − u)‖2 − (wh − w, uh − u) ≤ 1
2γ

‖Gh‖2
−1 +

γ

2
‖∇(uh − u)‖2 − (σh − σ, uh − u). (4.13)

The assertion of the lemma then easily follows from the last inequality. �

4.1. Global upper bound

In the following lemma we estimate the Galerkin functional.

Lemma 4.3. There exists a constant C depending only on the mesh regularity, such that

‖Gh‖−1 ≤ C

⎡⎣γ(∑
e∈Eh

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e

)1/2

+ ‖h(g + wh − σh)‖ + γ
∥∥h2∇Δhuh

∥∥ + ‖g − gh‖−1,h

⎤⎦ .
Proof. For ϕ ∈ H1(Ω) we write

〈Gh, ϕ〉 = 〈Gh, ϕ− Ihϕ〉 + 〈Gh, Ihϕ〉 ,
where Ihϕ denotes the Clément interpolant for ϕ, see [15]. The second term in the above equation can be
estimated using Lemma 4.1 (the perturbed Galerkin orthogonality) and the properties of Ih as

〈Gh, Ihϕ〉 ≤ C‖Gh‖−1,h‖∇Ihϕ‖ ≤ C(γ‖h2∇Δhuh‖ + ‖g − gh‖−1,h)‖∇ϕ‖ .

Similarly, on recalling (4.10), we can estimate the first term using standard arguments of a posteriori estimation
as

〈Gh, ϕ− Ihϕ〉 = γ(∇uh,∇(ϕ− Ihϕ)) − (wh + g − σh, ϕ− Ihϕ)

= −γ
∑
e∈Eh

∫
e

[∇uh]e(ϕ− Ihϕ) −
∑
T∈Th

∫
T

(wh + g − σh) (ϕ− Ihϕ)

≤ C

⎡⎣γ(∑
e∈Eh

∥∥∥h1/2
e [∇uh]e

∥∥∥2

L2(e)

)1/2

+ ‖h(g + wh − σh)‖

⎤⎦ ‖∇ϕ‖,

which concludes the proof. �
The following lemma is an adaption of [27], Proposition 3.7.
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Lemma 4.4. The following inequality holds for the solutions u and uh of (2.1) and (4.1), respectively.

(σh − σ, uh − u) ≥ −C

⎡⎣γ ∑
T∈T ′

h

h4
T ‖∇Δhuh‖2

T +
1
γ

∑
T∈T ′

h

h2
T ‖wh + gh‖2

T + γ
∑
e∈E′

h

he‖[∇uh]e‖2
e

⎤⎦,
where

T ′
h = {T ∈ Th; ∃ p1, p2 ∈ Ph ∩ T, |uh(p1)| = 1 and |uh(p2)| < 1} ,

E ′
h = {e ∈ Eh; e ∩ P ′

h �= ∅} with P ′
h = {p ∈ Ph; |uh(p)| = 1 and |uh| �≡ 1 on suppχph} ·

Proof. We rewrite
(σh − σ, uh − u) = (σh, uh − u) + (σ, u − uh).

Since uh ∈ K, we can estimate the second term using (2.1)

(σ, u − uh) = γ(∇u,∇(uh − u)) − (g, uh − u) − (w, uh − u) ≥ 0.

Next, on noting that Ω = Ch ∪ Nh ∪ T ′
h, we rewrite the first term on the right-hand side as

(σh, uh − u) =
∫
C−

h

σh(−1 − u) +
∫
C+

h

σh(1 − u) +
∫
Nh

σh(uh − u) +
∫
T ′

h

σh(uh − u).

Using (4.8a)-(4.8b) we get ∫
C−

h

σh(−1 − u) ≥ 0,
∫
C+

h

σh(1 − u) ≥ 0.

Recalling (4.8d) we have ∫
Nh

σh(uh − u) = 0.

The remaining term is estimated as follows. Consider T ∈ T ′
h and p1, p2 ∈ Ph ∩ T , with uh(p1) = ± 1,

|uh(p2)| < 1 and σh|T ≥ 0 we get∫
T

σh(uh − u) =
∫
T

σh(uh − 1) +
∫
T

σh(1 − u)

≥
∫
T

σh(uh − 1) ≥ −‖σh‖T ‖uh − 1‖T ,

if σh|T ≤ 0 we get ∫
T

σh(uh − u) =
∫
T

σh(uh + 1) +
∫
T

σh(−1 − u)

≥
∫
T

σh(uh + 1) ≥ −‖σh‖T ‖uh + 1‖T .

