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TOWARDS EFFECTIVE DYNAMICS IN COMPLEX SYSTEMS
BY MARKOV KERNEL APPROXIMATION *

CHRISTOF SCHUTTE! AND TOBIAS JAHNKE?

Abstract. Many complex systems occurring in various application share the property that the under-
lying Markov process remains in certain regions of the state space for long times, and that transitions
between such metastable sets occur only rarely. Often the dynamics within each metastable set is of
minor importance, but the transitions between these sets are crucial for the behavior and the under-
standing of the system. Since simulations of the original process are usually prohibitively expensive, the
effective dynamics of the system, i.e. the switching between metastable sets, has to be approximated
in a reliable way. This is usually done by computing the dominant eigenvectors and eigenvalues of the
transfer operator associated to the Markov process. In many real applications, however, the matrix
representing the spatially discretized transfer operator can be extremely large, such that approximating
eigenvectors and eigenvalues is a computationally critical problem. In this article we present a novel
method to determine the effective dynamics via the transfer operator without computing its dominant
spectral elements. The main idea is that a time series of the process allows to approximate the sampling
kernel of the process, which is an integral kernel closely related to the transition function of the transfer
operator. Metastability is taken into account by representing the approximative sampling kernel by a
linear combination of kernels each of which represents the process on one of the metastable sets. The
effect of the approximation error on the dynamics of the system is discussed, and the potential of the
new approach is illustrated by numerical examples.
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INTRODUCTION

This article deals with a novel approach to the identification of the effective dynamical behavior of complex
systems. It will be assumed that the evolution of the system under consideration can be described by a Markov
process. Furthermore we will be mainly interested in systems that (A) are high dimensional and (B) that
exhibit metastable or almost invariant sets that are characterized by the property that the expected exit times
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from these sets define the timescales of the effective dynamical behavior of the system. Systems with these
properties are pervasive; for example, they occur in the geo-sciences (e.g. climate dynamics with warm and ice
ages or atmospheric blocking dynamics), in the economic sciences (e.g., financial markets and their dynamical
regimes or employment dynamics), or in the life sciences. Form the latter field our guiding example is taken: In
biomolecular systems the metastable sets are called conformations and the effective dynamics can be described
as transitions between these conformations with specific internal motion within each conformation [14,34].
Transitions between conformations are critical to the function of proteins and nucleic acids. They include ligand
binding [26], complex conformational rearrangements between native protein substates [12,25], and folding [21],
so that their analysis is the key to understanding the biophysics of living cells.

In many of these application the mathematical models used to describe the dynamics of the respective system
are high dimensional ordinary differential equations (ODE). Mostly, appropriate models do not only contain the
system’s degrees of freedom but also additional degrees of freedom that represent the environment or heat bath
in which the system is embedded or to which it is coupled. Considering the evolution of the system thus often
means considering a process that results from the projection of some higher dimensional ODE to the system’s
state space. A typical example for this approach are thermostat models in molecular dynamics [23]. Under
certain conditions (e.g., on the time scales of the effective dynamics) the resulting process still is a Markov
process. In many cases, however, the projected process is remodeled in form of a stochastic differential equation
(SDE). Because of this, we will mainly consider SDE models for Markov processes on the state space of the
system under consideration. Projected ODEs is briefly discussed in the appendix.

Mathematically each Markov process can be described by the associated Markov or transfer operator, and
the effective dynamical behavior of the process by the essential properties (e.g. dominant eigenvalues and
eigenvectors) of its transfer operator; there is a remarkably long list of articles about this topic from which the
following may fit best to the topic considered herein [1,3,5,6,9,19,20,22,24,28 31,33]. Using the transfer operator
in order to study the effective dynamics has one main advantage and one main disadvantage: the advantages is
that independent of the (mostly strong) nonlinearity of the dynamics, the transfer operator is a linear operator
that governs the propagation of a probability density by the underlying dynamics. The disadvantage, however,
is that the transfer operator lives in a high dimensional function space whose dimension is that of the state space
of the system. In many real-world cases, computation of its essential properties (dominant spectral elements)
thus suffers from the curse of dimensionality although there are several articles that offer cures to this problem
for specific problems mainly for biomolecular systems, see [4,29,30] for example.

This article provides a novel approach to the analysis of the effective dynamics via the transfer operator
without computing its dominant spectral elements. Instead, we will consider the approximation of the integration
kernel of the transfer operator. We will demonstrate that for non-deterministic dynamics this kernel has some
nice structural properties that may allow to approximate it well even in high dimensional cases. We then
will study how some mathematical properties of the dynamics, particularly its metastability properties, may
change if we exchange the original transfer operator with the one that results from approximation of the kernel.
Furthermore, we will introduce some algorithmic kernel approximation techniques that have the potential to
work well even in high dimensions. Finally, we will present some numerical experiments to illustrate the concept
itself and the performance of our kernel approximation techniques. However, it should be emphasized that this
article can just give a first introduction of the key ideas: we will mainly consider diffusive dynamics in low
dimensions for the sake of clarity and completeness, and we will base our kernel approximation algorithm on
just one kind of ansatz functions. Generalizations are under investigation but will not be discussed herein.

