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PROPAGATION OF GEVREY REGULARITY OVER LONG TIMES
FOR THE FULLY DISCRETE LIE TROTTER SPLITTING SCHEME APPLIED

TO THE LINEAR SCHRÖDINGER EQUATION

François Castella1 and Guillaume Dujardin2

Abstract. In this paper, we study the linear Schrödinger equation over the d-dimensional torus,
with small values of the perturbing potential. We consider numerical approximations of the associated
solutions obtained by a symplectic splitting method (to discretize the time variable) in combination
with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete
setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are
exponentially long with the time discretization parameter. We here refer to Gevrey regularity, and our
estimates turn out to be uniform in the space discretization parameter. This paper extends [G. Dujardin
and E. Faou, Numer. Math. 97 (2004) 493–535], where a similar result has been obtained in the
semi-discrete situation, i.e. when the mere time variable is discretized and space is kept a continuous
variable.
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1. Introduction

Consider the Schrödinger equation with potential{
i∂tu(t, x) = −Δu(t, x) + λV (x)u(t, x) (t, x) ∈ R × Td

u(0, x) = u0(x) x ∈ Td

where u0 is a given initial data, V (x) is a real valued potential, λ is a real coupling constant that measures the
strength of the potential, and Td stands for the d-dimensional torus. As is well known, the exact value u(t, x)
at time t is given by the propagator

u(t, x) = e−it[−Δ+λV (x)] u0(x).
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It is a common idea in numerical analysis to approximate the true value of u at time t using a splitting
formula, and to write

u(t, x) ≈
(
e−i t

n [−Δ] e−i t
n λV (x)

)n

u0(x),

for some large discretization parameter n. Here a Lie-Trotter splitting method has been used. Such an approx-
imation is-called “semi-discretization” in time, in that space here has not been discretized.

In order to perform the numerical analysis of the above method, one needs at once to analyze the elementary
propagator e−i t

n [−Δ] e−i t
n λV (x), in particular in terms of propagation of u0’s initial regularity. This is the purpose

of the present paper.
For moderate values of time t, a natural framework turns out to be given by the scale of Sobolev spaces,

see [2,13]. It turns out that the splitting operator e−i t
n [−Δ] e−i t

n λV (x) does preserve Sobolev regularity for finite
values of time t, yet the estimates typically blow-up as t goes to infinity (keeping t/n small), like et or so. In
other words, the whole analysis breaks down for large values of time in this framework.

For large values of time, the question of propagating the regularity of u0 still is relevant, since it entails,
amongst others, the conservation of energy and related invariants by the chosen numerical scheme, an important
property that the original Schrödinger equation does possess. In that direction, it has been proved in [6] (see
also [5,7]) that the building block e−i t

n [−Δ] e−i t
n λV (x) preserves regularity of u0, provided λ is small enough,

and V is smooth. We definitely refer here to Gevrey regularity. The need for such a smoothness, as well
as for the smallness of λ, comes from two facts: firstly, we definitely wish to propagate regularity over long
times t; secondly, and in order to achieve this goal, a normal form technique is applied to obtain the desired
result, a method which typically requires analyticity or Gevrey regularity, and which basically uses perturbation
expansions in λ hence is only valid for small values of this parameter. Note also that such a result strongly
uses the symplectic feature of the chosen splitting method, as is natural in view of the symplectic structure of
the original Schrödinger equation (see [10] for general results about the conservation of invariants by symplectic
schemes, when applied to Hamiltonian Ordinary Differential Equations). This aspect somehow justifies the
tools that we are here referring to.

The aim of this paper is to extend the above result of [6] (see also [5,7]) in the fully discretized case, i.e. when
space is sampled as well. In practice the building block e−i t

n [−Δ] usually is computed using the Fast Fourier
Transform algorithm, while e−i t

n λV (x) is a pointwise multiplication operator. We obtain estimates on the
regularity of the numerical solution that do not depend on the size of the space discretization. The typical
regularity of the potential function and of the unknown wave function is again of Gevrey type. To be slightly
more precise, the results of this paper extend those presented in [6] in two ways: firstly, [6] only considers
analytical solutions; secondly, no space discretization is made in [6] where only time discretizations are studied.

The paper is organized as follows: In Section 2, we deal with some aspects of spatial discretization of Gevrey
functions. In Section 3, we prove a normal form theorem for the numerical propagator of the symplectic splitting
method in the asymptotics of small potentials (Thm. 3.13). This is the core of our analysis. Next, in Section 4,
we draw various consequences of our normal form theorem: in particular, we prove that the numerical solution
obtained with a fully discrete, symplectic, splitting method preserves Gevrey regularity over exponentially long
times (Thm. 4.10). Eventually, Section 5 is a collection of technical lemmas needed in the course of the analysis.
Related works and tools, that are related with the techniques used in this article and the questions we raise, may
be found in [1,8,15] (where KAM tools are developed in the infinite dimensional setting), in [3,4,12,14] (where
numerical methods in the Hamiltonian setting are developed and analyzed), or in [11] (where considerations on
splitting schemes are developed).

2. Discretization

This section is devoted to some aspects of the discretization of Gevrey functions on a d-dimensional torus.
Namely, given a smooth periodic function V (x) over the torus [−π; π]d, having Gevrey regularity, and given a
regular sampling (xk)k with mesh size 1/M where M is some (large) discretization parameter, we relate here
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the Gevrey smoothness of V with the properties of the discrete sampling (V (xk))k, and to that of the discrete

Fourier transform
(
V̂k

)
k

(see below for the precise definitions).

In the sequel, we first set up some notation that we use throughout the paper, then state and prove some
approximations results, the main of whom is Lemma 2.4.

2.1. Notation

Let d ∈ N� denote the dimension. Assume M ∈ N is given. We set

BM :=
{
k ∈ Z

d
∣∣ ∀i ∈ {0, . . . , d}, −M ≤ ki ≤ M

}·
For any index k ∈ BM , we also set

xk =
2π

2M + 1
k ∈ [−π; π]d.

Tk = xk +
1

2M + 1
[0, 2π]d ⊂ [−π; π]d.

For any function u ∈ L1(Td), we define the Fourier transform

∀k ∈ Z
d, ûk =

1
(2π)d

∫
Td

u(x)e−ikxdx,

where kx stands for the scalar product of the two vectors, without further specification. For any z = (z1, . . . , zd) ∈
Cd, we denote

|z| =
√
|z1|2 + . . . + |zd|2 and |z|∞ = max{|z1|, . . . , |zd|}·

Throughout the paper, bold letters denote linear operators on C
(2M+1)d

or vectors of C
(2M+1)d

whose norms
(to be defined later) are to be estimated by bounds that do not depend on M . When typing bold letters, we
use upper case letters for linear operators and lower case letters for vectors.

Finally, for all M ∈ N, we denote by W = [Wk,�](k,�)∈BM×BM
the linear operator, or matrix, associated with

the discrete Fourier transform, through the coefficients

Wk,� =
1

(2M + 1)d/2
e−ikx� , whenever k, � ∈ BM .

The operator W naturally is unitary, (
W�

)
W = Id(2M+1)d . (2.1)

2.2. Approximation results

Assume V is a complex function on T
d. Denoting

∀k, � ∈ BM , Vk,� =

{
0 if k �= �

V (xk) if k = �,

the operator V collects the sampled values of V at the discretization points xk, and V somehow provides an
approximation of the original V to within O(1/M), provided V has W 1,∞ smoothness, say.

The discrete Fourier transform of the sampled values V is provided by the coefficients(
WVW�

)
k,�

=
1

(2M + 1)d

∑
p∈BM

V (xp)e−i(k−l)xp , whenever k, � ∈ BM .
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Note that for all j ∈ {1, . . . , d},
∣∣∣∂xj

(
e−i(k−�)xV (x)

)∣∣∣ ≤ (1 + |k − �|)‖V ‖
W 1,∞ . This fact ensures that the

coefficients of WVW� approximate the Fourier transform V̂ to within O(1/M), in the following sense:

Lemma 2.1. For all V ∈ W 1,∞, we have

∀M ∈ N, ∀k ∈ BM ,
∣∣∣V̂k−� −

(
WVW�

)
k,�

∣∣∣ ≤ 2π‖V ‖
W 1,∞

2M + 1
(1 + |k − l|). (2.2)

Obviously, the convergence rate 1/M in the above lemma is optimal, even for very smooth V ’s. However,
the linear growth with |k− �| of the above error term is to be improved as the smoothness of V becomes higher.
This is the question we now investigate, in the case when V has Gevrey smoothness.

Our main result in this direction is Lemma 2.4 below.