From [27], Lemma 3.6, we obtain (Eh(p) := {e ∈ Eh; p ∈ e})

‖uh − 1‖T ≤ ChT

⎛⎝ ∑
e∈Eh(p1)

he‖[uh − 1]e‖2
e

⎞⎠1/2

≤ ChT

⎛⎝ ∑
e∈Eh(p1)

he‖[uh]e‖2
e

⎞⎠1/2

.

We have from
σh = σh − wh − gh + wh + gh ≤ |σh − wh − gh| + |wh + gh|,
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that
‖σh‖T ≤ ‖σh − wh − gh‖T + ‖wh + gh‖T ≤ γ hT ‖∇Δhuh‖T + ‖wh + gh‖T .

Finally we get

∫
T

σh(uh − u) ≥ −C

⎛⎝γ h4
T ‖∇Δhuh‖2

T +
1
γ
h2
T ‖wh + gh‖2

T + γ
∑

e∈Eh(p1)

he‖[uh]e‖2
e

⎞⎠,
which, on noting that E ′

h = ∪p∈P′
h
Eh(p), concludes the proof. �

The following lemma is a simple consequence of (4.12) and Lemmas 4.3 and 4.4.

Lemma 4.5.

γ‖∇(uh − u)‖2 − 2 (wh − w, uh − u) ≤ C
1
γ

[
γ2

∑
e∈Eh

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+ ‖h(g + wh − σh)‖2

+ γ2
∥∥h2∇Δhuh

∥∥2
+ ‖g − gh‖2

−1,h +
∑
T∈T ′

h

‖hT (wh + gh)‖2
T

]
.

The next lemma gives an estimate for the first equation in (4.1).

Lemma 4.6.

τ

γ
‖∇(wh − w)‖2 + 2 (uh − u,wh − w) ≤ C

γ

τ

[
τ2

γ2

∑
e∈Eh

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+ ‖h(uh − f)‖2

+
∥∥h2∇(uh − fh)

∥∥2
+ ‖f − fh‖2

−1,h

]
.

Proof. We start with the identity

τ

γ
(∇ew,∇φ) + (eu, φ) =

τ

γ
(∇ew,∇(φ− Ihφ)) + (eu, φ− Ihφ) +

τ

γ
(∇ew,∇Ihφ) + (eu, Ihφ)

for any φ ∈ H1(Ω). Next, according to (2.1), (4.1), we can rewrite the above equation as

τ

γ
(∇ew,∇φ) + (eu, φ) = − τ

γ
(∇wh,∇(φ− Ihφ)) + (f − uh, φ− Ihφ) +

τ

γ
(∇ew,∇Ihφ) + (eu, Ihφ). (4.14)

Similarly as in Lemma 4.1, on noting (2.1), (4.1) and (2.4), we obtain that

τ

γ
(∇ew,∇Ihφ) + (eu, Ihφ) ≤

∥∥h2∇(uh − fh)
∥∥ ‖∇φ‖ + ‖f − fh‖−1,h‖∇φ‖, (4.15)

and similarly to Lemma 4.3, we have that

− τ

γ
(∇wh,∇(φ− Ihφ)) + (f − uh, (φ− Ihφ)) ≤ C

[
τ

γ

(∑
e∈Eh

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e

)1/2

+ ‖h(uh − f)‖
]
‖∇φ‖. (4.16)

The proof can be concluded by combining (4.15), (4.16) and (4.14), and by subsequently applying a Young’s
inequality for φ = ew. �
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The following corollary is a simple consequence of Lemmas 4.5 and 4.6.

