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GRADIENT DESCENT AND FAST ARTIFICIAL TIME INTEGRATION
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Abstract. The integration to steady state of many initial value ODEs and PDEs using the forward
Euler method can alternatively be considered as gradient descent for an associated minimization prob-
lem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach
steady state as is forward Euler integration with the best uniform step size. But other, much faster
methods using bolder step size selection exist. Various alternatives are investigated from both theo-
retical and practical points of view. The steepest descent method is also known for the regularizing or
smoothing effect that the first few steps have for certain inverse problems, amounting to a finite time
regularization. We further investigate the retention of this property using the faster gradient descent
variants in the context of two applications. When the combination of regularization and accuracy
demands more than a dozen or so steepest descent steps, the alternatives offer an advantage, even
though (indeed because) the absolute stability limit of forward Euler is carefully yet severely violated.
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1. Introduction

The numerical integration of a time dependent partial differential equation (PDE) system in order to approxi-
mate its steady state is by no means a new technique; see, e.g., [4,24,28,36] and references therein. In particular,
it is a lazy-person’s approach for solving possibly nonlinear elliptic PDEs: although well-known to yield slow
algorithms, it has the advantages that setting up an explicit integration scheme is straightforward, certain
singularities (e.g. of Poisson’s equation with Neumann boundary conditions) are automatically overcome, and
multiple solutions may be found – with luck or insight – upon selecting different initial value functions.

To focus our discussion consider the simple linear PDE

ut = ∇ · (a ∇u) + q, 0 < x, y < 1, t ≥ 0, (1.1)

where a = a(x, y) ≥ amin > 0 and q = q(x, y), subject to Dirichlet boundary conditions (BC) that are
fixed in time t. Suppose we discretize the unit square by a uniform mesh with mesh width h = 1/(J + 1).
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Denoting the approximation to u(t, ih, jh) by vi,j(t), a standard finite volume approach yields the semi-
discretization

dvi,j
dt

= h−2
[
ai+1/2,j(vi+1,j − vi,j)− ai−1/2,j(vi,j − vi−1,j)

+ ai,j+1/2(vi,j+1 − vi,j)− ai,j−1/2(vi,j − vi,j−1)
]
+ qi,j , 1 ≤ i, j ≤ J, (1.2a)

where ai+1/2,j is defined using local values of a, for instance

ai+1/2,j = h

[∫ xi+1

xi

a−1(x, yj)dx
]−1

. (1.2b)

See, e.g., [2]. The ODE system (1.2) is closed by the BC. We can write it as

dx
dt

= −(Ax− b), (1.3)

where x contains the unknowns vi,j reshaped as a vector of length m = J2, b likewise contains contributions
of the inhomogeneities from qi,j and the BC, and A is a symmetric positive definite matrix. We next wish to
integrate the system (1.3) to steady state x = x(∞) satisfying Ax = b.

Now, denoting the eigenvalues of A by λ1 > λ2 > . . . > λm > 0 and κ = cond(A) = λ1
λm

, we have
λ1 = O(h−2), λm = O(1), hence κ = O(m). Thus, the ODE system is mildly stiff, and this brings to mind
implicit time discretization. However, the systems of algebraic equations obtained at each step are not very
different from what we face solving the steady state equations directly, so let us concentrate on explicit schemes.
Here the reigning method in applications is forward Euler

xk+1 = xk + αkrk, where rk = b−Axk. (1.4)

It is the simplest ODE method, and in the present context its low accuracy order is less of an issue since
approximating the time-dependent trajectory well is hardly important for the purpose of obtaining the steady
state solution.

The next question is how to select the forward Euler step size αk. A constant step size α must satisfy the
absolute stability requirement

α ≤ 2/λ1. (1.5)

It is easy to see that in general the number of steps required to reduce the residual norm ‖r = b − Ax‖ by
a constant amount using such a step size is at best proportional to κ = O(m); see Theorem 2.2 below. Some
significantly larger step sizes must occasionally be taken to obtain faster convergence to steady state!

For the latter purpose let us reinterpret the forward Euler scheme (1.4) as a gradient descent method for the
strongly quadratic minimization problem

min
x
f(x) =

1
2
xTAx− bTx, (1.6)

whose necessary and sufficient conditions coincide with the steady state of (1.3). The question now boils down
to selecting the step size for the gradient descent method. Usual strategies are steepest descent (SD)

αSDk =
rTk rk
rTkArk

, (1.7a)
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Table 1. Iteration counts for the model Poisson problem using gradient descent with different
step size choices.

m SD OM HM SD/OM RSDOM LSD HLSD CG
49 167 169 169 46 57 40 59 9
225 702 696 698 88 126 72 67 24
961 2859 2811 2819 276 311 240 142 50
3969 11 517 11 279 11 299 878 682 356 590 100

or Orthomin (OM) (see, e.g., [15])

αOMk =
rTkArk

rTkATArk
· (1.7b)

Both of these are greedy algorithms. The first yields the largest decrease in f(xk + αrk) for α = αSDk , and
the second yields the largest decrease in ‖r‖2 = ‖b − A(xk + αrk)‖2 for α = αOMk

4. The OM variant also
yields reduction in f at each step. The guaranteed norm decrease yields stability even though the forward Euler
constant step size bound (1.5) is occasionally violated.

Another possible step size selection is the harmonic mean (HM) of the preceding two expressions

αHMk =
2

rT
k Ark

rT
k rk

+ rT
k A

TArk

rT
k Ark

· (1.7c)

There are further variations including using (1.7a) for k even and (1.7b) for k odd (SD/OM) defined as

α
SD/OM
k =

⎧⎨
⎩

rT
k rk

rT
k Ark

k even
rT

k Ark

rT
k A

TArk
k odd,

(1.7d)

or a random combination of the two

αRSDOMk = ck
rTk rk
rTkArk

+ (1− ck) rTkArk
rTkATArk

, (1.7e)

with ck a scalar drawn randomly from a uniform distribution on [0, 1] at each step k. Common to all these
variants is their monotonic decrease in f , viz., f(xk+1) < f(xk), ∀k, which guarantees ODE stability despite
occasional violations of the absolute stability requirement (1.5).