Definition 2.2. A complex function V ∈ L1(Td) is said to be (ρV , α)-Gevrey for some ρV > 0 and α ≥ 1 if
there exists δ > 0 such that for all k ∈ Zd, |V̂k| ≤ MV e−(ρV +δ)|k|1/α

.

Definition 2.3. For all (ρV , α)-Gevrey function on Td, we define the corresponding norm by setting

‖V ‖
ρV ,α

= sup
p∈Zd

|V̂p|eρV |p|1/α

.

Lemma 2.4. Assume V is a (ρV , α)-Gevrey function. Then, there exists a positive constant M
(1)
V depending

on V and d such that

∀M ∈ N, ∀(k, �) ∈ BM ,
∣∣∣V̂k−� −

(
WVW�

)
k,�

∣∣∣ ≤ 2πM
(1)
V

2M + 1
e−ρV |k−�|1/α

.

Proof. For k, � ∈ BM , we write

1
(2M + 1)d

V (xp)e−i(k−l)xp =
1

(2π)d

∫
Tp

V (xp)e−i(k−l)xpdx.

Hence, using the additivity of the integral in the definition of V̂k,�, we get

(
WVW�

)
k,�

− V̂k−� =
1

(2π)d

∑
p∈BM

∫
Tp

(
V (xp)e−i(k−�)xp − V (x)e−i(k−�)x

)
dx.

Set for all x ∈ Td,

fk,�(x) := V (x)e−i(k−�)x

and note that
∇fk,�(x) =

(∇V (x) − i(k − �)V (x)
)
e−i(k−�)x =: gk−�(x) e−i(k−�)x,

up to defining the auxiliary function

gk−�(x) := ∇V (x) − i(k − �)V (x).

Since

f(xp) − f(x) =
(
xp − x

) ∫ 1

0

∇fk,�(txp + (1 − t)x)dt,
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we recover,

(
WVW�

)
k,�

− V̂k−� = (2π)−d
∑

p∈BM

∫
Tp

(xp − x)
( ∫ 1

0

∇fk,�(txp + (1 − t)x)dt
)
dx

= −(2π)−d
∑

p∈BM

∫
T0

∫ 1

0

u gk−�(xp + (1 − t)u) ei(k−�) (xp+(1−t)u)dt du.

Now, it turns out that the discrete Fourier inversion formula provides, for any z ∈ Rd, the identity∑
p∈BM

gk−�(xp + z) ei(k−�) (xp+z) = (2M + 1)d(ĝk−�)k−�.

Therefore we recover (
WVW�

)
k,�

− V̂k−� = −(2π)−d(2M + 1)d(ĝk−�)k−�

∫
T0

udu,

which implies, using that the measure of T0 is
(

2π
2M+1

)d,

∣∣∣(WVW�
)
k,�

− V̂k−�

∣∣∣ ≤ 2π
√

d

2M + 1

∣∣(ĝk−�)k−�

∣∣.
To conclude the proof, note that, since V is (ρV , α)-Gevrey, we have for some M, δ > 0 and all j ∈ {1, . . . , d},∣∣(ĝk−�)k−�

∣∣ ≤ 2|k − �|∣∣V̂k−�

∣∣
≤ M |k − �|e−(ρV +δ)|k−�|1/α

≤ CδMe−ρV |k−�|1/α

,

with Cδ = supp∈Zd |p|e−δ|p|1/α

. �

As an immediate consequence of the above Lemma, we deduce that the operator WVW� is (ρV , α)-Gevrey
for all M , with a norm independent of M , in the following sense:

Definition 2.5. Set M ∈ N, ρ > 0, α ≥ 1. For all operator A =
(
Ak,�

)
k,�∈BM

∈ C(2M+1)2d

, we define the
(ρ, α)-Gevrey norm by setting

‖A‖
ρ,α

= sup
k,�∈BM

|Ak,�|eρ|k−�|1/α

.

Corollary 2.6. Assume V is a (ρV , α)-Gevrey function. Then, there exists a positive constant M
(2)
V such that

∀M ∈ N, ‖WVW�‖
ρV ,α

≤ M
(2)
V .

Proof. Use the regularity of V provided by Definition 2.2 and the result of Lemma 2.4 to conclude by the
triangle inequality. �

Lemma 2.7. Assume A and B are (sequences of) operators such that there exist A,B > 0 such that

∀M ∈ N ‖A‖
ρ,α

≤ A and ‖B‖
ρ+δ,α

≤ B,
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for some ρ, δ > 0 and α ≥ 1. Then there exists a constant C > 1 depending only on α and δ such that

∀M ∈ N, ‖AB‖
ρ,α

≤ CAB.

Remark 2.8. Lemma 2.7 provides sufficient conditions on (sequences of) operators A and B to control the
norm of the product AB independently of M .

Note that our proof establishes the above constant C does not depend on M , A, B, nor on A and B. It may
be chosen as

C =
∑
p∈Zd

e−δ|p|1/α

.

Proof. Since α ≥ 1, we have for all x, y ∈ R
d,

|x − y|1/α ≤ (|x| + |y|)1/α

≤ |x|1/α + |y|1/α.

Hence, for all M ∈ N and all k, � ∈ BM ,

|ABk,�|eρ|k−�|1/α ≤ AB
∑

p∈BM

e−ρ(|k−p|1/α+|p−�|1/α−|k−�|1/α)e−δ|p−�|1/α

≤ AB
∑
p∈Zd

e−δ|p−�|1/α

.

The conclusion follows. �

Corollary 2.9. Assume V is a (ρV , α)-Gevrey function. Then, there exists a positive constant M
(3)
V such that

∀M ∈ N, ∀n ∈ N
�, ‖(WVW�)n‖

ρV ,α
≤ (

M
(3)
V

)n
. (2.3)

Remark 2.10. Note that, thanks to the unitarity of W, we have (WVW�)n = WVnW�.

Proof. Use Definition 2.2 and adapt Corollary 2.6 to get a constant M0 > 0 such that for some δ > 0, for all
M ∈ N,

‖WVW�‖
ρV +δ,α

≤ M0.

The previous corollary yields for all n ∈ N and all M ∈ N�,

‖WVn+1W�‖
ρV ,α

≤ CM
(3)
V ‖WVnW�‖

ρV ,α
,

and the result follows by induction. �

3. A normal form theorem

This section is devoted to the statement and proof of a normal form theorem for the fully discrete symplectic
splitting propagator that we discussed informally in the introduction. This technical statement lies at the core
of our analysis. Our main theorem in this section is Theorem 3.13. Note that the techniques and the method
of proof that we use here is directly inspired from [6] (see also [5,7]).
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In the remainder part of the present article, we make:

Hypothesis 3.1. V is a complex (ρV , α)-Gevrey function for some ρV > 0 and α ≥ 1.

This section is organized as follows: we first set up some notation, including the definition of the numerical
propagator that we consider. We then seek a normal form for the propagator, using power series expansions
in the parameter λ. Expanding the natural identity that lies at the core of our normal form approach, it
turns out, as usual, that we need to iteratively solve a homological equation (Eq. (3.5)). This is done using
a non-resonance assumption on the time step, namely Hypothesis 3.2. With the help of this assumption, we
then prove estimates for the coefficients of the power series involved in the normal form theorem (Prop. 3.9
and Lem. 3.10). Eventually, summing up the various estimates in the appropriate way, we state and prove the
normal form theorem (Thm. 3.13).

3.1. Notation

For M ∈ N, we denote by Δ the collection of coefficients defined by

∀k, � ∈ BM , Δk,� =

{
0 if k �= �

−|k|2 if k = �.

Note that Δ is a spectral approximation of the Laplacian operator on the d-dimensional torus Td.
For λ ∈ R and h > 0, we denote

L(λ) = eihΔWe−ihλVW� = eihΔe−ihλWVW�

. (3.1)

We consider the operator L(λ) as the numerical approximation of the exact propagator associated with the
linear Schrödinger equation{

i∂tu(t, x) = −Δu(t, x) + λV (x)u(t, x) (t, x) ∈ R × Td

u(0, x) = u0(x) x ∈ Td,
(3.2)

where u0 is a given complex function on Td. As explained in the introduction, operator L(λ) is obtained by
using a Lie-Trotter splitting method (to discretize the time variable), in combination with the Fast Fourier
Transform algorithm (to discretize space). In other words, the operator L(λ) coincides, in practice, with

L(λ) ∼ eihΔ FFT e−ihλV (x) FFT−1.

In these variables, the time step h obviously plays the role of the t/n in the introduction.