1. TRANSFER OPERATORS AND KERNELS

Throughout this article we study homogeneous Markov processes X; = {X;}ier on a state space X C R,
where 7 is an interval in R. The dynamics of X} is given by the stochastic transition function

p(t,z, A) =P Xys € A | X5 = 1], (1.1)
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for every t,s € 7, x € X and A C X. We say that the process X; admits an invariant probability measure u on
the corresponding measure space (X, A4, u), if

/ p(t,x, A)u(dr) = p(A) for all A € A.
X

In the following we shall always assume that the invariant measure of the process exists and is unique. A Markov
process is called reversible with respect to an invariant probability measure u, if it satisfies

/A p(t, x, B)u(dz) = / p(t, z, A)u(dz)

B

for every t € 7 and A, B € A. If moreover p(t,z,-) is absolutely continuous with respect to the Lebesgue
measure, then we denote by p(t, x,y) the associated flat-space transition density, i.e., we have

p(t,x, A) = Ap(t7x,y)dy-

Transfer operator. Given some measure v, we consider the function spaces

Ly = {f:XHC:/|f(ac)|pz/(dm)<oo},
P(XxX) = {f:XxX—>(C: /|f(ac,y)|pu(dx)1/(dy) <oo}
with p = 1 or p = 2. The associated norms will be denoted by || - ||,.,. We will consider two cases: when v

stands for the Lebesgue measure we call the spaces flat, and when v is equal to the invariant measure u, then
the spaces are called weighted. We define the semigroup of Markov propagators or forward transfer operators
P': L}, — L, witht € T and 1 <7 < oo by

[ Piwntan) = [ s@ptt. Aputas)
A X

for any measurable A C X. If x4 is invariant under the dynamics Xy, then it is easy to see that the characteristic
function 1x € L}L of the entire state space is an invariant density of P!, i.e., we have P!'1x = 1x. As following
from its definition, P! conserves norm, |[P!f||; = ||f||1 and positivity, i.e., P'f > 0 whenever f > 0. Hence,
P! is a Markov operator. The perhaps simplest case is that of an ODE z = F(z). Let its solution be unique
for all initial values z(0) = zo and denote its flow map by ®! such that z(t) = ®'z;. Then, the associated
transfer function is p(t,z, A) = 14(®'x) where 14 denotes the characteristic function of the set A. Let u be
some measure that is invariant under ®'. The corresponding transfer operator then reads P! f(z) = f(®~'z).

Basic assumption. In all of the subsequent we will suppose that p(t, z,-) as well as the associated invariant
measure are absolutely continuous with respect to the Lebesgue measure. This simplifies our considerations.
Needless to say that all of the subsequent definitions can be generalized to the case where absolute continu-
ity cannot be assumed. Moreover, we tacitly assume that the invariant measure g is nonzero almost every-
where. Again, this assumption can be dropped if the following arguments are restricted to the subset {z € X:
w(z) > 0} € X, but this would make the notation somewhat more complicated.

Kernels. With these assumption, the expression for the propagator P* becomes

Plf(y) = /X k(. 2)f(@u(x)de,  f € L2, (12)
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where pu(dz) =: p(x)dx, and we have introduced the transition kernel

that is defined for all x,y for which x> 0. Obviously, the transition kernel satisfies
[ B oty =1, V) eX 1. (1.4)
X

A kernel with property (1.4) is called a Markov kernel. For a reversible process the transition kernel is symmetric,

i.e., ke(z,y) = ke(y, ). We will furthermore consider a second kernel function, called the sampling kernel, being
defined by

re(@,y) = (@) pt, @, y) = p(@)ke (y, 2)p(y). (1.5)
The sampling kernel is particularly important because it can be sampled directly from a given realization of the
investigated process (see Sect. 2.4 for an example). In the following we will often fix a time ¢ and then ignore
the index ¢ so that we simply can write the transition function as p(z,y), the sampling kernel as k(x,y), and
the transfer operator as Pf(y) = [x k(y,z)f(x)u(x)dz in L%, For convenience we introduce the abbreviation
Pf =Fkx f, knowing that we have to understand it relative to the space, especially weighting, considered.

2. (FAUSSIAN KERNELS AND ORNSTEIN- UHLENBECK PROCESSES
2.1. Ornstein-Uhlenbeck sampling kernels
Consider an Ornstein-Uhlenbeck process
i=—F(xr—7)+XW, (2.1)

with symmetric, positive definite matrices F € R?>*? and ¥ € R%*¢, and define B = ¥.2. The transition function
of such a process is absolutely continuous with respect to the Lebesgue measure. The corresponding transition
density at time t with respect to the initial condition to start in xy at time ¢ = 0 is given by

plt.ao.2) = Z(t)exp 3o - €O CO o - €0) (22)
where
£(t) = T+ exp(—tF)(zo— )
Z(t) = (277)7d/2(det0(t))71/2

and C(t) is the solution of

C(t)F +FC(t) = B —exp(—tF)Bexp(—tF). (2.3)
It is well-known that for any M, My, M3 € R?*? the matrix equation X M; + M, X = M3 has a unique solution
if AN 4+ X2 £ 0 for all eigenvalues (V) of My and A\(?) of M,. Since F is positive definite, a unique solution of

equation (2.3) exists. As a consequence of (2.2), the invariant measure is absolutely continuous with respect to
the Lebesgue measure and has the form

1) = Zow exp (—%(m CHTC (- x)) , (2.4)
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with Cy such that C o F + FC = B. The last equation again has a unique solution; it satisfies
C(t) = Cx — exp(—tF)Cyx exp(—tF). (2.5)

The associated Markov operator P; in the flat LP space is obtained from P, f(z) = [ p(t, o, z) f(z0)dzo.
We consider the sampling kernel

ki (To, ) = p(t, o, ) u(20), (2.6)

because this is the object that can be sampled directly from a given realization of the Ornstein-Uhlenbeck process
(for details see Sect. 2.4 below). Equations (2.2) and (2.4) yield that the sampling kernel can be expressed as

xro— T

ko (20, ) = Z(t) Zoo exp (—%((x ~ BT (20— D)T)C(H) L ( v )) , (2.7)

with

iy [ C)E —C ()" exp(—tF)
= ( —exp(—tF)C(t)~ eXp(—tF)CI()t)_lexp(_tF)_|_CO—01 > (2.8)

According to (1.5), the associated Markov kernel with respect to the invariant measure p has the form

1 1
bl o) = iy e Dy

and we observe that k; is indeed symmetric (this follows from (2.5)) as it should be since the Ornstein-Uhlenbeck
process is a reversible Markov process.