Corollary 4.1. The following estimate is valid for uh, wh:

γ2 ‖∇(uh − u)‖2 + τ ‖∇(wh − w)‖2

≤ C

[
τ
∑
e∈Eh

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+
γ2

τ
‖h(uh − f)‖2 +

γ2

τ

∥∥h2∇(uh − f)
∥∥2

+ γ2
∑
e∈Eh

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+ ‖h(g + wh − σh)‖2 +

∑
T∈T ′

h

‖hT (wh + gh)‖2
T

+ γ2
∥∥h2∇Δhuh

∥∥2
+ ‖g − gh‖2

−1,h +
γ2

τ
‖f − fh‖2

−1,h

]
. (4.17)

Remark 4.1. The estimate (4.17) differs from (3.11) in the following:

– the interior residual, which is now ‖h(g + wh − σh)‖2+
∑
T∈T ′

h

‖hT (wh+gh)‖2
T , is localized to the “discrete

noncontact set” Ω \ Ch, on recalling (4.8c);
– for simplicity, we did not consider coarsening in the derivation of (3.11), i.e. the terms ‖g − gh‖2

−1,h,
γ2

τ ‖f − fh‖2
−1,h are not included in (3.11);

– the terms γ2

τ

∥∥h2∇(uh − f)
∥∥2, γ2

∥∥h2∇Δhuh
∥∥2 in (4.17) are due to the use of the discrete inner product

(·, ·)h and are therefore not present in (3.11).
Finally, we note that the quantity

‖h2∇Δhuh‖
is 0 within the discrete contact set, cf. [27], Remark 3.7, and so it will not contribute to the a posteriori error
estimate in that region.

4.2. Local lower bounds

To each function f ∈ L2(Ω) we assign a piecewise constant function f defined as

f |T =
1
|T |

∫
T

f ∀T ∈ T h.

Further, the so-called local data oscillation is defined as

osch(f, T ) = ‖hT (f − f)‖T .

Lemma 4.7. The following local estimate holds for all T ∈ T h

[
γ2

∑
e⊂T

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T + γ2
∥∥h2

T∇Δhuh
∥∥2

T

]1/2

≤

C
{
γ‖∇(uh − u)‖T + ‖hT (g − gh)‖T + ‖hT (σh − σ)‖T + ‖hT (wh − w)‖T + osch(g + wh − σh, T )

}
·

Proof. The proof is based on the local argument of Verfürth [29].
With every T ∈ Th, e ∈ Eh we respectively associate the standard canonical bubble functions ψT , ψe. For

technical reasons, we introduce the auxiliary function zh := γ uh. Then, following a similar argument in [14],
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for any T ∈ Th, we can construct a function φT := αTψT +
∑
e⊂T

βeψe, where αT , βe are chosen such that

([∇zh]e, φT )e = he ‖[∇zh]e‖2
e ∀e ⊂ T,

(g + wh − σh, φT )T = h2
T ‖g + wh − σh‖2

T ,

and

‖∇φT ‖T ≤ C

[∑
e⊂T

∥∥∥h1/2
e [∇zh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T

]1/2

,

‖φT ‖T ≤ ChT

[∑
e⊂T

∥∥∥h1/2
e [∇zh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T

]1/2

.

We have, on recalling (3.7) and (4.3), that

γ2
∑
e⊂T

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T =
∑
e⊂T

∥∥∥h1/2
e [∇zh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T

=
∑
e⊂T

([∇zh]e, φT )e + (g + wh − σh, φT )T

= γ
∑
e⊂T

([∇uh]e, φT )e + (g + wh − σh, φT )T

= −γ(∇uh,∇φT )T + (g + wh − σh, φT )T + (g + wh − σh − (g + wh − σh), φT )T
= γ(∇(u− uh),∇φT )T − (w − wh, φT )T + (σ − σh, φT )T

+ (g + wh − σh − (g + wh − σh), φT )T
≤ γ‖∇(u− uh)‖T ‖∇φT ‖T + ‖w − wh‖T‖φT ‖T + ‖σ − σh‖T ‖φT ‖T

+ ‖g + wh − σh − (g + wh − σh)‖T ‖φT ‖T

≤ C
[
γ‖∇(u− uh)‖T + hT ‖w − wh‖T + hT ‖σ − σh‖T + osch(g + wh − σh, T )

]
×

[
γ2

∑
e⊂T

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+ ‖hT (g + wh − σh)‖2

T

]1/2

. (4.18)

Next, we have from (4.6) and an inverse inequality that

γ
∥∥h2

T∇Δhuh
∥∥
T

= h2
T ‖∇(gh + wh − σh)‖T ≤ C hT ‖gh + wh − σh‖T

≤ C [hT ‖g + wh − σh‖T + hT ‖g − gh‖T + osch(g + wh − σh, T )]. (4.19)

Finally, the assertion of the lemma follows on combining (4.18) and (4.19) and on noting that