3.2. Seeking a normal form for L

Recall that our goal is to prove that operator L(λ) propagates Gevrey regularity over long times. As in [6] (see
also [5,7]), our strategy is to deduce propagation of smoothness from a (stronger) normal form result. In that
respect, we readily seek formal operator series expansions Q = Q(λ) =

∑
n λn Qn and Σ = Σ(λ) =

∑
n λnΣn,

which are L2-unitary, and such that
Q(λ)L(λ)Q(λ)� = Σ(λ). (3.3)

In other words, we wish to conjugate L(λ) with a unitary matrix Σ(λ), which hopefully has a “simple form”.
Note that the particular value λ = 0 readily provides

Q0eihΔQ�
0 = Σ0,
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which somehow leads to the natural (yet arbitrary) choice

Q0 = Id(2M+1)d , Σ0 = eihΔ.

In other words, Q(λ) will be constructed as a λ-perturbation of the identity, while Σ(λ) appears as a λ-pertur-
bation of the free propagator eihΔ.

Now, as in [6], to compute the higher order terms Qn, Σn, whenever n ≥ 1, we use the following trick: since
unitarity involves a nonlinear condition (a matrix U is unitary whenever the quadratic condition UU� = Id is
met), instead of seeking Q(λ) and Σ(λ), we rather argue on the logarithm of these matrices. The latter indeed
should be hermitian matrices, which involves a simpler, linear condition (H� = H). Technically speaking, we
shall actually argue on the logarithmic derivatives of these matrices with respect to λ. For this reason, we now
introduce S(λ) and X(λ) defined by

S(λ) = iQ�(λ) ∂λQ(λ),

X(λ) = iΣ�(λ) ∂λΣ(λ),

and look for the value of S(λ) and X(λ) rather than that of Q(λ) and Σ(λ). Naturally, the value of Q(λ) and
Σ(λ) is easily reconstructed from S(λ) and X(λ) using the differential equalities i ∂λQ(λ) = Q(λ)S(λ) and
i ∂λΣ(λ) = Σ(λ)X(λ), together with the initial values Q(0) = Id(2M+1)d , Σ(0) = eihΔ.

Differentiating relation (3.3) with respect to λ, using the relations

S(λ) = iQ�(λ) ∂λQ(λ) = −i (∂λQ(λ))� Q(λ),

(since S(λ) is hermitian) and similarly for X(λ) to remove all terms ∂λQ(λ) and ∂λΣ(λ), next using again
the relation Σ(λ) = Q(λ)L(λ)Q�(λ), and lastly using the unitarity of Q(λ), L(λ) to factorize and eventually
eliminate these terms whenever possible, establishes that X(λ) and S(λ) should satisfy

S(λ) − L�(λ)S(λ)L(λ) = hWVW� − Q�(λ)X(λ)Q(λ). (3.4)

Here it is intended that S(λ) =
∑

n λnSn and X(λ) =
∑

n λnXn are sums of hermitian operators. We now
solve equation (3.4) in the unknowns S(λ), X(λ) using a perturbation procedure, recalling that Q(λ) is related
to S(λ) through i ∂λQ(λ) = Q(λ)S(λ).

Expanding relation (3.4) in powers of λ and equating like powers provides the necessary relation

Sn −
∑

p+q+r=n

(ihWVW�)p

p!
e−ihΔSqeihΔ (−ihWVW�)r

r!
= hWVW� 1n=0 −

∑
p+q+r=n

Q�
pXqQr,

which also reads

Sn − e−ihΔSneihΔ + Xn = hWVW�1n=0

+
∑

{p+q+r=n|q �=n}

(
W

(ihV)p

p!
W�e−ihΔSqeihΔW

(−ihV)r

r!
W� − Q∗

pXqQr

)
. (3.5)

This is the homological equation that we now aim at solving. In principle, equation (3.5) should enable us
to compute Sn+1, Xn+1, Qn+1 from Sn, Xn, Qn, by iteratively inverting the operator S 
→ S − e−ihΔSeihΔ.
For that reason, and due to possible resonances in this operators (particular values of h that make the kernel
of S 
→ S − e−ihΔSeihΔ degenerate), it is readily clear that the homological equation can have no solution or
infinitely many solutions, depending on the value of h.
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3.3. Solving the homological equation (3.5)

In order to be able to solve equation (3.5), and more importantly to derive estimates for its solutions, we use
the following

Hypothesis 3.2. There exists γ > 0 and ν > 1 such that

∀ k ∈ Z, k �= 0,

∣∣∣∣1 − eihk

h

∣∣∣∣ ≥ γ

|k|ν · (3.6)

Hypothesis 3.2 obviously is a non-resonance condition on h > 0. As it becomes clear later, it will be used to
ensure, amongst others, that the kernel of the mapping S 
→ S − e−ihΔSeihΔ is indeed “non-degenerate”, and
that its inverse is “reasonably bounded”.

It is worth noticing that Hypothesis 3.2 is generically satisfied, see [10]. Hence Hypothesis 3.2 is essentially
harmless.

Definition 3.3. For K > 0, we define

IK =
{
(k, �) ∈ BM × BM | (|k| ≤ K or |�| ≤ K)

}·
For h > 0 satisfying (3.6), we define the IK-solution of the equation

S− eihΔSe−ihΔ + X = G, (3.7)

where G is a given hermitian operator on C(2M+1)d

, as the couple (S,X) of hermitian operators on C(2M+1)d

,
defined by their coefficients Sk,� and Xk,� (k, � ∈ BM ) through

Sk,� =

{
0 if |k| = |�| or (k, �) /∈ IK(
1 − e−ih(|k|2−|�|2))−1

Gk,� otherwise,

and

Xk,� =

{ −Gk,� if |k| = |�| or (k, �) /∈ IK

0 otherwise.

Remark 3.4. The above definition is motivated by the following observation. The mapping S 
→ S−e−ihΔSeihΔ

coincides, in coordinates, with the diagonal operator Sk,� 
→ (1 − e−ih(|k|2−|�|2))Sk,�. Hence inverting the above
operator requires to deal with the possibly singular factors (1 − e−ih(|k|2−|�|2))−1. Whenever |k|2 = |�|2, the
denominator vanishes and the choice Xk,� = −Gk,� is actually necessary in this case. On the other hand,
when |k|2 �= |�|2, the factor (1 − e−ih(|k|2−|�|2))−1 is well-defined (since h is non-resonant). However, the non-
resonance condition only ensures that (1−e−ih(|k|2−|�|2))−1 has size

γ

h
O

([|k|2 − |�|2]ν
)

=
γ

h
O (|k − �|ν |k + �|ν),

an estimate which degenerates into
γKν

h
O (|k − �|ν) whenever (k, �) ∈ IK , a diverging estimate as K grows.

This explains the role of our truncation parameter K, which cuts off large frequencies, and our definition of X
eventually gathers all contributions that are related with possible divergences of the factors (1−e−ih(|k|2−|�|2))−1.

All these considerations justify the following:

Definition 3.5. A linear operator X on C(2M+1)d

satisfying

∀(k, �) ∈ B2
M ,

(
Xk,� �= 0 ⇒ (|k| = |�| or (k, �) /∈ IK)

)
is said to be K-almost-X-shaped, or simply almost-X-shaped.
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Remark 3.6. Note that the name comes from the usual matrix notation when d = 1.

We have the following estimates for the solutions of equation (3.5):

Proposition 3.7. For all ρ > 0, δ ∈ (0, ρ), α ≥ 1, K ≥ 1, and all operator G, the IK -solution (X,S) of
equation (3.7) satisfies

‖X‖
ρ,α

≤ ‖G‖
ρ,α

and ‖S‖
ρ−δ,α

≤
(2να

δ

)2να 22νKν

γh
‖G‖

ρ,α
.

Remark 3.8. Needless to say, the estimates of Proposition 3.7 will be used repeatedly in the sequel, to solve
equation (3.5) and to sum up the associated series expansion

∑
n λnSn and

∑
n λnXn.

Proof. The fact that ‖X‖
ρ,α

≤ ‖G‖
ρ,α

is obvious from the definition of IK-solutions.
Now, to estimate S, the difficulty is to replace k ∈ Z in Hypothesis (3.6) by |k|2 − |�|2 whenever (k, �) ∈ IK .

To do so, we write for (k, �) ∈ IK∣∣|k|2 − |�|2∣∣2 = |k − �| |k + �| ≤ |k − �| (|k − �| + 2K)

(since (k, �) ∈ IK)

= |k − �|2 + 2K|k − �| ≤ |k − �|2 + 2K|k − �|2
(here we used the fact that |k − �| is either = 0, or it is ≥ 1)

≤ 4K|k − �|2.