2.2. Parameter estimation from a time series of the sampling kernel

Suppose now that the parameters F', z, and ¥ of the process are unknown, and that only a sampling of the
sampling kernel is given. Based on this sampling, the parameters of the Ornstein-Uhlenbeck process can be
estimated as follows:

(1) Approximate the covariance matrix C ~ C of the sampling kernel and its inverse
5 My Mo
c i) = .
(t) ( ML My

(2) Compute an estimate F =~ F by solving

F = —log(—M' M)/t

where log(+) denotes the matrix logarithm. Since (—M;;" M3) is (at least approximately) a symmetric
and positive definite matrix, the matrix logarithm is well-defined wvia the logarithm of the eigenvalues.
(3) Approximate 3 ~ ¥ via

Ju

o= My — MM M,

B = kT4 PO

s = VB
If C’oo and F are symmetric and positive definite, then so is 3, and the matrix & = \/E can be obtained
by computing the eigendecomposition of B and taking the square roots of the eigenvalues.
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FIGURE 1. Sampling (as resulting from DNS) of the Ornstein-Uhlenbeck transition kernel for
F =4 and 0 = 0.45 with t = 0.5 and m = 1000 steps.

2.3. Invariant measure of sampling kernels

Whenever a sampling kernel x is known, then the associated invariant measure is computable by means of
simple integration:

p(x) = /p(xo,x),u(aco)dxo = /H(Io,w)dxo.

As in (1.5), p(-,-) denotes the flat space transition function of the underlying process. For Gaussian sampling

kernels
1 T T My, A4ix0 X
T, T X € —=\xr ,T s
H( O) XP < 2( O) ( A4§;0 A4Q0x0 T

we thus get for the associated measure

1
u(x) o< exp ( — axTMx>, with M = Myypy — ML M M,,,. (2.9)

zxo X

The kernels are symmetric (and thus induce a reversible process) iff My, = My, », and My, = MQTM

2.4. Numerical illustration

Let us consider the ld-case with F' = 4, Z = 0 and ¥ = 0.45. A direct numerical simulation (DNS)
of the system (with Euler-Maruyama discretization in time with timestep 0.001) yields a time series zg.,—1 =
{z0,...,2m} with 2, € X. If the DNS is ergodic in the sense that the generated ensemble of points in state space
is approximately distributed according to the invariant measure p of the process), then the sampling xg.m—1
directly induces a sampling zo.m—1 = {20, . - ., Zm—1} of the sampling kernel by letting z,, = (2, zn+1) € X x X.
This sampling is illustrated in Figure 1 for ¢ = 0.5 and m = 1000 sampling points.

In the one-dimensional case, one obtains Cs, = %2/2F, C(t) = Cao (1 — exp(—2tF)), and

¢ =C—1(t)( _ exp(etF) ~ exp(~tF) )

Hence, the covariance matrix of the sampling kernel is

2 1 exp(—tF)
) = 2F ( exp(—tF) Y 1 ) '
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TABLE 1. Dependence of the estimators on the sampling length m.

1000 | 2000 | 10000 | oo
4.530 | 4.050 | 4.010 | 4.000
0.503 | 0.456 | 0.452 | 0.450

My 3

An estimate ¢ = (é”)” of this matrix is directly available from the given data. The approximations F~F
and ¥ &~ ¥ can be computed via

F =log (611/612>/t, Yy = \/2FN611.

Table 1 shows that the estimates converge to the correct values as the length m of the time series increases.

The example shows that the sampling kernel allows to estimate the parameters of the underlying Ornstein-
Uhlenbeck process in an easy way. However, in many realistic applications, the underlying SDE does not have
the simple form (2.1), because the process is metastable. Nevertheless, it will be shown how such situations can
be treated by a superposition of kernels each of which represents an Ornstein-Uhlenbeck process.

3. METASTABILITY

Let us make a simple Gedankenexperiment (experiment of thought): Assume we consider a diffusion process x;
in state space R, governed by the SDE

j}t = *F(I't) -+ EWt,

where ' = —DV(z) is the gradient of a smooth potential V' with several local minima. Then it is well known
that for small enough ¥ the process stays for long periods of time in the disjoint wells M;,..., My C R of V
while the exit from the well M; has an expected exit time that scales like exp(—2AV;/%?), where AV; is the
lowest energy barrier from the respective well into a neighboring one. That is, the process is metastable and
the sampling kernel of this process will then have the following approximate form: it will be a superposition of
“peaks” in each of the wells, i.e., in M; x M;, i =1,..., N. Such processes occur in many real-life applications;
examples have been given in the introduction. This is our motivation to study Markov processes that belong
to sampling kernels constructed by superposition, and subsequently analyse their metastability properties.