Example 1.1. In Table 1 we record iteration counts required to bring the relative residual norm ‖rk‖/‖r0‖
below tol = 10−6. We consider (1.1) under homogeneous Dirichlet BC and initial conditions, and set a ≡ q ≡ 1.
In addition to the methods advertized above we record under LSD iteration counts for the lagged steepest
descent formula [5]

αLSDk =
rTk−1rk−1

rTk−1Ark−1
= αSDk−1. (1.8a)

4Throughout this article we refer to the l2 norm, unless specified otherwise.
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We also record under HLSD (for “half lagged steepest descent”) the number of gradient descent or forward
Euler steps required using the prescription

αHLSDk =

⎧⎨
⎩

rT
k rk

rT
kArk

k even
rT

k−1rk−1

rT
k−1Ark−1

k odd.
(1.8b)

Thus, the step size αk is updated by SD only at even iteration numbers k and is left unchanged for the following
odd-k iteration [13,27]. These last two methods do not converge monotonically in either f or ‖r‖ (although
HLSD converges monotonically in another norm [27]). Also recorded are corresponding counts of conjugate
gradient (CG) iterations required to solve the steady state equations starting from a zero guess.

Clearly the greedy step size selections perform relatively poorly, yielding step counts that grow linearly
with m. This phenomenon is well-known [1,12,23,26].

The new HM step size tends to a constant written as

lim
k→∞

αHMk =
2

λ1 + λm
· (1.9)

This limit value satisfies the Euler stability restriction (1.5): the resulting iteration converges slowly as well.
More surprising perhaps is the superior performance of the alternating selection SD/OM and the random

version (1.7e). These perform significantly better than either greedy scheme (1.7a) and (1.7b). The two-step
lagged schemes LSD and HLSD perform even better, although not by a large margin. None of these schemes is
as good as CG applied directly to the steady state equations, but with the latter gradient descent variants the
relative performance as compared to CG is no longer poorer by orders of magnitude.

The results of Example 1.1 are typical for other problems of the form (1.3) or (1.6) as well. Let us also recall
that on the continuous level the steady state equation for (1.1), obtained by setting ut = 0, can be reformulated
as minimization of the corresponding Ritz functional (see, e.g., [30]).

Generalizing the above exposition consider next an unconstrained optimization problem

min
x
f(x), (1.10a)

with x ∈ R
m, f ∈ C2 and ∇2f symmetric positive definite in a sizable neighborhood of the solution we

concentrate on. The gradient descent step is

xk+1 = xk + αkrk, r = −∇f(x), (1.10b)

and it is equivalent in form to forward Euler for the ODE

x′ = r(x). (1.10c)

Traditionally αk has been determined by weak line search

αk ≈ argminα f(xk + αrk). (1.11)

Such a technique ensures descent in f at each step and “global” convergence is obtained under some reason-
able conditions; see any text on numerical optimization, e.g. [22]. For the special convex quadratic case the
exact (1.11) gives (1.7a). Thus the wisdom of using (1.11) for (1.10b) has recently been put under question in
view of results such as those of Example 1.1; see for instance [5,8,9,27] and references therein. The purpose
of the present article is to critically examine several of the issues involved, with a special eye towards the
interpretation of integrating (1.10c).
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As demonstrated in Table 1 the well-known slowness of the steepest descent method has to do with the choice
of the gradient descent direction, as well as the step size. But the simplicity of this descent direction has a strong
appeal, especially when very large, constrained problems are considered. When constraints inhibit taking a full
step size in the calculated direction, methods such as CG and Newton-type can lose efficiency significantly [8].
Moreover, the gradient descent method has regularizing properties [4,21,34], so (1.10c) need not be integrated all
the way to steady state in certain popular situations. When considering an inexact Newton or Gauss-Newton
method for a nonlinear problem requiring regularization, applying a few (possibly preconditioned) gradient
descent inner iterations with a better step size than steepest descent can possibly yield a method that may
be more efficient than (similarly preconditioned) CG, because the latter loses effectiveness when not used in
full [14,16].

In Section 2 we consider the quadratic problem (1.6). We give results regarding the greedy methods (1.7a),
(1.7b) and (1.7c) and prove their guaranteed slowness. The faster gradient descent methods discussed above,
as well as others discussed in the given references, gain their power essentially by not falling into the trap of
producing a cycling step size sequence.

In Section 3 we examine two applications where the role of the gradient descent method is largely to provide
regularization, yielding an interpretation as an integration up to a finite time [4]. Some highly efficient methods
are introduced and studied. The question is whether the faster gradient descent methods offer advantage in
such circumstances.

Conclusions are offered in Section 4.

2. Solving linear positive definite systems

In this section we consider the problem

Ax = b, (2.1)

where A is large, symmetric and positive definite. This problem is equivalent to (1.6) and defines the steady
state of (1.3). For motivation, assume that not even A but only a routine returning the product Av for any
m-vector v is available, as is the case for instance in many image processing applications involving the Fourier
transform. This makes preconditioning tricky, and eliminates employment of most usual methods, although it
leaves CG as a possible and better alternative method to gradient descent, a fact which we proceed to ignore
in this section.

2.1. Properties of the one-step algorithms

For both choices (1.7a) and (1.7b) there is a monotonic descent in some norm. For (1.7a) of course there is
descent in f , because αk is the minimizer in the descent direction. Specifically

fk+1 =
1
2
(xk + αkrk)TA(xk + αkrk)− bT (xk + αkrk) = fk − αkrTk rk +

α2
k

2
rTkArk

= fk − αk
2

rTk rk < fk,

where the special form of the step size gets used in the last equality. It also holds that

rTk+1rk = 0.