Therefore, for (k, �) ∈ IK , with |k| �= |�|, we derive using Hypothesis 3.2 the estimate∣∣Sk,�

∣∣e(ρ−δ)|k−�|1/α ≤ ∣∣(1 − e−ih(||k|2−|�|2|))−1
∣∣ ∣∣Gk,�

∣∣ e(ρ−δ)|k−�|1/α

≤
‖G‖

ρ,α

γh

∣∣|k|2 − |�|2∣∣νe−ρ|k−�|1/α

e(ρ−δ)|k−�|1/α

≤ ‖G‖
ρ,α

22νKν

γh
|k − �|2νe−δ|k−�|1/α

.

The fact that
∀x ≥ 0, x2νe−δx1/α ≤

(2να

δ

)2να

e−2να

implies the result. �

3.4. Estimates for the coefficients

3.4.1. Estimates for S and X

Proposition 3.9. There exist constants C0 ≥ 1 and K0 ≥ 1 depending only on V , M
(3)
V , ρV , α, γ, ν and d

such that for all K ≥ K0 and all h ∈ (0, 1) satisfying (3.6), we have the following estimates for the iterative
IK-solutions of the homological equation (3.5):

For all J ≥ 1 and all M ∈ N, we have

‖SJ‖ρV /3,α
+ ‖QJ‖ρV /3,α

≤ (C0K
μ1Jμ2)J and (3.8)

‖XJ‖ρV /3,α
≤ h (C0K

μ1Jμ2)J
, (3.9)

where μ1 = 2ν and μ2 = 3αd + 3 + 4να.
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Proof. Let J ≥ 1 be a fixed integer. We set
δ =

ρV

(2J + 1)
·

Besides, for j ∈ {0, . . . , J + 1}, we also define

ρj = ρV − jδ = (2J + 1 − j)δ.

In the sequel, for all operator A and for j ∈ {0, . . . , J + 1}, we set

‖A‖
(j)

:= ‖A‖
ρj ,α

.

Note that if 0 ≤ j ≤ k ≤ J + 1, then ‖A‖
(k)

≤ ‖A‖
(j)

. Moreover, ‖A‖
(0)

= ‖A‖
ρV ,α

and ‖A‖
(J+1)

=

‖A‖
ρV J/(2J+1),α

≥ ‖A‖
ρV /3,α

.

Let us now come to estimating Sj , Xj , Qj provided by the homological equation and relation i∂λQ(λ) =
Q(λ)S(λ), whenever j ≥ 0. The proof is in two steps.

First step.
For j = 0, using Corollary 2.6, Proposition 3.7, and the fact that Q0 = Id(2M+1)d , readily provides

‖S0‖(1)
≤ M

(3)
V

(2να

δ

)2να 22νKν

γh
, ‖X0‖(0)

≤ hM
(3)
V and ‖Q0‖(0)

= 1.

For later values of j, using once again the relation i∂λQ(λ) = Q(λ)S(λ), and expanding in powers of λ
provides the following identity

i(j + 1)Qj+1 =
j∑

k=0

QkSj−k.

It implies, together with Lemma 2.7, that

(j + 1)‖Qj+1‖(j+1)
≤

j∑
k=0

‖QkSj−k‖(j+1)
≤ C̃

j∑
k=0

‖Qk‖(j)
‖Sj−k‖(j+1)

.

Note that the constant C̃ depends on α and δ, and hence on J . We may actually take (see Lem. 2.7).

C̃ =
∑
p∈Zd

e−δ|p|1/α

.

By Corollary 5.3, whose proof is postponed as well, it turns out there exists a constant Cα,d,ρV > 0 such that

C̃ ≤ Cα,d,ρV

δαd+1
=

Cα,d,ρV

ραd+1
V

(2J + 1)αd+1. (3.10)

This piece of information will be used later in this proof.

On the other hand, denote for j ∈ N∗,

G1
j =

∑
{p+q+r=j|q �=j}

W
(ihV)p

p!
W�e−ihΔSqeihΔW

(−ihV)r

r!
W�,

and G2
j = −

∑
{p+q+r=j|q �=j}

Q∗
pXqQr,
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the two members on the right hand side of equation (3.5). We have, as in [6] the estimates

‖G1
j‖(j)

≤ C̃2
∑

{p+q+r=j|q �=j}

(hM
(3)
V )p+r

p!r!
‖Sq‖(q+1)

(3.11)

and

‖G2
j‖(j)

≤ C̃2
∑

{p+q+r=j|q �=j}
‖Qp‖(p)

‖Xq‖(q)
‖Qr‖(r)

, (3.12)

for the same constant C̃ as above.

Besides, using Proposition 3.7 and setting κ =
(2να

δ

)2να 22νKν

γh
, we know that

‖Sj‖(j+1)
≤ κ

(
‖G1

j‖(j)
+ ‖G2

j‖(j)

)
(3.13)

and ‖Xj‖j
≤ ‖G1

j‖(j)
+ ‖G2

j‖(j)
. (3.14)

Therefore, setting

s0 = hM
(3)
V κ, x0 = hM

(3)
V and q0 = 1,

and for all j ∈ N�,

sj = κC̃2
∑

{p+q+r=j|q �=j}

(
(hMV )p+r

p!r!
sq + qpqrxq

)
,

qj =
C̃

j

j−1∑
k=0

qksj−k−1,

xj = C̃2
∑

{p+q+r=j|q �=j}

(
(hMV )p+r

p!r!
sq + qpqrxq

)
,

we recover the following estimates, valid for all j ∈ {0, . . . , J},

‖Sj‖(j+1)
≤ sj , ‖Qj‖(j)

≤ qj and ‖Xj‖(j)
≤ xj .

Second step.
There remains to estimate the terms sj , qj and xj , an independent task. To do so, we introduce as usual the

associated power series expansions

s(t) =
∑
j≥0

sjt
j , (3.15)

q(t) =
∑
j≥0

qjt
j , (3.16)

and x(t) =
∑
j≥0

xjt
j . (3.17)
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The above relations between the sj ’s, qj’s and xj ’s transform into the following identities between s(t), q(t) and
x(t), namely (

1 − κC̃2(e2hM
(3)
V t − 1)

)
s(t) − s0 = κC̃2x(t)(q(t)2 − 1),

q′(t) = C̃s(t)q(t),
x(t) = κ−1s(t).

As a consequence, q satisfies the following ordinary differential equation

q′(t) =
s0C̃ q(t)

1 − C̃2
(
κ(e2hM

(3)
V t − 1) + (q(t)2 − 1)

) and q(0) = 1. (3.18)

At this level of the analysis, we now invoke the independent and technical Lemma 5.1, whose proof is
postponed to the last section. It provides that 0 ≤ s(t) ≤ 5

√
5

4 κhM
(3)
V whenever 0 ≤ t < 1/16hM

(3)
V κC̃3,

which, using the standard Cauchy estimates for analytic functions, provides the following upper bound, valid
for all J ∈ N

�,

0 ≤ sJ ≤ 5
√

5
4

κhM
(3)
V (16hM

(3)
V κC̃3)J =

5
√

5
4

16J C̃3J(κhM
(3)
V )J+1.

Now, taking into account the definition of κ, together with estimate (3.10) on C̃, yields

sJ ≤ CJ
1 (2J + 1)3(αd+1)

[(2να

δ

)2να 22νKν

γ

]J+1

,

where C1 depends only on α, d, ρV and M
(3)
V . Hence,

sJ ≤ CJ
2 (2J + 1)3(αd+1)(2J + 1)2να(J+1)Kν(J+1),

where C2 depends only on α, d, ρV , M
(3)
V , ν and γ. Since 2J + 1 ≤ 3J , and J + 1 ≤ 2J we may write

sJ ≤ CJ
3 J3(αd+1)+2να(J+1)K2νJ

≤ CJ
3 J (3αd+3+4να)JK2νJ ,

where C3 depends only on α, d, ρV , M
(3)
V , ν and γ. The result follows since for all J ∈ N�,

‖SJ‖ρV /2,α
≤ ‖SJ‖(J+1)

≤ sJ .

The proof is now complete. �
3.4.2. Estimates on Σ and Q

Assume that M ∈ N, K > 0 and N > 0 are given. Now that Sn, Xn and Qn have been cleanly constructed
and estimated for all values of n, we define the following polynomials in λ ∈ R:

S[N ](λ) =
∑

0≤n≤N

λnSn and X[N ](λ) =
∑

0≤n≤N

λnXn. (3.19)

On the other hand, associated with S[N ](λ) and X[N ](λ), we reconstruct the two operators Q[N ](λ) and Σ[N ](λ),
defined as the solutions on R to the following Cauchy problems{

i∂λQ[N ](λ) = Q[N ](λ)S[N ](λ),

Q[N ](0) = Id(2M+1)d ,
and

{
i∂λΣ[N ](λ) = Σ[N ](λ)X[N ](λ),

Σ[N ](0) = eihΔ.
(3.20)
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It is an easy exercise to check that Q[N ](λ) and Σ[N ](λ) are unitary. We introduce, for λ ∈ R sufficiently small,
the following power series expansions

Q[N ](λ) =
+∞∑
n=0

Q[N ]
n λn and Σ[N ](λ) =

+∞∑
n=0

Σ[N ]
n λn.