‖hT (g + wh − σh)‖2
T ≤ ‖hT (g + wh − σh)‖2

T + osch(g + wh − σh, T ). �
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Lemma 4.8. The following estimate holds for all T ∈ T h

[
τ2

γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+ ‖hT (uh − f)‖2

T +
∥∥h2

T∇(uh − f)
∥∥2

T

]1/2

≤

C

(
τ

γ
‖∇(wh − w)‖T + ‖hT (uh − u)‖T + ‖hT (f − fh)‖ + osch(uh − f, T )

)
. (4.20)

Proof. The proof is similar to the proof of the previous lemma. Similarly to before, we can construct a function
φT := αTψT +

∑
e⊂T βeψe, where αT , βe are chosen such that

([∇wh]e, φT )e =
τ

γ
he‖[∇wh]e‖2

e ∀e ⊂ T,

(f − uh, φT )T = h2
T ‖uh − f‖2

T ,

and

‖∇φT ‖T ≤ C

[
τ2

γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+

∥∥hT (uh − f)
∥∥2

T

]1/2

,

‖φT ‖T ≤ ChT

[
τ2

γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+

∥∥hT (uh − f)
∥∥2

T

]1/2

.

We can write, on recalling (2.1), that

τ2

γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+

∥∥hT (uh − f)
∥∥2

T
=
τ

γ

∑
e⊂T

([∇wh]e, φT )e − (uh − f, φT )T

= − τ
γ

(∇wh,∇φT )T − (uh − f, φT )T − (uh − f − (uh − f), φT )T

=
τ

γ
(∇(w − wh),∇φT )T + (u− uh, φT )T − (uh − f − (uh − f), φT )T

≤ τ

γ
‖∇(w − wh)‖T ‖∇φT ‖T + ‖u− uh‖T ‖φT ‖T + ‖uh − f − (uh − f)‖T ‖φT ‖T

≤ C
[τ
γ
‖∇(w − wh)‖T + hT ‖u− uh‖T + osch(uh − f, T )

]
×

[
τ2

γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+

∥∥hT (uh − f)
∥∥2

T

]1/2

. (4.21)

Finally, similarly to (4.19), we have from an inverse inequality that∥∥h2
T∇(uh − f)

∥∥
T
≤ C ‖hT (uh − f)‖T ≤ C

[
‖hT (uh − f)‖T + osch(uh − f, T )

]
. (4.22)

Combining (4.21) and (4.22) concludes the proof. �
Remark 4.2. The error quantities in Lemmas 4.7 and 4.8 contain additional terms, e.g. ‖hT (wh − w)‖ and
‖hT (uh−u)‖T , which are not present in the error expression for the upper bound, cf. Corollary 4.1. Therefore,
we are not able to combine these two lemmas in order to obtain a lower bound that corresponds precisely to
the upper error estimate in Corollary 4.1, i.e. a lower bound for the error

γ2 ‖∇(uh − u)‖2 + τ ‖∇(wh − w)‖2.
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Naturally, such a lower bound would be desirable, as it would give a theoretical proof of the efficiency of the
derived a posteriori estimator.

5. Adaptive algorithms

In this section we introduce several mesh adaption strategies, that are based on the a posteriori error esti-
mator derived in Section 4. Throughout this section, we assume that f = uold

h , g = 1
γu

old
h arise from a fully

discrete approximation of (1.1), where uold
h is the discrete solution from the previous time level. Hence f , g are

piecewise linear functions on V hold, the finite element space from the previous time level, and they will only differ
from fh = Ihf and gh = Ihg, respectively, if V hold � V h, i.e., when mesh coarsening is employed.

We define the following local error indicators:

– ηu,T =
1
2

∑
e⊂T

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+

1
γ2

‖hT (g + wh − σh)‖2
T +

1
γ2

‖hT (g + wh)‖2
T∩(∪S∈T ′

h
S);

– ηw,T =
τ

2γ2

∑
e⊂T

∥∥∥h1/2
e [∇wh]e

∥∥∥2

e
+

1
τ
‖hT (uh − f)‖2

T ;

– ηc,T =
∥∥h2∇Δhuh

∥∥2

T
+

1
τ

∥∥h2∇(uh − f)
∥∥2

T
.

The global error indicators are then defined as a corresponding sum of local error indicators, i.e., ηu =
∑
T∈T h

ηu,T ,

ηw =
∑
T∈T h

ηw,T , ηc =
∑
T∈T h

ηc,T .