Let us define the energy product and corresponding energy norm with respect to anm×m symmetric positive
definite matrix P by

(v,w)P = vTPw, ‖v‖2P = (v,v)P .
It is easy to see that minimizing f(x) is equivalent to minimizing ‖r‖2A−1 .
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For (1.7b) we obtain monotonic descent in the residual least squares norm ‖r‖, because the exact line search
is done with respect to this function squared. In fact

‖rk+1‖2 = rTk (I − αkA)2rk = rTk rk − 2αkrTkArk + α2
kr
T
kA

TArk
= ‖rk‖2 − αkrTkArk < ‖rk‖2.

Again, the special choice for αk enters only in the last equality. Also

rTk+1Ark = 0.

Interestingly, we also have for (1.7b)

fk+1 = fk − αkrTk rk +
1
2
α2
kr
T
kArk

= fk − αk
2

[
rTk rk + rTk+1rk+1

]
.

Thus, with Orthomin we actually have a monotonic descent in both ‖r‖ and f , whereas with steepest descent
there is only guaranteed descent at each step in f . This implies a monotonic descent in f (and thus stability and
convergence) also for the harmonic mean HM, alternating SD/OM and random weighting RSDOM variants,
because f decreases at every step in each of them. This yields

Theorem 2.1. For the symmetric positive definite linear system (2.1), i.e., the convex quadratic problem (1.6),
all gradient descent variants (1.7), including SD/OM and RSDOM, converge Q-linearly and monotonically in f .

Indeed it can be easily shown (e.g., [15]) that for some error measurement the average decrease factor per
iteration is at least as large as

ν =
κ− 1
κ+ 1

=
λ1 − λm
λ1 + λm

· (2.2)

Unfortunately, however, this bound admits methods that take O(κ) steps to reduce the relevant error measure
by a constant factor such as 10. For methods such as SD/OM and RSDOM the observed performance is better,
although no sharper theory is known to us.

For the SD, OM and HM variants (1.7a)–(1.7c) we next show that there is an asymptotic lower bound for
the number of iterations required.

2.2. Slowness of the greedy algorithms

Let us first consider the choice of constant step size α. Thus we have the recursion

rk = (I − αA)rk−1 = . . . = (I − αA)kr0.

The iteration is stationary, and the rate of convergence is determined by the spectral radius

ρ(I − αA) = max
i
|1− αλi| = max[1− αλm,−(1− αλ1)].

The best choice of constant step size αminimizes this spectral radius, which happens when 1−αλm = −(1−αλ1),
i.e., for α∗ = 2/(λ1 + λm). Let Q be the orthogonal similarity transformation such that

QTAQ = Λ = diag(λ1, . . . , λm).
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(a) Greedy step sizes (b) Wilder step sizes

Figure 1. Step size dynamics for A = diag(20, 10, 2, 1). (a) The greedy strategies produce
orderly dynamical systems which have a steady state or are two-periodic. Forward Euler ab-
solute stability limit, depicted here as ‘Estab’, therefore decrees slow convergence. (b) When
this pattern is broken a faster convergence to steady state results.

Then using the best constant step size, QT rk+1 = (I − α∗Λ)QT rk. The last component of QT rk reduces most
slowly, by the factor 1 − 2λm

λ1+λm
= ν defined by (2.2). We have thus reconstructed the following well-known

result.

Theorem 2.2. For the ODE (1.3), barring special initial conditions, the fastest reduction in residual norm
towards steady state using forward Euler with a constant step size is obtained using the step size

α∗ =
2

λ1 + λm
·

For this step size the number of iterations required to reduce the residual error by a constant amount is propor-
tional to the condition number κ.

Next we consider the more promising algorithms where αk is allowed to vary. A greedy algorithm would
choose αk so that a local property such as descent in f over the step is optimized. The essential theory is in [1],
see also [12,23]. Let x(i) be the ith eigenvector, so Ax(i) = λix(i). Assuming away certain special initial guesses,
Akaike showed for SD that asymptotically the error ek = x∗ − xk tends to be in the space spanned by the first
and last eigenvectors x(1) and x(m). This implies a similar result about the residual rk = Aek. Now, since for
SD each two consecutive residuals are orthogonal, clearly in the asymptotic regime rk and rk+2, being in the
same 2D plane and both orthogonal to rk+1, must be parallel, i.e. there is a constant γ such that rk+2 ≈ γrk.
The same can be shown for OM. This constant cancels out in (1.7a) and (1.7b), hence αk+2 ≈ αk. Figure 1(a)
depicts this behavior for a simple example.

Now expand

rk =
m∑
i=1

r
(k)
i x(i).

We may take x(i) to be the ith unit vector, i.e. r(k)i is the ith element of rk. Then

rk+1 =
m∑
k=1

r
(k)
i (1− αkλi)x(i),
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i.e. r(k+1)
i = (1− αkλi)r(k)i . For the SD step (1.7a) we have

αSDk =

∑
j(r

(k)
j )2∑

j λj(r
(k)
j )2

·

For the OM step (1.7b) we have likewise

αOMk =

∑
j λj(r

(k)
j )2∑

j λ
2
j(r

(k)
j )2

·

In both cases we can see how the forward Euler absolute stability restriction may be legally violated. If ri are
all approximately equal then αk is roughly proportional to the reciprocal of the larger eigenvalues. But then
the ensuing iteration is more effective in reducing the magnitude of the components ri that correspond to the
larger eigenvalues than those corresponding to the smaller ones. Hence in the next iteration the step size αk+1

may be larger, cutting down the magnitudes corresponding to the smaller eigenvalues while actually increasing
those of the larger ones, but not so much as to have an overall divergent effect.