3.1. Superposition kernels

Let us now discuss how to construct Markov operators and kernels by superposition. Suppose that P;,
i =1,..., N are Markov operators in L with respective invariant probability measures f;, and that a; € R
are non-negative weights with a; +... 4+ ay = 1. In this case, we consider the Markov operator P in Lf, given
by the superposition

/A Pi(@)u(da) = 3 /A Pif(a)pi(dz), with Pf(x) = / ki, ) £ () s (),

where g is the invariant probability measure of P. These facts guarantee that P;1x = 1x € L, and P1x =
1x € L. Inserting this into the above equation yields that y is the invariant probability measure of P if and
only if

N
,uzz:ami. (3.1)
i=1
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The kernel associated with P is then given by

w@)k(z, y)ply) = Zaiﬂi(x)ki(xay)ﬂi(y)v (3.2)

where k; denotes the Markov kernel of P;, and it is assumed that all of the invariant measures are absolutely
continuous with respect to the Lebesgue measure. A kernel with this structure will be called a superposition
kernel.

The kernels are living in the respectively weighted spaces. What is the flat space transition density paat (-, -)
if the flat space transition densities p; fas(-,-) belong to the kernels k;? By using (1.5) and (3.2), we find the
answer

N )
prae(9) = D 05 o 5 i (,9), (33)

where we assumed that u is positive (almost) everywhere.

Remark 3.1. A realization of the process corresponding to the superposition kernel can be computed by
repeating the following steps. Draw a random variable r from the uniform distribution [0,1] and choose the
index j such that r € [8;_1(x), 8,(z)), where §;(z) = >7_, arpr(z)/p(z), and j = N if 7 = 1. Then, the
current state x is updated according to the jth transition density pjfat(z,y). However, we emphasize that
our goal is to solve the inverse problem: How can the parameters «; and the densities p; be estimated if a

realization of the stochastic process is given? Before this question is addressed, we investigate the relation
between superposition kernels and metastability.

3.2. Almost invariance and superposition kernels

As above let k;, i = 1,..., N, be Markov kernels with invariant probability measures u;. We consider
the mixed kernel pu(z)k(z,y)u(y) = Zivzl a;pti (x)ki (x, y)pi(y), with the invariant measure g = ) . o;p; and
weights a; such that ), «; = 1. Let us assume that the measures p; all are absolutely continuous with respect
to the Lebesgue measure, and that p is positive (almost) everywhere.

Definition 3.2. The Markov kernel k is called e-metastable if
0, = [BEE , .
()
foralli,j=1,...,N with j # 1.

Almost invariant densities of k. In the y-weighted space, the invariant densities of the Markov operators P;
are

®i(x) = pilz)/plx).

Obviously, these functions are densities in L,lu A nice property of these densities is formulated in the following
lemma.

Lemma 3.3. The kernel k is e-metastable if and only if

O;j = /‘I)i(x)(l)j(x),u(x)dx = (®;,®;), <e (3.4)

foralli,j=1,...,N with j # 1.
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The proof follows directly from Definition 3.2.

Other useful properties are:

Zajtbj(ac) = 1, Vz, ie, {®,;};=1. n~ is a partition of unity,
1
®i@) = —|u(x) = — (Z%ug ))- (3.6)
i [
J#i

N « N «
)= )| = Ziw>
j=1 "

With these properties we can prove that the propagator with kernel k leaves the density ®; nearly invariant
with respect to the measure u:

Theorem 3.4. Let the kernel k defined as above be e-metastable, let all measures p; be absolutely continuous
with respect to the Lebesque measure, and let p be positive (almost) everywhere. Then, for alli=1,...,N:

Hk/’ * (I),L' — (I)i”LM < 2(1 — Oéi) €

where (k ®;)(y) = [y k(y, 2)®;(x)p(x)d.

Proof. The proof requires some preparations:

st =i, =[] [ k0@ @nas - @) d
= 1520 [t @ue - e
-/ Do /k ) (el — i(y)u(y)] dy

[ 3 o [l 200, mtonia iy

Jj=1,j#i

/azuz /ky ()dw—‘b()()‘dy-

The first of these terms can be estimated using that [ k;(y,z)u;(y)dy = 1:

IN

/ Z 04]/ (y,x wi(x)de 1 (y i a; (D, D), < (1 —ay)e.

Jj=1,j#1 J:LJ#Z
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The second term is split into two parts:

/

aily) [l @ — 8wl < [ lam) [ B0 - s@ew)]a

+ai//kz‘(yvﬂf)‘q’i(m)*a%

pi(z)dz p1; (y)dy.

The first part vanishes because

/

pi(y) dy

i) [ I it - ) dy = [ | [Bom@d - 1x

/

since P;1x = 1x in Li The second part allows the following estimate based on (3.6) and the fact that
[ iy, 2)pi(y)dy = 1:

Pl(y) — 1x

wi(y)dy =0

N
1 1
//kz-(y, 2) | ®i(w) — —| pi(e)dopi(y)dy < /; > o) | Bi(w)de

ot

1N

< ;Zaj/uj(m)fﬁi(m)dx
[ —
i
1
Putting the two terms together again we get
||k*q)i_q)i||1,u S (1—0&1‘)64—(1—0@)6. D

Let us now assume that K is a Markov kernel which cannot be represented ezactly by a weighted sum of
other kernels k; but which can be approrimated by such a representation, i.e.

N
(@)K (2, y)uly) ~ pl@)k(z,y)p(y) = Z i (2)ki (2, y) i (y).-

As before, let u; be the invariant measures of the Markov kernels k; and let u be the invariant measure of k. It
is assumed that p is positive almost everywhere, and that all measures are absolutely continuous with respect
to the Lebesgue measure. The coefficients «; are positive with ) jo =1

Definition 3.5. The kernel K is said to be (¢, 0)-metastable if there is an e-metastable kernel k that satisfies
the above assumptions such that

1K — Kl = / / K — K|y, )p(x)dep(y)dy <6
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Now we again consider the functions ®;(x) = u;(x)/u(z) as candidates for almost invariant densities. By
definition, we obtain

[ * @ — Dl < lk* P — &

1,p

+ / / K — k|(y, 2)®:(2)p(x)dz p(y)dy,

where the first term can be estimated due to Theorem 3.4, while the second term can be simplified again if K
s (€, 0)-metastable:

1
[ [ 1K = kg2 @nte)de n)dy < 5 - K.
That is, we have shown the following result:

Theorem 3.6. Let K be an (¢,0)-metastable Markov kernel with associated mized kernel

p(y)k( Z g (ks (2, y) s ().