By using the above definition of the error indicators, Corollary 4.1 can be reformulated as

‖∇(uh − u)‖2 +
τ

γ2
‖∇(wh − w)‖2 ≤ C

[
ηu + ηw + ηc +

1
γ2

‖g − gh‖2
−1,h +

1
τ
‖f − fh‖2

−1,h

]
. (5.1)

Further, in the numerical experiments we measured the relative error by the indicator defined as:

ηrel =
ηu + ηw + ηc

‖uh‖1
·

Remark 5.1. The error contributions in (5.1) can be classified as follows
– ηu corresponds to the discretization error of u;
– ηw corresponds to the discretization error of w;
– ηc corresponds to the consistency error caused by the use of the mass lumped product (·, ·)h;
– the terms

1
γ2

‖g − gh‖2
−1,h,

1
τ
‖f − fh‖2

−1,h correspond to the error in the approximation of the solution

from the previous time-level caused by mesh coarsening, i.e., they are zero if no elements are coarsened;
– we introduce a heuristic indicator ητ for time step control as follows ητ = 1

γ2 ‖uh − gh‖2
1.

Remark 5.2. The discrete dual norm ‖ · ‖−1,h is difficult to compute in practice, cf. [24], Remark 5.2. Instead
of using the dual norm we define a simple coarsening indicator using the L2 norm as follows:

ηh,T =
1
γ2

‖g − Ihg‖2
T ≥ 1

γ2
‖g − Ihg‖2

−1,T ≥ 1
γ2

‖g − gh‖2
−1,h,T .

Also note that for our choice f = uold
h , g = 1

γu
old
h , we have that 1

γ2 ‖g − gh‖2
−1,h = τ

γ4 ( 1
τ ‖f − fh‖2

−1,h). Hence
the term 1

τ ‖f − fh‖2
−1,h can be neglected, when τ = O(γ2), which is generally the case in our experiments.
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Below we outline the detailed definitions of the adaptive algorithms that we used for our numerical ex-
periments. The heuristic adaptive algorithm (V OL1) was used in [3,7] for computations for the degenerate
Cahn–Hilliard equation. The idea of the algorithm (V OL1) is to locally refine the mesh in such a way, that
one has uniformly small elements of a prescribed volume vol(T ) ≤ volf for T ∈ Th \ Ch(uh). The elements
T ∈ Ch(uh) are coarsened if vol(T ) ≤ volc/2 and refined if vol(T ) > volc. Note, that in our implementation
we set volf = h2

min/2, volc = h2
max/2 in 2d and volf = h3

min/6, volc = h3
max/6 in 3D, where hmin and hmax are

given desired minimum and maximum mesh sizes, respectively.
The second adaptive algorithm (V OL2) is based on the observation that the estimator attains maximum

values at the elements from the discrete boundary Fh(uh). The (V OL2) algorithm is similar to the (V OL1)
algorithm with the addition of an adaptive control of the constants volf < volc to keep the value of ηu below a
prescribed tolerance.

Algorithm (VOL2)

(1) compute uh;
(2) for all T ∈ Th;

if T ∈ Fh and vol(T ) > volf mark T for refinement;
if T ∈ Nh and vol(T ) > 2volf mark T for refinement, else if vol(T ) ≤ volf mark T for coarsening;
if T ∈ Ch and vol(T ) ≤ volc/2 mark T for coarsening, else if vol(T ) > volc mark T for refinement;

(3) refine/coarsen mesh; if no elements were refined/coarsened proceed with step 4 else proceed with step 2;
(4) compute ηu, if ηu > TOL set volf := volf/2 and proceed with step 1, else proceed with step 5;
(5) if ητ > TOLτ decrease time step τ := τ/2; if ητ < 0.01TOLτ increase time step τ := min{2× τ, τmax};
(6) proceed to the next time level.

The adaptive algorithm (MAX) is similar to the maximum error adaptive strategy from [2] and is described
below. For given tolerances TOL and TOLτ , and coarsening/refinement parameters εc, εc, εr, volf , volc we
start with the mesh from the previous time step, i.e., T h = T h

old, and improve the mesh for the next time level
with the following steps, where we use the notation ηmax := maxT∈T h ηu,T .