Theorem 2.3. Consider the method (1.4) for the problem (2.1). Assume that the initial value x0 is not special
in the sense that r0 is not an eigenvector and that e0 has a nonzero component in the direction of the first and
last eigenvectors. For simplicity assume also that the eigenvalues of A are distinct. Then the following holds:

1. For SD (1.7a) there are constants β0 and β1 satisfying

2
β−1

0 + β−1
1

=
2

λ1 + λm
, (2.3)

such that as j →∞, α2j → β0 and α2j+1 → β1.
2. For OM (1.7b) there are constants β0 and β1, not necessarily the same as those for SD but also satis-

fying (2.3) and the alternating step size property described above.
3. For HM (1.7c), assume further that the sequence of residual vectors tends to satisfy

rk+1 = ζDkrk, k →∞, (2.4)

where ζ is a positive scalar and Dk is a diagonal matrix with diagonal elements ± 1. (See remark
following the proof of this theorem and note the harmless abuse in the simplification of asymptotic
notation that yields the equality of (2.4).)
Then the limit (1.9) holds and ζ equals ν given by (2.2).

4. For all three variants the number of steps necessary to decrease the error by a constant amount grows
linearly in the condition number κ.

Proof.
1. The alternating property of the step sizes follows from the analysis in [1]. Using these results [23] showed

for SD that in the asymptotic limit

β0 =
1 + c2

λm(1 + c2κ)
, β1 =

1 + c2

λm(c2 + κ)
,

where

c = lim
j→∞

r
(2j)
1

r
(2j)
m

= − lim
j→∞

r
(2j+1)
m

r
(2j+1)
1

·
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The constant c depends only on the initial guess x(0) and the eigenpairs of A. It is easy to verify
that (2.3) holds for these expressions.

2. Clearly ‖r‖2 = ‖A1/2r‖2A−1 . Hence OM is equivalent to SD for the problem

min
y
‖b̃−Ay‖A−1 , y = A1/2x, b̃ = A1/2b.

But SD for the transformed problem can be directly verified to yield

yk+1 = yk + αOMk A1/2r.

The analysis in [1] applies to this, and multiplying the recursion by A−1/2 recovers gradient descent
with (1.7b).

3. For the harmonic mean variant HM, assume without loss of generality that A is diagonal. (Otherwise
consider QT rk.) Then using (2.4) we can write for each component of rk, as k→∞, the equality

± ζr(k)i = (1− αHMk λi)r
(k)
i , i = 1, . . . ,m.

It can be easily seen that these m equalities can hold only if there are two indices p and l, 1 ≤ l < p ≤ m,
such that

r
(k)
i = 0, i �= l, i �= p.

Further, the remaining two components of rk are nonzero. Canceling these out and solving the two
linear equations for ζ and α yields

α =
2

λl + λp
, ζ =

λl − λp
λl + λp

·

Moreover, we next show that the limit residual satisfying (2.4) is stable under perturbation iff l = 1,
p = m, thereby obtaining the claimed result.

Assume to the contrary that l > 1 and consider the perturbed limit residual rk = (ε, 0, . . . , 0, rl, 0, . . . ,
0, rp, 0, . . . , 0)T . Then αHMk = α+ δ, where δ = δ(ε)→ 0 as ε→ 0. We can write∣∣∣∣∣r

(k+1)
l

r
(k)
l

∣∣∣∣∣ = |1− λl(α+ δ)| ≤ ζ + λl|δ|,

with a similar result holding for
∣∣∣∣ r(k+1)

p

r
(k)
p

∣∣∣∣. But at the same time

∣∣∣∣∣r
(k+1)
1

r
(k)
1

∣∣∣∣∣ = |1− λ1(α+ δ)| ≥ (−1 + λ1α)− λ1δ = ζ + (λ1 − λl)α +O(|δ|).

Thus, there is a constant K > 1 such that for |ε| small enough∣∣∣∣∣r
(k+1)
1

r
(k)
1

∣∣∣∣∣ ≥ Kmax

[∣∣∣∣∣r
(k+1)
l

r
(k)
l

∣∣∣∣∣ ,
∣∣∣∣∣r

(k+1)
p

r
(k)
p

∣∣∣∣∣
]
·

This shows that such a perturbation grows faster than the only coefficients of the residual r that are
supposed to stay nonzero. Therefore, we must have l = 1.

Similar arguments show that p = m for r of (2.4) to be stable. Moreover, if l = 1 and p = m then a
similar argument shows a stable configuration, proving our claim.
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Some additional, straightforward algebra yields that in the limit the normalized residual satisfies

r1 = ±
(−λm +

√
λ1λm

λ1 − λm

)1/2

, rm = ±
(
λ1 −

√
λ1λm

λ1 − λm

)1/2

·

4. Next, the slow linear convergence of HM follows directly from the constancy of the asymptotic step size
αk = 2/(λ1 + λm), as in Theorem 2.2. Indeed, if A is diagonal then

r(k)m = (1− αkλm)kr(0)m = νkr(0)m .

Regarding SD (and likewise OM) we have for each component of r that in the asymptotic limit

r
(k+2)
i = (1− β1λi)(1 − β0λi)r

(k)
i .

The amplification factor over two steps is fixed, hence stability requires |R(λ)| ≤ 1 for λm ≤ λ ≤ λ1,
where R(λ) = (1 − β1λ)(1 − β0λ). Note that R′(λ) = −(β0 + β1) + 2β0β1λ. The second derivative is
positive, hence the minimum is at

λ∗ =
β0 + β1

2β0β1
,

where we must therefore require

R(λ∗) = 1− (β0 + β1)2

4β0β1
≥ −1.