Then the bounded functions ®;(x) = pi(x)/u(x) are almost invariant under K :

)
||K * q)z — (I)i”l# § 2(1 — Oéi) €+ —-
Q;
It should be pointed out that in Theorems 3.4 and 3.6 the invariance is measured with respect to the weighted
norm || - ||1,,. This has important consequences which will be discussed below (cf. Sect. 5.1).

3.3. Perturbation of the spectrum

Which consequence does the approximation of the kernel function have for the eigenvalues of the associated
operators? This question can be answered, at least under additional assumptions. Assume that the original
transfer operator P has invariant measure p and kernel K(-,-), and that the associated Markov process is
reversible. Then, P is self-adjoint in the Hilbert space L2 Furthermore, consider a symmetric approximation
k(-,-) = K(-,-). Let k induce the operator P with the same invariant measure g. This assumption simplifies
the analysis, because now both P and P can be considered as operators in L2 Next, we assume that P — P is
a Hilbert-Schmidt operator which is the case if and only if

15 =k, = [ [ 1K = kP o))y <. (3.)

In this situation, Theorem 3 of [11] applies and yields:

Corollary 3.7. The above assumptions on P, P, K and k imply that there exist enumerations {\;}, and {v;}
of the spectra of P and P, respectively, in L? %> such that

o0
Z |>\i - Vi|2 =
i=1

The corollary indicates that if K and its approximation k are close enough in Hilbert-Schmidt norm then
the spectra of the associated transfer operators are very similar. Since the dominant eigenvalues define the
most important metastable timescales, this means that the approximation of the kernel of a transfer operator
at least has the potential of approximating the effective dynamics also. However, the result does not imply
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that the Hilbert-Schmidt norm is the appropriate norm for getting optimal approximation of the dominant part
of the spectrum.

Remark 3.8. The above results on the approximation of essential features of the dynamics lead to two different
norms, || - ||1,, and || - ||2,,. Let k be a kernel and & the associated sampling kernel. Then, these norms read

s = [ [ I p)idzdy
Moy = (//( e )1/2)2dxdy>2,

that is, 1-norm approximation means sampling kernel approximation in an unweighted (Lebesgue) measures
sense, while 2-norm means sampling kernel approximation with a weighting which is large where the invariant
measure is small.

The results of this section mean, roughly speaking, that an (¢, §)-metastable kernel K can be approximated
by a superposition of kernels k1,...,ky, and that the corresponding invariant measures p1, ...,y allow to
construct functions ®q,..., &y which are almost invariant densities of K in the weighted space. It will now
be our goal to construct such an approximative kernel in a situation where K is not known explicitly and only
a sampling of the associated process is given. We will see that under appropriate conditions this process can
locally be approximated by the linear Ornstein-Uhlenbeck process discussed in Section 2. The goal is then
to find the parameters (means and covariance matrices) of these local Ornstein-Uhlenbeck processes, and to
combine these processes in such a way that the metastability behaviour is correctly reproduced.

4. KERNEL APPROXIMATION BY MIXTURE MODELS

Let us assume that we have a sampling zo.;,—1 = {20,...,2m—1} of the sampling kernel x of the Markov
process X; under consideration (z, € X x X for all n =0,...,m — 1). At the moment it is of no importance
whether this sampling results from a long-term observation of X; or from an ensemble of short-term observations.
We want to exploit the sampling zg.,,—1 in order to get an approximation of x by a superposition kernel relative
to the Lebesgue measure (i.e. in the 1-norm sense with respect to the associated kernel function, see Rem. 3.8).

To this end we assume that zg.,,,_1 is an observation of m independent and identically distributed realizations
of some random variable Z that is distributed according to a mizture model, i.e., the density p(z|6) of the
probability P(Z € Alf) = [, p(z|0)dz for measurable sets A € X x X has the form of a weighted sum of N

component densities:
N
0) => p(zly, O)P(Y = y|0).
=1

Here, 6 denotes unknown parameters that determine the form of the probability densities. For example, letting
the component densities p(Z|y, ), y = 1,..., N be Gaussian, then p(Z|0) is a weighted sum of N Gaussian, and
we speak of a Gaussian mizture model. Note that we treat Y as a random variable whose value y € 1,..., N
we do not know. Therefore, Y is called the hidden assignment variable for Z to one of the component densities,
and P(Y = y|0) is the probability of a certain value y of Y given 6. If we knew the value of Y, say Y = y, then
the density for Z was just the y-th component density.