Algorithm (MAX)

(1) compute uh and ηu,T , ηh,T , ∀T ∈ T h;
(2) for all T ∈ T h, if ηu > TOL and ηu,T > εrηmax mark T for refinement; if ηu,T + ηh,T < εcηmax mark T

for coarsening;
(3) if ητ > TOLτ decrease time step τ := τ/2; if ητ < 0.01TOLτ increase time step τ := min{2× τ, τmax};
(4) proceed to the next time level.

The constants εr, εc were chosen as 0.6 and 0.05, respectively. Note, that the algorithm (MAX) really only
uses the indicator ηu for the mesh refinement. As confirmed by the numerical experiments below, this also
guarantees the control over the remaining error contributions in practice.

Remark 5.3. We note that the coarsening estimate ηh was not employed in the adaptive strategy in [2]. The
coarsening estimate is critically important when computing spinodal decomposition, where mesh coarsening may
lead to an excessive loss of information and an unphysical rise of the discrete analogue of the free energy (1.3).

We used a Uzawa-multigrid algorithm for the solution of the discrete system of nonlinear algebraic equations
arising from (2.2). For more details on this iterative solver see [3,4].

6. Numerical results

6.1. Failure of the non-localized estimator

We demonstrate that a localized estimator is essential for efficient numerical computations. We compute
an evolution of a square to a circle for γ = 1

8π on a time interval (0, 10−4). We employ the adaptive strategy
(V OL1) with hmin = 1/32, hmax = 1. In Figure 1 we display for t = 10−4 the computed solution uh, the mesh,
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Figure 1. Solution uh, the mesh and the indicators ηu, η∗u at t = 10−4.

Figure 2. Solution uh and adaptive meshes V OL1, V OL2, MAX .

the localized estimator ηu and non-localized estimator from Section 3 defined as:

η∗u =
∑
T∈T h

(
1
2

∑
e⊂T

∥∥∥h1/2
e [∇uh]e

∥∥∥2

e
+

1
γ2

‖hT (g + wh)‖2
T

)
.

Clearly, the indicator η∗u does not reflect the character of the solution properly and leads to a substantial
overestimation of the error in the areas where the solution is constant. On the other hand, the localized
indicator ηu is non-zero only in the interfacial region.

6.2. Comparison of different adaptive strategies, discrete convergence

We compare the adaptive algorithm (V OL1) with the adaptive algorithm with refinement along the free
boundary (V OL2), the maximum strategy (MAX), and the uniform global mesh refinement.

In order to highlight the differences between the adaptive strategies (V OL1), (V OL2) and (MAX), we
display in Figure 2 an example of meshes generated by the respective adaptive strategies.

We examine the convergence of ηu, ηw, ηc with respect to the number of degrees of freedom, with the help of
an example computation for an established interface in the form of an ellipse and γ = 1

8π . We computed with

uniform time steps τ =
(
hmin
64

)2
10−7, where hmin is the minimum mesh size in the respective computations.

The behaviour was similar at all time levels, and we therefore only present the results at time t = t̂ := 10−5.
The profile of uh at times t = 0 and t = t̂ for a uniform mesh computation can be seen in Figure 3.

The graphs of the dependence of ηu, ηw, ηc on the number of vertices at time t̂ are depicted in Figures 4–6,
respectively. A logarithmic scaling is used in the figures, which allows us to interpret the slope −α as an
experimental convergence rate of 2α, since h ≈ #N−2

h in 2D. The above results support the assumption that
the control of ηu in the presented adaptive algorithms (or in other words the refinement in the interfacial area
only) is sufficient to guarantee the control over the remaining indicators ηw, ηc. The only qualitative difference
between the uniform mesh refinement and adaptive strategies is in the convergence rates of ηw, which appears
to be O(h2) for uniform mesh refinement and “O(h)” for adaptive mesh refinement. The difference can be
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Figure 3. Solution uh at t = 0 and t = t̂ on a uniform mesh with h = 1/64.

 0.1

 1

 10

 100  1000  10000  100000  1e+06

MAX
VOL1
VOL2

uniform
O(h)

Figure 4. Convergence of ηu at t = 10−5. Plot of estimator against number of degrees of
freedom (dof).

accounted to the fact that ηw is not localized to the interfacial region, the region that is mainly refined by
the adaptive methods. Note, that in the present case the worse convergence rates do not influence the overall
convergence rate, which is O(h).