This yields the condition

(β1 − β0)2 ≤ 4β0β1, (2.5)

and we also must have R(λ1) ≤ 1 and R(λm) ≤ 1 . Assuming, without loss of generality, that β0 ≤ β1,
the condition (2.5) implies that

β1 ≤ (3 + 2
√

2)β0 ≈ 5.8 β0,

which means that the two step sizes must have the same order of magnitude. This in turn implies that
they both must have the same order of magnitude as 1/λ1 (say, within a factor of 10). Thus, to achieve
a constant reduction in the magnitude of rm corresponding to low frequencies (smallest eigenvalue), we
require a number of steps that is proportional to κ = cond(A) = λ1/λm. �

Remark 2.1. Assumption (2.4) is a conjecture that was observed to hold in all our experiments. However, it
may well be as hard to prove directly as are its conclusions. We believe that the proof of Part 3 of Theorem 2.3 is
illuminating; still, a more complete treatment comparable to that available for Part 1 remains an open problem.

Note that the results above hold more generally for energy norms P = Al, with l any integer. Specifically,
determining the step size αk = α

(l)
k as the minimizer of ‖b−A(xk + αrk)‖2Al , thus obtaining

α
(l)
k =

rTkA
l+1rk

rTkAl+2rk
,

yields a step sequence that behaves essentially like that for SD. Moreover, a harmonic mean of the expressions
for α(p)

k and α(l)
k , p �= l, is observed to yield a step sequence that behaves essentially like that for HM. What is

special about αSDk (l = −1) and αOMk (l = 0) is that their computation can be arranged to cost only two vector
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Table 2. Maximum violation of monotonic decline in ‖r‖ and f .

m Method maxk
‖rk+1‖
‖rk‖ maxk

fk+1−f∗

fk−f∗ Method maxk
‖rk+1‖
‖rk‖ maxk

fk+1−f∗

fk−f∗

49 SD 9.67 e–1 8.54 e–1 OM 9.24 e–1 8.62 e–1
HM 9.24 e–1 8.54 e–1 CG 6.64 e–1 9.96 e–1
SD/OM 1.89 8.53 e–1 RSDOM 1.93 9.0 e–1
LSD 9.33 8.18 HLSD 1.42 e+1 1.24 e+2

225 SD 9.96 e–1 9.63 e–1 OM 9.81 e–1 9.65 e–1
HM 9.81 e–1 9.63 e–1 CG 9.30 e–1 1.28
SD/OM 3.19 9.70 e–1 RSDOM 4.95 9.77 e–1
LSD 6.96 e+1 1.19 e+2 HLSD 5.15 e+1 6.77 e+2

961 SD 1.0 9.92 e–1 OM 9.95 e–1 9.92 e–1
HM 9.95 e–1 9.92 e–1 CG 1.08 1.79
SD/OM 7.09 9.93 e–1 RSDOM 9.94 9.95 e–1
LSD 2.07 e+2 8.93 e+3 HLSD 3.93 e+2 1.39 e+5

3969 SD 1.00 1.00 OM 9.99 e–1 1.00
HM 9.99 e–1 1.00 CG 2.14 1.22
SD/OM 1.64 e+1 9.98 e–1 RSDOM 1.99 e+1 9.99 e–1
LSD 1.63 e+3 1.13 e+6 HLSD 9.75 e+2 5.46 e+5

inner products, because the vector sk = Ark is required anyway to update rk+1 = rk − αksk, cf. (1.4), whereas
other values of l yield additional, usually more costly multiplications by A.

Akaike also proposed in [1] an acceleration algorithm which we have simplified and implemented as follows.
In the asymptotic regime x∗ − xk ≈ γ(x∗ − xk−2). Hence convergence acceleration can be obtained by setting

xk+1 =
xk − γxk−2

1− γ , γ =
‖rk‖
‖rk−2‖ · (2.6)

We have implemented this and tested over several examples, applying the correction (2.6) whenever

|αk − αk−2| ≤ tola (αk + αk−2).

Indeed a rather significant improvement of SD or OM is obtained using tola = 10−6, say. However, the results
are not as good as those obtained for LSD or HLSD because the value for tola required to enable an effective
use of (2.6) was found to be quite strict.

2.3. Two-step gradient descent variants

The lagged steepest descent (LSD) has a similar analogue for the Orthomin variant (1.7b), viz. αLOMk = αOMk−1,
see [5]. The performance of LOM is similar to that of LSD.

The lagged methods and HLSD exhibit generally comparable practical performances and all have been
shown to converge at least R-linearly. However, there are steps k where either f or ‖r‖ (or both) may actually
grow [5,13,27]. This is not really good news in terms of iteration control, but it is theoretically interesting.

Example 2.1. In Table 2 we record the maximum violation of monotonicity in f(xk)− f(x∗) ≡ fk − f∗ and
‖rk‖ (where x∗ = A−1b is the exact steady state) over k > 0 for the runs of Example 1.1.

Clearly there are monotonicity violations in ‖r‖ for all of the faster methods. For the one-step step selection
variants there is a monotonic descent in f as theory predicts. Moreover, the monotonicity violations in the
two-step methods are much more serious and worrisome than those in the one-step methods.
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(a) ‖r‖ as a function of step # (b) ‖r‖ as a function of time

(c) Step sizes SD/OR (d) Step sizes LSD

Figure 2. Residual norms and step size sequences on a log scale for the Poisson problem of
Examples 1.1 and 2.1 with m = 225.

Figure 2 displays progress of the residual norms as a function of step number and time tk =
∑k−1
j=0 αj . These

plots visualize some of the behavior pattern depicted in Table 2. Also depicted are corresponding step size
sequences.

We have run similar tests also for other problems, obtaining qualitatively similar results. A related gen-
eral note is that with the faster gradient descent methods the number of iterations required to satisfy a
given tolerance varies significantly (up to a factor of two, say) with the choice of the right hand side b
in (1.6), or homogeneity q in the PDE (1.1). A Java applet that may help illustrate this point is available at
http://www.cs.ubc.ca/$\sim$kvdoel/lag/.