It is fairly clear, comparing the respective power series expansions of the involved terms, that the following
equalities hold between formal power series

S[N ](λ) = S(λ) + O(λN+1), X[N ](λ) = X(λ) + O(λN+1),

and, more importantly,
Q[N](λ) = Q(λ) + O(λN+1).

In particular, we immediately deduce that S[N ](λ), X[N ](λ), and Q[N ](λ), solve equation (3.4) to within
O(λN+1), in that the following relation holds true (between formal power series, and actually between nor-
mally convergent series)

S[N ](λ) − L�(λ)S[N ](λ)L(λ) = hWVW� −
(
Q[N ](λ)

)�

X[N ](λ)Q[N ](λ) + O(λN+1). (3.21)

There now remains to come back to the variables Q[N ](λ) and Σ[N ](λ), and to prove that Q[N ](λ)L(λ)Q[N ](λ)� =
Σ[N ](λ) + O(λN+1) as well. To do so, we introduce the remainder term

R[N ](λ) = Q[N ](λ)L(λ)Q[N ](λ)� − Σ[N ](λ). (3.22)

For later purposes, note that one can easily check we have the following expansion, valid in some neighborhood
of λ = 0, and for all M ∈ N,

R[N ](λ) =
+∞∑
n=0

λn

[ ∑
p+q+r=n

(
Q[N ]

p eihΔW
(−ih)q

q!
VqW�(Q[N ]

r )∗
)
− Σ[N ]

n

]
, (3.23)

an equality between converging series.
To prove that

R[N ](λ) = O(λN+1),
we proceed in the same way we deduced relation (3.4) from (3.3). Differentiating relation R[N ](λ) = Q[N ](λ)
L(λ)Q[N ](λ)� − Σ[N ](λ) with respect to λ, using the relations S[N ](λ) = i

(
Q[N ]

)�
(λ) ∂λQ[N ](λ) =

−i
(
∂λQ[N ](λ)

)�
Q[N ](λ) (since S[N ](λ) is hermitian) and similarly for X[N ](λ) to remove all terms ∂λQ[N ](λ)

and ∂λΣ[N ](λ), next using again the relation Σ[N ](λ) = Q[N ](λ)L(λ)
(
Q[N ]

)�
(λ)−R[N ](λ), and lastly using the

unitarity of Q[N ](λ), L(λ) to factorize and eventually eliminate these terms whenever possible, we may establish
that X[N ](λ), S[N ](λ) and R[N ](λ) satisfy

i∂λR[N ](λ) = R[N ](λ)X[N ](λ) + Q[N ](λ)L(λ)
[
(L(λ))� S[N ](λ)L(λ) − S[N ](λ)

+ (hWVW�) −
(
Q[N ](λ)

)�

X[N ](λ)Q[N ](λ)
] (

Q[N ](λ)
)�

.

Hence, using relation (3.21) provides

i∂λR[N ](λ) = R[N ](λ)X[N ](λ) + O(λN+1),
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which, using the initial value R[N ](0) = 0, eventually produces

R[N ](λ) = O(λN+1).

As a conclusion, relation (3.23) reduces to

R[N ](λ) =
+∞∑

n≥N+1

λn

[ ∑
p+q+r=n

(
Q[N ]

p eihΔ (−ih)q

q!
WVqW�(Q[N ]

r )∗
)
− Σ[N ]

n

]
. (3.24)

We are now in position to complete the estimates on Q[N ](λ), Σ[N ](λ), and R[N ](λ).

3.4.3. Estimates for Σ[N ] and Q[N ]

Lemma 3.10. There exists a constant C1 ≥ C0 depending only on V , M
(3)
V , ρV , α, γ, ν and d such that for

all N ≥ 1, all n ∈ N∗, all K ≥ K0, all h ∈ (0, 1) satisfying (3.6) and all M ∈ N,

‖Σ[N ]
n ‖

ρV /4,α
≤ h(C1K

μ1Nμ2)n (3.25)

and ‖Q[N ]
n ‖

ρV /4,α
≤ (C1K

μ2Nμ2)n (3.26)

where C0, K0, μ1 and μ2 are given in Proposition 3.9.

Proof. Since Σ[N ]
0 = eihΔ, we have ‖Σ[N ]

0 ‖
ρV /4,α

= 1. Since Σ[N ]
1 = Σ[N ]

0 X0, we have by Corollary 2.6 and

Lemma 2.7 that for all M ∈ N, ‖Σ[N ]
1 ‖

ρV /4,α
≤ hM

(3)
V .

Assume now that (3.25) holds with some constant C1 for all k ∈ {1, . . . , n}. By definition of Σ[N ], Lemma 2.7,
ensures that there exists a positive constant C depending on ρV and α such that

‖Σ[N ]
n+1‖ρV /4,α

≤ C

n + 1

min(n,N)∑
k=0

‖Σ[N ]
n−k‖ρV /4,α

‖Xk‖ρV /3,α
.

Using the induction hypothesis and the estimate (3.9), we get

‖Σ[N ]
n+1‖ρV /4,α

≤ C

n + 1

min(n,N)∑
k=0

(C1K
μ1Nμ2)n−kh(C0K

μ1kμ2)k.

If we assume that C1 ≥ C0, we recover

‖Σ[N ]
n+1‖ρV /4,α

≤ h(C1K
μ1Nμ2)n C

n + 1

min(n,N)∑
k=0

(
k

N

)μ2k

≤ h(C1K
αNβ)n C

n + 1

min(n,N)∑
k=0

1

≤ h(C1K
αNβ)n+1

provided C1 ≥ C and since K ≥ 1. This shows (3.25).
The proof of (3.26) is similar using the estimate (3.8) instead of (3.9). �
The previous lemma yields the following proposition:
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Proposition 3.11. Using the previous notation, for all K ≥ K0, all N ≥ 1, all h ∈ (0, 1) satisfying (3.6), all
λ ∈ R such that |λ| ≤ (2C1K

μ1Nμ2)−1 and all M ∈ N, we have

‖Q[N ](λ) − Id(2M+1)d‖
ρV /4,α

≤ 2C1K
μ1Nμ2 |λ| (3.27)

and
‖Σ[N ](λ) − eihΔ‖

ρV /4,α
≤ 2hC1K

μ1Nμ2 |λ|. (3.28)

3.4.4. Estimate for the remainder term

Proposition 3.12. Using the notations of Proposition 3.9, there exists a constant C2 > 0 depending only on V ,
M

(3)
V , ρV , α, γ, ν and d such that for all h ∈ (0, 1) satisfying (3.6), all N ≥ 1, all K ≥ K0, all λ ∈ R such that

|λ| ≤ (2C1K
μ1Nμ2)−1 and all M ∈ N, we have

‖R[N ](λ)‖
ρV /5,α

≤ (C2|λ|K3μ1N3(μ2+1))N . (3.29)

Proof. Consider identity (3.24). Due to estimate (2.3) of Corollary 2.9 and estimates (3.25) and (3.26) of
Lemma 3.10, and using Lemma 2.7, we observe that there exists a positive constant C depending only on ρV

and α such that for all h ∈ (0, 1) satisfying (3.6), all N ≥ 1, all K ≥ K0, all λ ∈ R such that |λ| ≤
(2C1K

μ1Nμ2)−1 and all M ∈ N, we have

‖R[N ](λ)‖
ρV /5,α

≤ C
∑

n≥N+1

|λ|n
[ ∑

p+q+r=n

(
(C1K

μ1Nμ2)p hq

q!
M q

V (C1K
μ1Nμ2)r

)]
+ h

∑
n≥N+1

(|λ|C1K
μ1Nμ2)n.

The result follows by standard calculus. See for example the proof of Proposition 2.5.2 in [5]. �

3.5. The normal form theorem

We are now able to state and prove the main result of our analysis.

Theorem 3.13. Assume that V is a complex (ρV , α)-Gevrey function on Td. For all M ∈ N, λ ∈ R and h > 0,
consider the linear splitting operator

L(λ) = eihΔ W e−ihV W� = eihΔ e−ihWV W�

.