We conclude, that apart from the above disadvantage of the (V OL1) algorithm there is no significant qual-
itative difference in the performance of the three adaptive algorithms. The algorithm (MAX) is perhaps the
most flexible and effective of all three algorithms; however, its performance depends on the choice of the refine-
ment/coarsening constants. The algorithm (V OL1) is the simplest to implement.

6.3. Dependence of the estimator on γ

We study the efficiency of the adaptive algorithms with respect to the parameter γ. In order to obtain
reliable results it is desired that the adaptive algorithm produces meshes for which the estimate ηrel(γ) ≤ TOL,
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Figure 5. Convergence of ηw at t = 10−5. Plot of estimator against dof.
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Figure 6. Convergence of ηc at t = 10−5. Plot of estimator against dof.
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Figure 7. Evolution of ηrel for γ = 1
8π ,

1
16π ,

1
32π for the (MAX) algorithm.

where TOL is a tolerance independent of γ. On the other hand, in order to obtain an efficient adaptive mesh
refinement, the minimum mesh size hmin(γ), needed in order to keep the error below a given tolerance, should
have a linear dependence on γ.

We computed an evolution of a square using the adaptive algorithms (V OL1) and (MAX). In Figures 7
and 8 we display the time evolution of ηrel for γi = 1

2i8π , i = 0, 1, 2 for the two algorithms. The parameters for
the adaptive mesh refinement in the (V OL1) algorithm were chosen as hmin = γi

γ0128
, hmax = γi

γ0
for i = 0, 1, 2.

The tolerance in the (MAX) algorithm was TOL = 0.45, which resulted in similar maximum and minimum
mesh sizes in both algorithms. In order to exclude the influences of the adaptive time stepping on the error we
used a fixed time step τ = (γi)210−6

(γ0)2 . The results show that the evolution of ηrel is similar for different values
of γ if the number of mesh points in the interface is kept constant (i.e. for the above choices of hmin/max). This
is a natural requirement, which underlines the efficiency of the adaptive mesh refinement.

In Figure 9 we display the computed solution uh and the underlying adaptive mesh obtained by the (MAX)
algorithm for γ = 1

8π .

6.4. Spinodal decomposition

In the next experiment we perform an example computation of spinodal decomposition. The initial data is
obtained by defining a coarse solution ũ0 as a random perturbation around 0 on a uniform mesh with h = 1/20.
A smooth initial condition u0 is then obtained as

u0(x) =
∫

Ω

ũ0(y)e−1000 |y−x|2dy.

Note, that the above integral is computed approximately.
We computed the example for γ = 1

8π using a uniform mesh with h = 1/32 and using the adaptive mesh
refinement strategy (MAX). We used adaptive time-stepping based on the indicator ητ , giving a time step size
10−12 ≤ τ ≤ 1.1 × 10−9. The solution and adaptive mesh at different time levels is displayed in Figure 10.
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Figure 8. Evolution of ηrel for γ = 1
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32π for the (V OL1) algorithm.

Figure 9. uh at times t = 0, 10−5, 10−4 for γ = 1
8π .
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Figure 10. Spinodal decomposition: uh at times t = 0, 10−6, 3 × 10−6, 10−5.

The evolution of the indicator ηu is displayed in Figure 11. Clearly, the error on the uniform mesh is almost
two times larger than the tolerance in the initial part of the computation, while the error on adaptive meshes is
always below the tolerance. We found that too much coarsening in the computations of spinodal decomposition
could lead to an unphysical rise in the discrete energy, which underlines the importance of the coarsening
estimate.

6.5. Coarsening in 3D

The last experiment is to demonstrate the performance of adaptive mesh refinement in 3D computations.
The zero level set of the initial condition consisted of two cubes of slightly different sizes. We computed the
example using the adaptive strategy (V OL1) with fixed time step τ = 10−6. The evolution of the zero level
set of the computed solution and a cut through the adaptive mesh at x3 = 0 are displayed in Figure 12. The
evolution of ηrel in Figure 13 indicates a good control of the approximation error.
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Figure 11. Evolution of the estimate ηu for a uniform mesh of fixed size h = 1/32 and the
algorithm (MAX).

Figure 12. 3D coarsening: zero level set of uh and cut through the mesh at x3 = 0 at times
t = 0, 10−5, 10−4, 1.2 × 10−4.
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Figure 13. 3D coarsening: evolution of ηrel.
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