The LSD variant has been successfully implemented in general purpose codes for minimizing quadratic
objective functions subject to box constraints [8] and applied to compressed sensing and other image processing
problems [11,32]. In this context it often gives better results than either the steepest descent or the conjugate
gradient alternatives.

Figure 1(b), like Figures 2(c) and 2(d), depicts typical step size behavior for the non-greedy variants. The
general pattern where occasionally a large step size is taken is common to all variants that produce faster
convergence than the greedy schemes. In cases where the condition number gets large, the largest step size
taken by LSD or HLSD can be much larger than the bound (1.5) suggests. For instance, in the last row of
Table 1 the largest step size taken by both LSD and HLSD was about 1000 times larger than 2/λ1.

http://www.cs.ubc.ca/$sim $kvdoel/lag/
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The LSD method was prescribed for the more general problem (1.10) as the least squares solution of

α−1
k (xk − xk−1) ≈ −(rk − rk−1)

yielding

αk =
‖xk − xk−1‖2

(rk−1 − rk,xk − xk−1)
·

The motivation was an extension of the scalar secant method. However, the formula (1.7a) can also be obtained
as a secant approximation for the same derivative required in Newton’s method. Just postulate

α−1
k (xk+1 − xk) ≈ −(rk+1 − rk).

For the quadratic case, and using least squares, we obtain

αk =
‖xk+1 − xk‖2

(rk − rk+1,xk+1 − xk)
=

rTk rk
rTkArk

,

where α2
k cancels in numerator and denominator.

3. Gradient descent smoothing in applications

In this section we describe two experiments investigating the regularizing properties of the faster gradient
descent variants, comparing specifically SD against LSD. In both experiments we know that LSD would reach
steady state much faster than SD, but we are not interested in that limit. Rather, we carry out only a few
such steps, which corresponds to finite time regularization [4]. Integration to steady state would lead in the
first example below to a blank image, and in the second to an attempt to solve a singular system. And yet
applying a few integration steps, stopping well short of the disastrous end, produces highly efficient algorithms.
For discussions of criteria to stop the iteration see, e.g., [10,33,35].

3.1. Image denoising in 2D

The problem considered here is to clean a given noisy 2D image b(x, y). Let us denote the result w(x, y). Of
course both b and w are in reality given or found as discrete function values over pixels, but it is convenient to
develop notation and understanding using a continuous analogue.

In [3] the authors proposed to consider the usual Tikhonov-type formulation

(w − b) + βRw = 0,

with Rw = ∇R(w)5, a discretization with mesh width h of

Rw(w) = −∇ · (g(|∇w|)∇w), where g(τ) =
ρ′(τ)
τ

,

and ρ is chosen as the Huber function

ρ(τ) =

{
τ, |τ | ≥ γ,
τ2/(2γ) + γ/2, |τ | < γ,

Rw(w) ← ∇ ·
(

min
{

1
γ
,

1
|∇w|

}
∇w

)
.

5The penalty functional R(w) itself is defined below (3.1); it is never used directly in our algorithms.
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The innovation was in the adaptive choice of the switching parameter

γ =
h

|Ω|
∫

Ω

|∇w|, (3.1)

where the integral is discretized on the same mesh as

R(w) =
∫

Ω

ρ(|∇w|).

The above is referred to as the implicit scheme because a nonlinear system of algebraic equations for w must
be solved, a task for which lagged diffusivity [35] was applied in [3].

Consider instead the explicit algorithm

w0 = b, (3.2a)
wk+1 = wk − αkRw(wk), k = 0, 1, 2, . . . (3.2b)

This is a forward Euler discretization for (1.1), where now the function a depends on the solution when γ is
small enough, in which case the process may be viewed as anisotropic diffusion. For γ → ∞ we have the least
squares (LS) case in ρ, for which the discretized PDE is similar to that considered in Example 1.1 with q ≡ 0
and corresponds to isotropic diffusion.

The alternative view of (3.2), as before, is as a gradient descent method for minimizing R(w), i.e. with
β → ∞ above, starting from the data. Of course the actual minimizer of R, like the steady state of the
homogeneous (1.1), is a bleak and boring zero array. But we hope that just a few well-aimed gradient descent or
forward Euler steps would significantly reduce only the residuals corresponding to the large eigenvalues, i.e. the
high frequencies which are more pronounced in noise than in a clean, piecewise smooth surface function [25].

For step size let us consider the two choices

αSDk =
(Rw(wk))T (Rw(wk))

(Rw(wk))T R̂(wk)(Rw(wk))
, (3.3a)

αLSDk =
(Rw(wk−1))T (Rw(wk−1))

(Rw(wk−1))T R̂(wk−1)(Rw(wk−1))
· (3.3b)

Here Rw(w) = R̂(w) · w. Strictly speaking, these would be steepest descent and lagged steepest descent only if
R̂ were constant. But we proceed to freeze R̂ for this purpose anyway, which amounts to a lagged diffusivity
approach [35].

Figure 3 depicts the discrete dynamics for a denoising test problem, where we synthesize data by adding 20%
randomly distributed Gaussian white noise to the clean image Cameraman (256× 256) depicted in Figure 4(a).
With LS regularization, i.e., γ → ∞, SD step sizes (3.3a) (red dots in Fig. 3(a)) regularly oscillate about the
forward Euler stability restriction (blue dash). Such step size cycling ties directly to the slowness of the resulting
gradient descent method, see the behavior of relative error indicator

êk = ‖wk+1 − wk‖/‖wk+1‖, (3.4a)

depicted by red dots in Figure 3(c).
Figure 3(b) depicts the behavior of step sizes when we employ the “Huber regularization” with our choice

of switching parameter (3.1) for the same denoising problem. An almost constant blue dashed line records
the forward Euler stability bound derived by freezing R̂ locally. Even though step sizes obtained by (3.3a)
clearly violate this upper bound at the beginning of integration, αk decreases monotonically here and quickly