Assume γ > 0 and ν > 1 are given.
Then, there exist positive constants λ0, σ and c depending only on V , M

(3)
V , ρV , α, γ, ν and d such that

for all timestep h ∈ (0, 1) satisfying (3.6) and all M ∈ N, there exist families of L2-unitary operators Q(λ) and
Σ(λ) analytic in λ for |λ| < λ0 such that for λ ∈ (0, λ0), the following equality holds

Q(λ)L(λ)Q(λ)∗ = Σ(λ) + R(λ), (3.30)

where for all M ∈ N, the remainder term R(λ) satisfies, for λ ∈ (0, λ0),

‖R(λ)‖
ρV /5,α

≤ exp(−cλ−σ). (3.31)

Besides, the following estimates hold true

‖Q(λ) − Id(2M+1)d‖
ρV /4,α

≤ λ1/2 and ‖Σ(λ) − eihΔ‖
ρV /4,α

≤ hλ1/2. (3.32)
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Proof. As usual, the proof merely consists in gathering all previous estimates and choosing optimal values of
the various truncation parameters.

Consider positive numbers σK and σN such that

μ1σK + (μ2 + 1)σN ≤ 1/4. (3.33)

Since α ≥ 1, we have μ2 ≥ μ1 and hence a possible choice for (σK , σN ) is

σK = σN =
1

8 max(μ1, μ2 + 1)
=

1
8(3αd + 4(1 + να))

·

These parameters being now fixed, we set for all λ ∈ (0, 1),

K = λ−σK and N =
1

(2C1)1/μ2
λ−σN , (3.34)

and we define
Q(λ) = Q[N ](λ), Σ(λ) = Σ[N ](λ) and R(λ) = R[N ](λ).

By Proposition 3.10, C1 only depends on V , M (3), ρV , α, ν, γ and d. Hence, there exists a positive constant
λ0 ∈ (0, 1) depending only on these parameters such that for all λ ∈ (0, λ0), we have K = λ−σN ≥ K0 and
N = 1/(2C1)1/μ2λ−σN ≥ 1. For such a λ, we have

(2C1K
μ1Nμ2)−1 = λμ1σK+μ2σN ≥ λ

since μ1σK + μ2σN ≤ 1 with (3.33) and λ ∈ (0, 1).
Therefore, Proposition 3.11 ensures that for all λ ∈ (0, λ0) and all M ∈ N,

‖Q(λ) − Id‖
ρV /4,α

≤ λ1−(ασK+μ2σN ) ≤ λ1/2

and
‖Σ(λ) − eihΔ‖

ρV /4,α
≤ hλ1−(ασK+μ2σN ) ≤ hλ1/2.

Moreover, Proposition 3.12 ensures that

‖R(λ)‖
ρV /5,α

≤ (C2C
−3(μ2+1)/μ2
1 λ1−(3ασK+3(μ2+1)σN ))N .

As the exponent of λ in the right hand side of this inequality satisfies

1 − (3μ1σK + 3(μ2 + 1)σN ) ≥ 1/4 > 0

by (3.33), after a possible decrease of λ0 (depending only on V , M
(3)
V , ρV , α, γ, ν and d again3), we can assume

that
∀λ ∈ (0, λ0) C2C

−3(μ2+1)/μ2
1 λ1−(3μ1σK+3(μ2+1)σN ) ≤ e−1.

Therefore, we get eventually that for all λ ∈ (0, λ0) and all M ∈ N,

‖R(λ)‖
ρV /5,α

≤ e−N = e
−1

(2C1)1/μ2
λ−σN

.

This concludes the proof with σ = σN = σK . �

3We recall that C2 only depends on V , M
(3)
V , ρV , α, γ, ν and d by Proposition 3.12.
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4. Consequences of the normal form theorem

This section is devoted to drawing various consequences of our normal form theorem. Our main result
is Theorem 4.10 below. We prove here that the numerical solution of the linear Schrödinger equation (3.2)
computed using the symplectic splitting propagator (3.1) keeps Gevrey smoothness over exponentially long
times. This may be seen as the central result of the present paper.

4.1. Spatial discretization

This short paragraph is devoted to some preliminary results relating Gevrey regularity of functions with the
smoothness of their spatial discretization obtained via the Fast Fourier Transform algorithm.

As we did for V in Section 2.2, for all complex function u ∈ L1(Td) and all M ∈ N, we consider the following
vector u ∈ C(2M+1)d

approximating the Fourier coefficients of u:

∀n ∈ BM , un =
1

(2M + 1)d

∑
p∈BM

u(xp)e−inxp . (4.1)

Definition 4.1. For all M ∈ N, all ρ > 0 and all α ≥ 1, the complex vector space C(2M+1)d

is endowed with
the norm defined for all u ∈ C(2M+1)d

by

‖u‖
ρ,α

= sup
{|un|eρ|n|1/α | n ∈ BM

}·
Definition 4.2. For all ρ > 0 and all α ≥ 1, the complex vector space of (ρ, α)-Gevrey functions is endowed
with the norm defined by

‖u‖
ρ,α

= sup
{|ûn|eρ|n|1/α | n ∈ Z

d
}·

We will use the following approximation result:

Lemma 4.3. Set ρ > 0 and α ≥ 1. For all μ ∈ (0, ρ), there exists a positive constant C depending only on ρ,
μ, α and d such that for all complex function u in the class of (ρ, α)-Gevrey functions, we have

∀M ∈ N, ∀n ∈ BM , ‖u‖
μ,α

≤ C‖u‖
ρ,α

.

Proof. Adapting the proof of Lemma 2.4 and replacing V by u in this proof, which is allowed since the function
u = V is (ρV , α)-Gevrey provided ρ = ρV , we get that for all M ∈ N, all n ∈ BM ,∣∣(ĝn)n

∣∣ ≤ 2|n| ∣∣ûn

∣∣ ≤ 2‖u‖
ρ,α

|n|e−ρ|n|1/α

≤ 2‖u‖
ρ,α

|n|e−(ρ−μ)|n|1/α

e−μ|n|1/α ≤ C1‖u‖ρ,α
e−μ|n|1/α

,

with C1 = 2 supp∈Zd |p|e−(ρ−μ)|p|1/α

. Hence,

∀M ∈ N, ∀n ∈ BM , |un − ûn| ≤ C1
2π

2M + 1
‖u‖

ρ,α
e−μ|n|1/α

.

This yields for all M ∈ N and n ∈ BM ,

|un|eμ|n|1/α ≤ |ûn|eμ|n|1/α

+ C1
2π

2M + 1
‖u‖

ρ,α
.

The result follows. �
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For later purposes, we now define two additional �2-norms on vectors u. In what follows, the norm ‖u‖ may
be seen as the total energy (or mass) of u, while |u||k| is the energy of u carried by Fourier modes p such that
|p| = |k|. In other words, it is the energy carried by spatial frequencies of size |k|.
Definition 4.4. For all M ∈ N, k = (k1, . . . , kd) ∈ Zd and u ∈ C(2M+1)d

, we define

|u||k| =
√ ∑

p∈Zd s.t. |p|=|k|
|up|2,

and

‖u‖ =
√ ∑

p∈BM

|up|2.

Lemma 4.5. For all ρ > 0 and all α ≥ 1, there exists a positive constant Cρ,α depending only on ρ and α such
that for all M ∈ N, for all linear operator R on C(2M+1)d

and all vector u ∈ C(2M+1)d

, we have

∀k ∈ BM , |(Ru)k| ≤ |Ru||k| ≤ ‖Ru‖ ≤ Cρ,α‖R‖
ρ,α

‖u‖ .

4.2. Conservation of the regularity over long times

4.2.1. The time iteration

For a complex function u0 ∈ L1(Td) and for all M ∈ N, we consider the following method, defined for the
timestep h > 0 for all λ ∈ R by

∀n ∈ N, un = L(λ)nu0,

where u0 is the discretization of order M of u0 defined by formula (4.1).
For all fixed M ∈ N, we prove conservation of the Gevrey regularity of the so-obtained numerical solution

over exponentially long times. Our approach relies on the normal form theorem we proved above, and the
regularity is actually measured by exploiting a change of variables based on the matrix Q(λ). Note that high
modes (see Lem. 4.7) and low modes (see Lem. 4.6) in the new variables are treated differently.

Let us come to quantitative statements. For |λ| < λ0, we use the change of variables (3.30) by setting for all
M ∈ N,

∀n ∈ N, vn = Q(λ)un.

To distinguish high modes from low modes, we set for all M ∈ N, K > 0 and u ∈ C(2M+1)d

,

(
πK(u)

)
k

=

{
0 if |k| ≤ K

uk otherwise.
(4.2)

Hence, for all K > 0, πK is a linear projection operator on C(2M+1)d

.