According to our assumption, each of our independent samples z, of Z has its own assignment value y,,
i.e., the realization z, of Z comes from the realization ¥, of Y. However, by this assumption, for given 6, the
Yo, - - -y Ym—1 are statistically independent, as well as the zg, ..., z;,—1. Our aim is to choose the parameters 6
such that the likelihood

m—1 m—1 N

L0 | zo:m—1) = H (2n | 0) H Z (znly, O)P(Yz, = yl0)
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is maximized, i.e., we seek the parameters for which the probability of the given observation over the family of
models under consideration is maximal. Thus, the maximum likelihood estimate (MLE) 6 satisfies

0 = argmax, £(0 | zoim_1)-

Equivalently, the MLE can be defined wvia the logarithm of £, which according to the assumed statistical
independencies, reads

0 = argmaxylog L£(0 | zomm_1)

m—1 N
with log £(6 | z0:m—1) = Z log (Z p(znly, O)P(Y:, = y|9)> . (4.1)
n=0 y=1

Here, however, we do not have observations of Y;, i.e., in some sense we have to consider the optimization task for
all possible probability densities for Y;. This is indeed feasible by means of the expectation-mazimization (EM)
algorithm. Hartley [15] pioneered the research on the EM algorithm in the late 1950s, followed by Dempster
et al. [7] in the late 1970s. Over the years, the EM algorithm has found many applications in various domains
and has become a powerful estimation tool [10,13].

The EM algorithm is an iterative optimization procedure. Starting with an initial parameter estimate 6(©)
each iteration monotonically increases the likelihood function £(f|z) = L(6). Each iteration consists of two
steps: (a) the E-step or the expectation step and (b) the M-step or the maximization step.

EM for the Gaussian mixture model. Let us now specify that the component densities are Gaussian with
mean Z, and covariance matrices ¥, y =1,...,N:

p(zly,0) = G(z; 2y, 5y). (4.2)

Thus, the free parameters 6 of our model are the means and covariances of the Gaussian component densities,
and the probabilities that component y is active,

ay =P =yl0). (4.3)
These probabilities obviously have to satisfy the constraint Zivzl oy = 1. We thus have the parameter set
0=1(Z1,- -, ZN, X1y - -, ON, Q14 o, N ).

In this case, the EM iteration takes the form of Algorithm 1.

The meaning of the algorithm becomes clearer with the interpretation of w(f) (y) as the probability that
according to the mixture model with parameters (") at time ¢,, the observation z, has to be assigned to hidden
state y. Thus, some sample z, can be assigned to several of the hidden states with probability between 0 and 1.

Remark 4.1. Let zg.m—1 = {0, ..., Zm} be some given observation sequence of the Markov process X; under
consideration. It induces a sampling z, = (z,,2n+1) € X X X of the associated sampling kernel x. In this
case the basic assumption of the mixture model that zg.,,_1 results from repeated independent and identically
distributed realization of some random variable Y seems strange since we know that the z, are correlated by
the Markov process. Nevertheless the EM algorithm for the Gaussian mixture model often results in excellent
approximations of the sampling (provided the underlying structure of the data is that of an superposition
Gaussian kernel). However, one can take the Markov-like correlations in zg.,—1 into account by means of
generalizing the mixture model to hidden Markov models (HMM) which again leads to a specific version of the
EM algorithm [2,27].
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Algorithm 1 EM-algorithm for Gaussian mixture model

Require: Time series zp.m-1 = {20, ..., 2m—1}, tolerance tol, initial guess of parameters
00 = (0, 50, )y, v

Ensure: Maximum likelihood estimate 6.
(1) Formally set i = —1.
(2) i:=i+1.
xpectation step (E-step): Compute the occupation probabilities
3) E i E C h i babiliti
0 (y) = Gz 2y, 2Y)oy)
25:1 G(Zm 2@(/1)7 E@(/z))al(/z)
(4) Maximization step (M-Step):

y=1,....N, n=0,....m—1

For y =1,..., N, compute the new optimal parameter estimates
1 m—1
S = e 3 A0 — )z — )T
Y YD (y) = Y
1 m—1
F(+1) (@)
Y YD (y) =,
. 1 .
(i+1)  _ (1)
! = 7" (),
! S 79 ®)

where 79 (y) = S0 1 (y). |

(5) Compute the log-likelihood log cL(0U*+1)) using equations (4.1), (4.2), and (4.3).

If £(00HD) — £(6W) > tol, go to Step (2). Otherwise, terminate with 00+ as the desired approximation
of 0.

Remark 4.2. Whenever we want to estimate the Gaussian parameters of the sampling kernel of some reversible
Markov process it can be of interest to add appropriate symmetry constraints to the EM iteration. This is indeed
possible by different means. The easiest way is, when considering a sampling zo.,,—1 with z, = (2, 5,41) that
is induced by a long-term time series, to extend it into a reversible one by adding zm:2m—1 = {Zm, - - -, 22m—1},
Zntm = (Tn, Tny1), and then apply Algorithm 1 to the extended sampling.

5. KERNEL APPROXIMATION OF METASTABLE PROCESSES
We will now study metastable dynamics associated with the nonsymmetric double-well potential
V(z) = (z® — 1)® + 0.25z,
which is illustrated in Figure 2.

5.1. Diffusion in a double well potential

Let us return to a 1d Ornstein-Uhlenbeck process, this time of the form

i=—F(z)+XW

with ¥ = 0.45, and force field F(z) = 9% (z) where V denotes the above nonsymmetric double-well potential.
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F1GURE 2. Nonsymmetric double well potential as used below for numerical tests.

2 2
1 1
0 0
1 1
2 1 0 1 2 2 0 1 2

FI1GURE 3. Sampling and histogram of sampling kernel for the OU process as discussed in the
text. Points outside of the black box on the left hand side have not been hit by the sampling.

After again performing a DNS of the system (now with Euler-Maruyama discretization in time with timestep
0.001), we directly get a sampling of the sampling kernel k;(x, z) with respect to the invariant measure p of the
process. For t = 0.5 and N = 10000 sampling points, the sampling is illustrated in the left panel of Figure 3.
The right panel of Figure 3 shows the corresponding histogram.