GRADIENT DESCENT AND FAST ARTIFICIAL TIME INTEGRATION 703

10 20 30 40 50
2.8

3

3.2

3.4

3.6

3.8

4
x 10−6

(a) Step−Size for Least Squares

10 20 30 40 50

0

0.005

0.01

0.015

0.02

0.025

(c) Relative Error
10 20 30 40 50

10

15

20

25

30

35

40

(d) Misfit

10 20 30 40 50

0

0.005

0.01

0.015

0.02

0.025

(b) Step−Size for Huber Norm

LS
Huber
20% Noise

LS
Huber

Huber
Estab

LS
Estab

Figure 3. Discrete dynamics for the test problem Cameraman in Figure 4(a) with 20% white
noise added. Two regularizations, LS (γ large) and Huber switching (γ by (3.1)), are compared.
The horizontal axis displays iteration numbers.

approaches its bound. The overall process is perfectly stable, and it behaves very similarly in other test problems
tried. This results in fast convergence as can be seen in both relative error indicators and misfits

ηk = ‖wk − b‖/256, (3.4b)

see sky blue dots in Figures 3(c) and 3(d).
Most important to note in these results is how well η approximates the variance of the noise for the Huber

regularization employing (3.1), and how poorly it does so for LS. Using the former the noisy image is rapidly
decomposed into a fairly good approximation of the clean image plus the noise that can now be estimated by
b − wk; see, e.g., [31]. The simpler LS regularization does not give this because of the well-known smearing of
data that it introduces; see, e.g., [24]. Using this noise estimate for more realistic situations where we don’t
know the noise level in advance, it is now possible to rapidly improve the image quality further using implicit
schemes as in [3,18]. Such techniques will be reported separately elsewhere.

Figure 4 shows denoising results with 20% noise, using the Huber regularization with (3.1) and applying both
SD and LSD step selection strategies. The noise level estimate was found to vary smoothly with the number of
iterations for both step size selection methods. Probably the cleanest image is obtained by SD in Figure 4(e),
but this is a rather slow method. There is a clear advantage in using LSD for rapidly obtaining an albeit
imperfectly cleaned image with a good estimate of the noise. This relative advantage of LSD does diminish for
coarser tolerances, though.

For a similar experiment on the famous Lena image (256 × 256, not shown) we obtain that for the relative
error tolerance of 10−4, 17 SD steps vs. 13 LSD steps are required. The resulting image has similar quality
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(a) True image (b) 20% noise

(c) Misfit = 18.94 (d) Misfit = 20.44

(e) Misfit = 20.96 (f) Misfit = 21.04

Figure 4. Using algorithm (3.2) with adaptive γ by (3.1). (a) Clean image Cameraman; (b) im-
age corrupted by 20% Gaussian white noise; (c) denoised image using SD step size (3.3a) for
error tolerance tol = 10−4 on êk of (3.4a): iters = 21, η21 = 18.94; (d) denoised image using
LSD step size (3.3b) for the same tol: iters = 14, η14 = 20.44; (e) same as (c) with tol = 10−5:
iters = 382, η382 = 20.96; (f) same as (d) with tol = 10−5: iters = 117, η117 = 21.04. The CPU
time is roughly proportional to the number of steps required.

for these step size choices and can be further improved by switching to the implicit algorithm. Furthermore,
for the relative error tolerance of 10−5, 309 SD steps vs. only 140 LSD steps are required. The resulting image
with the stricter tolerance is again similar for the two step size choices, and it requires no further improvement,
i.e. switching to the implicit scheme is not necessary in this particular test.
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These results make intuitive sense. The regularizing effect of gradient descent does not seem to depend too
strongly on the choice of step size, and the aspect of more rapid progress towards the steady state is achieved
faster using the LSD choice (3.3b). Similar observations arise when we apply these algorithms to deblurring
problems, see [18].

3.2. Shape optimization in 3D for EIT and DC resistivity

The problem and numerical methods considered here are described in [34]. Specifically, a shape w(x, y, z)
is sought that arises in electric impedance tomography (EIT) or direct current (DC) resistivity problems; see,
e.g., [6,7,20,29] and references therein for background on the applications. A distributed parameter function
is sought that at each point (x, y, z) in a domain Ω ∈ R

3 takes one of two values (“body” or “background”).
The predicted data F (w) consists of values of the field (solution of discretized generalized Poisson PDEs6) at
locations where observed data b are measured, for several different Neumann boundary conditions (corresponding
to different external current injections). The method describes the piecewise constant w(x, y, z) in terms of a
differentiable level set function ψ(x, y, z), and a Gauss-Newton method for the singular data fitting problem is
considered. This outer iteration reads

(ĴT Ĵ)δψ = −ĴT (F (w(ψl))− b), (3.5)
ψl+1 = φl + τlδψ, l = 0, 1, 2, . . .

where the Jacobian matrix Ĵ = ∂F
∂ψ = ∂F

∂w
∂w
∂ψ is evaluated at the current state ψl and τl is a step size generally

obtained by weak line search (although in the sequel always τl = 1).
Towards solving the singular linear algebra problem (3.5) a small fixed number itersin of preconditioned

SD (PSD) or PCG or PLSD (viz., a preconditioned version of (1.8a)) inner iterations is applied to the outer
iteration (3.5), relying on their regularizing power. The preconditioner is a simple (not generalized) Poisson
solver, ensuring that δψ is smooth enough. In fact, we apply some steps towards solving (3.5) but carefully
avoid attempting to solve it too well (it is singular, to recall). The number of outer iterations itersout is
determined by a data fitting stopping criterion, see [34]. The number of PDE solutions required is therefore
2K ∗ itersin ∗ itersout, where K is the number of experiments and a “PDE solve” refers to an appropriately
accurate solution of a discretized generalized Poisson PDE. We can consider a PDE solve as our work unit and
gauge the performance of an algorithm by counting the number of such work units.