4.2.2. Conservation for low modes

We have the following conservation result for the low modes in the new variables:

Lemma 4.6. There exists a positive constant Clow depending only on V , M
(3)
V , ρV , α, γ, ν and d such that for

all λ ∈ (0, λ0), all M ∈ N, all h ∈ (0, 1) satisfying (3.6), and all n ≤ ecλ−σ/2, we have

∀k ∈ Z
d s.t. |k| ≤ λ−σ,

∣∣|vn||k| − |v0||k|
∣∣ ≤ Clowe−cλ−σ/2‖u0‖ . (4.3)
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Proof. The unitarity of L(λ) and Q(λ) ensures that

∀n ∈ N, ‖un‖ = ‖vn‖ .

Since Σ(λ) is unitary and almost-X-shaped, we have for all k ∈ Zd such that |k| ≤ K = λ−σ,

|un||k| = |Σ(λ)un||k|. (4.4)

Hence, ∣∣|un+1||k| − |un||k|
∣∣ ≤ ∣∣|un+1||k| − |Σ(λ)un||k|

∣∣
≤ ∣∣un+1 − Σ(λ)un

∣∣
|k|

≤ |R(λ)un|
≤ CρV /5,α‖R(λ)‖

ρV /5,α
‖un‖

≤ CρV /5,αe−cλ−σ‖u0‖ ,

where we have used Lemma 4.5, Theorem 3.13 and relation (4.4).
The result follows. �

4.2.3. Conservation for high modes

The same kind of ideas yields conservation of smoothness for the high modes in the new variables:

Lemma 4.7. There exists a positive constant Chigh depending only on V , M
(3)
V , ρV , α, γ, ν and d such that

for all λ ∈ (0, λ0), all M ∈ N, all h ∈ (0, 1) satisfying (3.6), and all n ≤ ecλ−σ/2, we have∣∣‖πλ−σvn‖ − ‖πλ−σv0‖ ∣∣ ≤ Chighe−cλ−σ/2‖u0‖ . (4.5)

Proof. For all λ ∈ (0, λ0), we set K = λ−σ > 0. Since Σ(λ) is unitary and almost-X-shaped, we have

∀u ∈ C
(2M+1)d

, ‖πK(u)‖ = ‖πK(Σ(λ)u)‖ . (4.6)

Hence, ∣∣ ‖πK(vn+1)‖ − ‖πK(vn)‖ ∣∣ ≤ ∣∣ ‖πK(vn+1)‖ − ‖πK(Σ(λ)vn)‖ ∣∣
≤ ‖πK(vn+1 − Σ(λ)vn)‖
≤ ‖πK(R(λ)vn)‖
≤ CρV /5,α‖R(λ)‖

ρV /5,α
‖vn‖

≤ CρV /5,αe−cλ−σ‖v0‖ ,

where we used Lemma 4.5, Theorem 3.13 and relation (4.4).
The result follows. �

4.2.4. Back to the original variables

We now gather the information obtained on low and high modes, to produce our final result, namely Theo-
rem 4.10 below.
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To do so, we need some technical tools. Firstly, for all λ ∈ (0, λ0) and all k ∈ Zd such that |k| ≤ λ−σ, we
shall make repeated use of the following inequality∣∣|un||k| − |u0||k|

∣∣ ≤ ∣∣|un||k| − |vn||k|
∣∣ +

∣∣|vn||k| − |v0||k|
∣∣ +

∣∣|v0||k| − |u0||k|
∣∣. (4.7)

Secondly, we shall also use the two following lemmas:

Lemma 4.8. For all ρ, δ > 0 and α ≥ 1, there exists a positive constant C such that for all M ∈ N, for all
linear operator A on C(2M+1)d

, for all u ∈ C(2M+1)d

, we have

‖Au‖
ρ,α

≤ C‖A‖
ρ+δ,α

‖u‖
ρ,α

.

Proof. For all k ∈ BM ,

|(Au)k|e+ρ|k|1/α ≤ ‖A‖
ρ,α

‖u‖
ρ,α

∑
�∈BM

e−δ|k−�|1/α

e−ρ|k−�|1/α

e−ρ|�|1/α

e+ρ|k|1/α︸ ︷︷ ︸
≤1

≤
( ∑

�∈Zd

e−δ|�|1/α
)
‖A‖

ρ,α
‖u‖

ρ,α
. �

Lemma 4.9. For all ρ, δ > 0 and α ≥ 1, there exists a positive constant C such that

∀M ∈ N, ∀u ∈ C
(2M+1)d

, sup
k∈BM

|u||k|eρ|k|1/α ≤ C‖u‖
ρ+δ,α

.

Proof. For all such M and u, we have for all k ∈ BM ,

|u|2|k|e2ρ|k|1/α ≤ e2ρ|k|1/α ∑
p∈BM s.t. |p|=|k|

|uk|2

≤ e2ρ|k|1/α ∑
p∈BM s.t. |p|≤|k|

|uk|2

≤ e−2δ|k|1/α ∑
p∈BM s.t. |p|∞≤|k|

|uk|2e2(ρ+δ)|k|1/α

≤ e−2δ|k|1/α

(2|k| + 1)d‖u‖2

ρ+δ,α
.

This concludes the proof with C = supx≥0 e−δx1/α

(2x + 1)d/2. �

We are now able to prove:

Theorem 4.10. There exists a positive constant μ0 depending only on V , M
(3)
V , ρV , α, γ, ν, d and λ0 such

that for all ρ ∈ (0, ρV /5), and all μ ∈ (0, μ0), there exists a positive constant C such that for all λ ∈ (0, λ0), all
h ∈ (0, 1) satisfying (3.6), all n ≤ ecλ−σ/2, we have

∀M ∈ N, sup
k∈BM s.t. k≤λ−σ

∣∣|un||k| − |u0||k|
∣∣eμ|k|1/α ≤ Cλ1/2‖u0‖ρ,α

. (4.8)

Proof. By Lemma 4.6, we have for all λ ∈ (0, λ0), all h ∈ (0, 1) satisfying (3.6), all k ∈ BM such that |k| ≤ λ−σ,
all n ≤ e−cλ−σ/2, and all μ > 0,∣∣|vn||k| − |v0||k|

∣∣ e+μ|k|1/α ≤ Clow exp
(
(μ − c/2)λ−σ

α

)‖u0‖ .
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To take into account the two other terms in the right hand side of relation (4.7), we note that∣∣|un||k| − |vn||k|
∣∣ ≤ ∣∣un − vn

∣∣
|k|

≤ ∣∣(Id − Q�(λ))vn
∣∣
|k|.

We derive that this quantity is bounded by∣∣(Id − Q�(λ))πλ−σ vn
∣∣
|k| +

∣∣(Id − Q�(λ))(Id − πλ−σ )vn
∣∣
|k|. (4.9)

Lemma 4.7 ensures that

‖πλ−σvn‖ ≤ ‖πλ−σQ(λ)u0‖ + Chighe−cλ−σ‖u0‖ . (4.10)

Lemma 4.8 and Theorem 3.13 ensure that ‖Q(λ)u0‖ρ,α
≤ C (1 + λ

1/2
0 )‖u0‖ρ,α

, where C only depends on ρ, δ

and α. Hence,

‖πλ−σQ(λ)u0‖2
=

∑
k∈BM s.t. |k|>λ−σ

∣∣(Q(λ)u0)k

∣∣2
≤ ‖Q(λ)u0‖2

ρ,α

∑
|k|>λ−σ

e−2ρ|k|1/α

≤ ‖Q(λ)u0‖2

ρ,α

∑
k∈Zd s.t. |k|∞>λ−σ/d

e−2ρ|k|1/α
∞

≤ ‖Q(λ)u0‖2

ρ,α

∑
p∈N s.t. p>λ−σ/d

(2p + 1)de−2ρp1/α

≤ C2‖Q(λ)u0‖2

ρ,α

∑
p∈N s.t. p>λ−σ/d

2(ρ − δ)
α

p1/α−1e2(δ−ρ)p1/α

≤ C2‖Q(λ)u0‖2

ρ,α

∫ ∞


 λ−σ

d �

2(ρ − δ)
α

x1/α−1e2(δ−ρ)x1/α

dx

≤ C2(1 + λ
1/2
0 )2‖u0‖2

ρ,α
e2(δ−ρ)
λ−σ/d�1/α

,

provided λ
−σ/α
0 ≥ dα

2ρ + 1, and with C > 0 such that

∀x > λ−σ
0 /d, (2x + 1)d ≤ C2 2(ρ − δ)

α
x1/α−1e2δx1/α

,

depending only on α, ρ, δ, d and λ0.
Using (4.10), we derive that there exists μ0 ∈ (0, ρ) and C0, c0 > 0 depending only on V , ρV , α, γ, ν and d

such that for all n ≤ ecλ−σ/2 and all h ∈ (0, 1) satisfying (3.6), we have for all M ∈ N and all μ ∈ (0, μ0)

∀k ∈ BM s.t. |k| ≤ λ−σ, ‖πλ−σvn‖ e+μ|k|1/α ≤ C0e−c0(μ0−μ)λ− σ
α ‖u0‖ρ,α

.