We assume that the underlying kernel is (e, §)-metastable and apply Algorithm 1 to this sampling. This
yields the following results for the mean values (estimated equilibria (Z,Z¢); for ¢ = 1,2) and the respective
covariance matrices ;(t), i = 1,2:

(Z,Z0)1 = (—1.012,—-1.012), (Z,Zo)2 = (0.933,0.933),

and

0.0208  0.0010 0.0299  0.0047
Balt) = ( 0.0010 0.0211 ) Balt) = < 0.0047  0.0308 >

We observe that the two parts of the kernel can be well approximated by Gaussian that both have the structure
and form of Gaussian kernels resulting from an Ornstein-Uhlenbeck process.
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FIGURE 4. Left: invariant measures p; (dashed), ps (dashed) and the full measure p (solid) as
computed from the DNS sampling with 7 = 0.5. Right: corresponding approximate invariant
densities ®; and ®s.

We now aim at understanding the full kernel K;(z,z) as an superposition kernel k:(x, zo) in the sense of
Section 3.1:

2
p(@) Ko, m0) (o) ~ pu(@)ke (z, m0) (o) = D ajpng (@) kj (, 20) 115 (w0,
j=1
where the k; are the two Gaussian kernels that have been determined above, and
o = 0.948, ag = 0.052,

as a further result of the Gaussian mixture model. But this means that we determined everything that is
required to construct the superposition kernel k:(x, o) that approximates K;(x, xg). In terms of the weighted
1-norm ||k; — K||1,,, the agreement is very good (as far as this can be checked based on histograms of k).

Based on these results we are able to inspect the approximate invariant densities ®; and @, (see Fig. 4) and
compute the corresponding overlap O12 = (@1, ®2),. We get

O12 =28 %1079,

such that we can enter the above metastability results with e = O15 = 2.8 x 10~?. This shows that the kernel is
e-metastable, but it also shows that the current approximation contains “too much metastability” in the following
sense: the metastable sets exhibit stronger metastability with respect to the approximate superposition kernel
than with respect to the original process. This is a consequence of the fact that the approximation of the
sampling kernel was based on the 1-norm instead on the 2-norm (see Rem. 3.8); in the 1-norm the weights of
the transition regions are small since the sampling kernels are small there.

5.2. Assignment to metastable and transition states

Let us consider the above example again. Let us denote the available time series generated by DNS by
Zo.m = {Zo,...,Zm}. From this we get the time series underlying the sampling kernel; this will be denoted
20:m—1 = {ZO; ceey Z’mfl}a where z,, = (xn; :L'n+1)~

According to the previous analysis we have two main metastable states. Points in the shortened time series
To:m—1 can be assigned to these states via the almost invariant densities ®;, i = 1,2, in the sense of constructing
the two sets

M, ={z,: 0<n<m—1, &;(zp) > 0|Pi]|c}, 1=1,2,
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FIGURE 5. Sampling of the sampling kernel with coloring of points according to assignment as
described in the text (# = 0.95). The two clouds of grey and black dots represent M; and Ma,
respectively. The crosses indicate Mjo (black) and My; (green), the circles My (black) and
My, (light grey), and the stars Myg (black) and Mys (light grey).

where 6 > 0.5 is some appropriate user-selected threshold (e.g., 0.95). The properties of the ®; guarantee that
M N My = 0. All other x,, will be collected in the transition set

Mo={z,:0<n<m-—1, ®;(z,) <0|Pil|oo, i = 1,2}

Transitions are events n where x,, € M, for j = 0,1,2 but 2,11 & M;. We can classify these via the timeseries z
as follows: First introduce

Mi; ={zn = (xn,2p41): 0<n<m-—1, 2, € M; and 41 € M;}

See Figures 5 and 6 for illustrations of these sets for different values of 6.
Let now #A denote the number of elements in the set A. Then, we observe that for all i =0, 1,2

#M; = # My,
J

and the optimal Markov transition matrix (in a MLE sense, i.e., under the condition of the observation X
made) between the sets M, i = 0,1, 2, has transition probabilities

M,
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FIGURE 6. Sampling of the sampling kernel with coloring of points according to assignment as
described in the text (# = 0.99). The two clouds of grey and black dots represent M; and Ma,
respectively. The crosses indicate Mg (black) and My (light grey), the circles Mo (black)
and My (light grey), and the stars My (black) and Moz (light grey).

In our case we get (0 = 0.95)

0 0.8112 0.1888
T =1 0.0001 0.9997 0.0002
0.0003 0.0030 0.9967

The eigenvalues of this matrix are 1.0000,0.9965, —0.0001 which illustrates that, as long as we are interested in
metastability, the process can be further aggregated by means of the PCCA algorithm [8,9] into the 2 x 2 process
T_ 0.9998 0.0002
—\ 0.0031 0.9969 )’
which describes the jumps between M; and M.

Let us conclude our considerations with the following sketch of the algorithmic approach we are advocating
herein:

e Use Algorithm 1 to find an approximate superposition kernel Zi\il a;k; based on a sampling (time
series with lag time 7) of the sampling kernel of the system under investigation.

e Construct the almost invariant functions ®; based on the invariant measures of the approximate super-
position kernel and compute the transition matrix T as outlined in this section.

e Take the Markov chain associated with T as description of the effective dynamics of the system on
timescale 7 and the dynamics associated to the sampling kernels x;, i = 1,..., M, as local dynamics
within each of the M metastable sets.
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In Section 2.3 of [32] this approach has been applied to the small peptide trialanine; it has been demonstrated
that its results coincide with results of other algorithmic approaches to metastable dynamical behavior in
molecular systems.