Figure 5 displays the number of outer iterations required for various choices of method and number of inner
iterations. The actual experimental setting for the results reported here and corresponding reconstructions are
described in [34], Section 5.2, as “Experiment 2”. The number of data collection experiments there was K = 41.
See also [33] for further discussion of criteria for terminating the iteration.

The results in Figure 5(a) show that when sufficiently many inner iterations are used, PLSD requires fewer
outer iterations than PSD while PCG requires even fewer. The regularizing effect of gradient descent remains
in force using any of the methods for selecting the time step. However, when considering in Figure 5(b) the
number of total PDE solves required, aiming to minimize it, PLSD does not add much. The results agree with
those of [34], in that PSD with one inner iteration is a valid option that is both competitive and simple, and
otherwise a few (up to 5) inner PCG iterations provide good choices. Note that the prescription of 2 PSD/PLSD
inner iterations performs poorly in this example, requiring 20 outer iterations, because the residual increases in
the second inner step, in line with the discussion in Section 2.3.

To keep a more global perspective let us mention that any of the variants described here that solves such
a problem requiring, say, 2400 PDE inversions or less (which is less than 60 PDE solves per data collection
experiment) can be orders of magnitude faster than several reconstruction techniques that have appeared in
recent years elsewhere in the literature.

6Specifically, the field u satisfies for given piecewise constant function w and source function q the PDE

−∇ · (ew∇u) = q.
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(a) Outer iterations required (b) Work units

Figure 5. Inner iteration counts and number of PDE solves for the shape reconstruction
problem of [34]. For itersin = 1 all three methods coincide.

4. Conclusions

In this article we have investigated greedy and non-greedy one-step and two-step strategies for selecting the
step size in gradient descent methods. These methods also admit interpretation as forward Euler discretizations
of a related ODE system that is to be integrated to steady state. We have shown using the forward Euler absolute
stability restriction that methods which generate step size sequences that tend to oscillate or tend to a uniform
value must be particularly slow to converge. Such methods include steepest descent (SD) and Orthomin (OM),
as well as their harmonic average, but not necessarily other variations of the two formulas (1.7a) and (1.7b)
that therefore may converge faster.

If a constant, or uniform step size is desired then for the linear symmetric positive definite system the best
step size (in terms of fast integration to steady state) is given by the harmonic mean of the largest and smallest
eigenvalues. This value may be obtained by applying first a few gradient descent steps using αHMk given
by (1.7c), see (1.9), or using the harmonic average of two consecutive step sizes of SD once they get into their
asymptotic oscillatory pattern. The performance of the greedy algorithms (1.7a)–(1.7c) is in fact comparable
to integrating with the best uniform step size. This is often too slow for comfort.

The lagged methods (1.8) that use information from the previous “time” step perform best from amongst the
schemes tried in terms of step count, or number of matrix-vector multiplications, although they are generally
in the same class as the faster one-step methods when compared to the greedy algorithms.

One could think of other Runge-Kutta (RK) methods to replace forward Euler. In particular, Runge-
Kutta-Chebyshev methods [17,19] come to mind because they ease the stability restriction for real eigenvalues
somewhat. For the special problem (1.10c) an s-stage RK method can be written as

rk+1 =

⎡
⎣I − αkA+

s∑
j=2

(−αk)jdjAj
⎤
⎦ rk,

where the coefficients dj are expressed in terms of the tableau coefficients of the method and are independent of
the step k. Such a step costs s matrix-vector multiplications and has only one adaptive step size parameter to
determine, unlike s forward Euler steps which have s such parameters. Even if the resulting absolute stability
restriction is relaxed by a factor s2, this may not be a lot compared to the step sizes required to approximate
the inverses of all eigenvalues of A well enough. On the other hand, each two consecutive HLSD iterations can
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be viewed as one step of a two-stage, first order RK method with step size αk = 2αSDk . More generally, keeping
αSDk fixed over s consecutive gradient descent iterations [9,13], the compound iteration can be written as an
s-stage, first order accurate RK step with step size αk = sαSDk .

There are many applications that give rise to nonlinear mathematical models which locally involve positive
definite systems. Moreover, the importance of gradient descent or forward Euler for a finite time integration is
often in its rapid smoothing or regularization properties. We have examined two such applications in Section 3
and found out that using the faster, more unruly LSD over the more cautious SD does not diminish these
regularization properties. The advantage that LSD offers is moderate, however, because by the time the slowness
of SD starts to hurt we are better off switching to another method – an implicit scheme in the case of Section 3.1
and a new outer iteration in the case of Section 3.2.

One major goal of this article has been simply to bring some relevant, surprisingly simple, recent developments
in numerical optimization to the consciousness level of the community that deals with simulating differential
equations.

In doing so, however, we have also found several observations and motivations in the optimization literature
that have left us searching for better explanations. Specifically, for unconstrained optimization, all that is
required of a gradient descent method to be significantly faster than SD is to “break the spell” of convergence
to a step size sequence that cycles often, while still ensuring convergence. Contrary to statements in some
of our references the method may be one-step, as (1.7e) proves, and it may be Q-linearly and monotonically
converging in a computable norm as all methods (1.7) including SD/OM are. At the same time, significant
violations of monotonicity in the computable norms in the case of multistep methods for calculating the step
size pose a challenge when contemplating the practical usage of such schemes. Furthermore, the interpretation
of LSD as a secant method is less important. Finally, it seems to us that wherever CG (or PCG, or a more
general variant) may be used for several steps without interruption then it and not any gradient descent variant
should be employed, because the entire search direction and not only a scalar step size is modified to advantage.

Acknowledgements. The first author thanks Dr. M. Friedlander for several fruitful discussions.
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