By Lemma 4.5, we derive that

∣∣(Id − Q�(λ))πλ−σvn
∣∣
|k|e

μ|k|1/α ≤ C1λ
1/2‖u0‖ρ,α

. (4.11)
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Choose μ ∈ (0, μ0) and δ > 0 such that μ + 2δ < μ0. For all k ∈ BM such that |k| ≤ λ−σ and all n ≥ e−cλ−σ/2,
we have by Lemmas 4.8, 4.9 and Theorem 3.13∣∣(Id − Q�(λ))(Id − πλ−σ )vn

∣∣
|k|e

μ|k|1/α ≤ C‖(Id − Q�(λ))(Id − πλ−σ )vn‖
μ+δ,α

≤ Cλ1/2‖(Id − πλ−σ )vn‖
μ+δ,α

.

Moreover, by Definition 4.1, Lemmas 4.6 and 4.9, we get

‖(Id − πλ−σ )vn‖
μ+δ,α

≤ sup
k∈BM s.t. |k|≤λ−σ

|vn||k|e(μ+δ)|k|1/α

≤ sup
k∈BM s.t. |k|≤λ−σ

|v0||k|e(μ+δ)|k|1/α

+ Clowe(μ+δ−c/2)λ−σ‖u0‖

≤ C‖v0‖μ+2δ,α
+ Clowe(μ+δ−c/2)λ−σ‖u0‖

≤ C(1 + λ
1/2
0 )‖u0‖μ+2δ,α

+ Clowe(μ+δ−c/2)λ−σ‖u0‖ .

We deduce that, for some positive constant C2, we have∣∣(Id − Q�(λ))(Id − πλ−σ )vn
∣∣
|k|e

μ|k|1/α ≤ C2λ
1/2‖u0‖ρ,α

, (4.12)

since μ + 2δ < μ0 < ρ. Using relation (4.9), we deduce that for all n ≤ ecλ−σ/2, we have

∀k ∈ BM s.t. |k| ≤ λ−σ,
∣∣|un||k| − |vn||k|

∣∣eμ|k|1/α ≤ Cλ1/2‖u0‖ρ,α
.

We conclude the proof by using relation (4.7). �

Remark 4.11. Using Lemma 4.3, one can change ‖u0‖ρ,α
to ‖u0‖ρ,α

without modifying the statement of
Theorem 4.10.

5. Technical lemmas

This section is a mere collection of technical lemmas used in the course of the proof of our normal form
theorem. We simply state and prove these lemmas, without further comment.

Lemma 5.1. Using the notation of Proposition 3.9 and its proof, let us define

K0 = max
(
1,

( ρV

2αν

)2α

γ1/ν
)

and r−1 = 16hM
(3)
V κC̃3.

For all K ≥ K0 and h ∈ (0, 1) satisfying (3.6), the functions x, q and s defined by (3.15), (3.16) and (3.17) are
analytic in (−r, r), and satisfy for all t ∈ (−r, r) the estimates:

0 < s(t) ≤ 5
√

5
4

κhM
(3)
V , 0.8 < q(t) ≤

√
5

2
and 0 < x(t) ≤ 5

√
5

4
hM

(3)
V .

Proof. We consider the differential equation{
q′(t) = f(t, q(t))

q(0) = 1
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with

f(t, Y ) =
s0C̃Y

1 − C̃2
(
κ(e2hM

(3)
V t − 1) + (Y 2 − 1)

)
(recall that s0 = M

(3)
V κh).

This equation has a unique analytical solution: there exists a number R > 0 such that for t ∈ (−R, R), q(t)
expands in power series of t. We can assume that R is maximal in this sense.

Due to the singularity in the denominator of f(t, Y ), define the two truncation parameters

T =
1

2hM
(3)
V

ln
(

1 +
1

4κC̃2

)
and D =

(
1 +

1

4C̃2

)1/2

− 1.

Whenever 0 ≤ t ≤ T we have C̃2κ(e2hM
(3)
V t − 1) ≤ 1

4 . Besides, whenever 1 ≤ Y ≤ 1 + D, we also have
C̃2(Y 2 − 1) ≤ 1

4 . Therefore,{
0 ≤ t ≤ T
1 ≤ Y ≤ 1 + D

=⇒ 0 < f(t, Y ) ≤ 2s0C̃(D + 1). (5.1)

This implies that q is an increasing function of t as long as t ∈ (0, T ) and 1 ≤ q(t) ≤ D + 1. Note that, for
t ≤ 0, we have 0 < q(t) ≤ 1. Note also, using the bound ln(1 + x) ≥ 1

2x whenever 0 ≤ x ≤ 1, that we have

T =
1

2hM
(3)
V

ln
(
1 +

1

4κC̃2

)
≥ 1

16hM
(3)
V κC̃2

· (5.2)

(Here we used the fact that the constraint K ≥ K0 together with the chosen value of K0, and that of κ, ensure
the lower bound κ ≥ 1/4.)

Let us now examine the domain of validity of the bound q(t) ≤ 1 + D. To begin with, assume that for all
t ∈ (0, R), 1 < q(t) < 1 + D. In that case we necessarily have the relation T < R. Alternatively, assume that
there exists 0 < t∗D < R such that q(t∗D) = 1 + D. In that case q(t) is an increasing function of time on the
interval [0, t∗D], and for all 0 < t < t∗D we have 1 < q(t) < 1 + D. Assume first that t∗D ≤ T . Under that
circumstance, we have

q(t∗D) − q(0) = D ≤
∫ t∗D

0

f(u, q(u))du ≤ 2s0C̃(D + 1)t∗D,

where we have used the upper bound (5.1) on f . As a consequence, we recover, still under the assumption
t∗D ≤ T , the information

t∗D ≥ D

2s0C̃(D + 1)
=

(1 + 1

4C̃2 )
1
2 − 1

(1 + 1

4C̃2 )
1
2

1

2κhM
(3)
V C̃

≥
[(

1 +
1

4C̃2

) 1
2

− 1

]
1

2κhM
(3)
V C̃

,

from which it follows
R >

1

16hM
(3)
V κC̃3

· (5.3)

In the opposite situation where t∗D ≥ T , we anyhow recover, using (5.2)

R > T ≥ 1

16hM
(3)
V κC̃2

≥ 1

16hM
(3)
V κC̃3

,
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where we have used that one may assume C̃ ≥ 1 without loss of generality. As a consequence of all these
computations, we are now in position to conclude that in any circumstance we have

1 ≤ q(t) ≤ D + 1 whenever 0 ≤ t ≤ 1

16hM
(3)
V κC̃3

= r.

In particular, the function t 
→ q(t) is increasing positive on [0, r], and therefore, so is t 
→ q′(t) = f(t, q(t)).
Going further, we deduce that for all t ∈ (−r, r) we have

q′(t) ≤ κhM
(3)
V C̃(D + 1)

1 − 1
4 − 1

4

≤ 2κhM
(3)
V C̃(D + 1) ≤ √

5κhM
(3)
V C̃,

since D + 1 ≤
√

5
2 . It follows that

q(−r) = 1 −
∫ 0

−r

q′(s)ds ≥ 1 − r
√

5κhM
(3)
V C̃ > 0.8.

This proves the estimates on q(t). The estimates for x(t) and s(t) are then obtained straightforwardly. �
Lemma 5.2. There exists a positive constant C depending only on α ≥ 1 and d ∈ N� such that

∀δ > 0,
∑

p∈Zd\{0}
e−δ|p|1/α ≤ C

δαd+1
·

Proof. Note that for all N > 0,∑
p∈Zd\{0}

e−δ|p|1/α ≤
∑

p∈Zd\{0}

(
(δ|p|1/α)N e−δ|p|1/α︸ ︷︷ ︸

≤NNe−N

)
(δ|p|1/α)−N

≤
(N

e

)N ∑
p∈Zd\{0}

(δ|p|1/α)−N .

Then, choose N = αd + 1. �
Corollary 5.3. There exists a positive constant C depending only on α ≥ 1, d ∈ N� and ρV such that

∀δ ∈ (0; ρV ),
∑
p∈Zd

e−δ|p|1/α ≤ C

δαd+1
·
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