6. RELATION TO OTHER APPROACHES

6.1. Extended state space

Let us consider again Markov kernels k;, i € I = {1,..., N}, with invariant probability measures p;, and
associated flat space transition densities p;(x,-). Assume that k; and p; are associated with a lag time 7. Let
us assume that the measures p; are absolutely continuous with respect to the Lebesgue measure and that the
pi are positive (almost) everywhere. Let the underlying state space be Q. Now we consider the extension of the
process to the extended state space 2 x I, i.e., the number of the respective component k; of the process now
is part of the state information. Now, consider the following Markov transition density on this extended state
space:

pext(xaiayhj) = pZ(xay)Tz](y)v (61)
where i, j € I, and T;; denotes the i, j-entry of the transition matrix 7' = exp(7R) of the Markov jump process
with rate matrix R on I. R and T are supposed to depend on y such that 7 = (7, (y));jer, the invariant measure
of T(y), satisfies

mi(y) = i (y)/ny),
with some fixed positive numbers a; that do not depend on y and satisfy >, oy = 1, and u(y) = 32, op;(y).
Under these conditions we easily verify that the invariant measure of the extended transition function with
density pext is
Hext (2,1) = apti (x).
We can now lump the extended transition function together again, i.e., we consider its marginal transition
density
pmar(xay) = Z Fi(x)pext(xaiayaj)' (62)
ijer
Interestingly we then get back to the transition density of the superposition process on €:

i(2)
mar(xa ): aiu i(x’ )
o) = 2

6.2. Towards HMMSDE

Let p;, i = 1,..., N, be Markov transition densities and R € RV*Y a rate matrix. The transition matrix
associated with R and step ¢t = 1 is T = exp(R). Let 7 be the invariant measure of T, i.e., 77 T = w. Consider
the extended state space Q@ = Q x {1,..., N}. Then introduce the transition density

p(I, Zayaj) = Pz(%y)ng

which defines a “l-step” Markov kernel on Q. In contrast to what has been considered above we do no longer
assume that T depends on the target state y € €.
In case that the p;(z,y) are transition functions of Ornstein-Uhlenbeck processes

i=—-DVW(z) +2OW,
the such defined process is governed by the HMMSDE model [16]

i(t) = —DVU®) (z(t)) + Oy,

i(t) = Markov jump process with rate matrix R.
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Concerning parameterization of this process by the time series at hand, we get the p; by approximation of
the sampling kernel and the transition matrix from the above EM algorithm and counting scheme. In [16-18],
another approach to parameter estimation for the HMMSDE model has been presented. Further investigations
will have to work out whether these algorithms can also be used for the advanced kernel approximation scheme.

APPENDIX A

As an example in a deterministic setting, we derive an explicit formula for the transition kernel in the case
of a partially observed Hamiltonian system. Consider the ordinary differential equation 2 = F(z) with flow
map ®! such that z(t) = &'z if 2(0) = z9. Now assume that the trajectory is only partially observed, i.e.,
instead of the full state z = (z,£) we do only consider the part © = @z where @ denotes the projection from the
state space onto the subspace corresponding to z. Then, the observed process has the form z(t) = Q®*(z0, &)-
Furthermore assume that the flow map ®* leaves the measure 7 = yu ® v invariant, of which we assume that it is
absolutely continuous with respect to the Lebesgue measure and decomposes according to 7(z, &) = p(z)v(€).
Under these conditions the transfer operator of the observed process x(t) on time scale 7 has the following
form [29,30] in the function space L2

P f(x) = / F(Q (,€)) w(€) de.

Rewriting it in the above notation under the assumption that the p is almost everywhere positive exhibits that
the associated kernel in Li has the form

e (2, y) = / 5y — QB (x,€)) 1(€) de,

1
1(y)
where § denotes the usual delta distribution which is used here for the sake of simplicity.

In order to understand what kind of function k, may be, consider the following scenario which originates
from molecular dynamics applications: there Z = F(z) should be thought of as a Hamiltonian system with
position x, momentum &, and Hamiltonian H(z) = T(£) + V(z). Hence, F(z) = —JDH (z) where DH denotes
the derivative of H with respect to z = (z, &), and J is the typical skew-symmetric block matrix J = [0, I; —1I,0].
The associated flow then leaves the measure

x

(,6) = H(aW(E) = = exp(~V (1) - 5 exp(~5T(E)

invariant, where Z, and Z; are appropriate normalization constants and 3 is some arbitrary positive number.
In this context, all above assumptions are satisfied for arbitrary potential energies V' and kinetic energies T’
that grow strong enough. In order to allow a glimpse on the structure of k, let us specifically choose the case
of a one-dimensional position coordinate x and V(z) = 22/2 and T(¢) = £2/2, and 7 so that s = sin(7) # 0.
Then QP 7 (xg,&) = cos(7)xg — sin(7)&y, and we find (set ¢ = cos(1))

e =gy (25,

This then results in a sampling kernel of Gaussian form

x? + ey 2 = ! exp —é —$2—20xy+y2 :
s $ZyZ¢ 2 52

) = T(&) + V(x) where V(z) now denotes the double well potential
5 and 7 = 0.5. After performing a DNS of the projected Hamiltonian

_ ! g
re(@y) = 27 Ze “P\ 72

Next, consider the Hamiltonian H(z,§
shown in Figure 2 (¢f. Sect. 5.1). Let § =
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FIGURE 7. Sampling of the sampling kernel for projected Hamiltonian system as described in
the text.

system (with Verlet discretization in time with timestep 0.005), we directly get a sampling of the associated
sampling kernel k. (x,2q) with respect to the invariant measure p of the process. This sampling is shown in
Figure 7. We observe that the sampling kernel can well be approximated by a superposition of two Gaussian.
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