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A MULTIPLICATIVE SCHWARZ METHOD AND ITS APPLICATION
TO NONLINEAR ACOUSTIC-STRUCTURE INTERACTION *
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Abstract. A new Schwarz method for nonlinear systems is presented, constituting the multiplicative
variant of a straightforward additive scheme. Local convergence can be guaranteed under suitable
assumptions. The scheme is applied to nonlinear acoustic-structure interaction problems. Numerical
examples validate the theoretical results. Further improvements are discussed by means of introducing
overlapping subdomains and employing an inexact strategy for the local solvers.
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INTRODUCTION

We present a new Schwarz type domain decomposition method for nonlinear problems. Such methods
typically lead to schemes where an outer iteration for the subproblem correction and an inner subspace iteration
on each subproblem have to be applied [15,17,18]. Our method constitutes, by means of a Gauss-Seidel type
outer iteration, a multiplicative variant of the straightforward additive scheme introduced in [7], and further
improved in [1,5].

In Section 1, we first recall the general setting and the theoretical results of the additive Schwarz method
for nonlinear problems. Based on this framework, we introduce and analyze the corresponding multiplicative
version. In the subsequent sections, the domain decomposition scheme is applied to nonlinear acoustic-structure
interaction problems. In particular, we extend the elasto-acoustic problem formulation of [8] to geometrically
nonlinear structures [6], and nonlinear acoustic wave propagation [13]. After introducing the single field problems
in Section 2, we present the coupled problem formulation in Section 3, yielding two numerical schemes using
different solvers for the subproblems, a Newton-like and a fixed point iteration scheme. We finally present the
results of several numerical examples in Section 4. First, the theoretical results are validated and the convergence
behavior of the additive and the multiplicative variant are compared. Moreover, further possible improvements
of the scheme are discussed, one by the introduction of a small subregion where both subdomains overlap, and
another by employing an inexact strategy for the local linear solver.
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1. TWO SCHWARZ METHODS FOR NONLINEAR PROBLEMS

The system we want to investigate is

F(a*) == (?ﬁg;) =0, (1.1)

where F, and F, stand for the elastic and acoustic subproblems, respectively. We remark that this specific
decomposition is purely motivated by the application presented afterwards, and that the theoretical results
presented here in this section are general and do not depend on the physical origin of the subproblems. Moreover,
our results can be extended to the case of more than two subproblems, and we will clearly indicate how this can
be done. In the first part, we present the most straightforward alternative by means of a non-overlapping block
Jacobi scheme and repeat the results provided by [7]. Second, we additionally introduce a multiplicative variant
of the scheme yielding an improved convergence behavior. A major reason for the potential efficiency of our
approach, even in the two-subdomain case, is that often only one part of the problem equations is nonlinear.
Thus, one can exploit the structure of system (1.1) by constructing iterative schemes, where the nonlinear
equations are decoupled from the linear ones in each iteration step.

1.1. A nonlinearly preconditioned Richardson scheme

We apply an additive scheme within the framework of nonlinear domain decomposition methods provided
by [7], and borrow the notation and the ideas from [1,5]. Indicating with m the global dimension of the
system (1.1), we partition the set {1,...,m} into the index sets I, and I, corresponding to the structural and
to the acoustic degrees of freedom, respectively, and set m; := ||, I; := {i1,...,9m,}, ¢ = e,a. Defining the
prolongation matrices E;' € R™*™i and the restriction matrices E; € R™*™ by

L, =iy,

(Ei)kg = { = e, a,

0, else,

we set P; := E;T E; € R™*™ and define the subspaces V., and V, by V; := P;R™. For the different parts we
have F; = P,F. Given y € R™, the correction T;(y) € V; is defined as the solution of the subspace problem

Fi(y —Ti(y)) = 0, i =ea. (1.2)

In general, each subspace problem is nonlinear and can be solved by, e.g., Newton’s method. If for example the
acoustic part consisted of a linear model, (1.2) would give the standard linear subspace correction

Ta(z) = EaT(K;)_lEaFa(m)a

where K := E,F'(z)EY would actually be independent of x, with F’(z) denoting the Jacobian of F(x).
In the spirit of [5], we introduce a new function

F(x) :=Te(z) + Tu(z),
referred to as nonlinearly preconditioned F(x), and attempt to solve
F(x*)=0 (1.3)

instead of (1.1). The solvability of the subproblems (1.2) and the equivalence of the two nonlinear systems (1.1)
and (1.3) are stated in the following theorem which is proved in [5] using the results from [7].
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Theorem 1.1 ([5,7]). Let the following assumptions be satisfied:

(A1) The Jacobian J(x) := F'(x) exists and is continuous in a neighborhood D of the exact solution x*.
(A2) The matriz J(x*) is nonsingular.
(A3) The matrices E;J(x*)ET are nonsingular.

Then, the subproblems (1.2) are all uniquely solvable in a neighborhood of x* in D. Moreover, the nonlinear
systems (1.1) and (1.3) are locally equivalent, i.e., they have the same solution in a neighborhood of x* in D.

It remains to solve the preconditioned system (1.3). As suggested by [7], we employ a standard Richardson
iteration, namely, given z(*) and a damping parameter w, we calculate in each iteration step

2D = @z W), with ®(z) ==z — wF(z). (1.4)

The expected convergence rate of (1.4) can be given in terms of the linearized problem Az —b = 0 with
A = J(z*), b := Axz*. In this case, the subspace iteration (1.4) reduces to the well-known linear additive
Schwarz method [18] with the iteration matrix

My:=I-w) EFAT'EA, A :=EAE].

i=e,a

Assuming
[Mo]l < ¢ <1, (A4)

the convergence behavior is described by the following theorem.

Theorem 1.2 ([7]). Assume (A1)—(A4), and let ¢’ € (¢,1). Then there is a neighborhood D(C') of x* such that
[@(y) —@(=)| < <1,  y,z€D((),

i.e., the nonlinear subspace iteration (1.4) converges in D(C') and has the same asymptotic convergence rate ¢

as the linear iteration applied to the linearized equations.

Remark 1.3. One possible improvement is to replace the simple Richardson iteration in (1.4) by an inexact
Newton method. This yields so-called ASPIN methods, i.e., Additive Schwarz Preconditioned Inexact Newton
methods. They have been introduced in [5], and a proof of locally quadratic convergence under essentially the
same assumptions (A1)—(A3) is provided in [1]. Here, we will present an alternative way.

1.2. A multiplicative preconditioner

In contrast to the nonlinearly preconditioned system (1.3), referred to as additive or Jacobi variant in the
sequel, we can define a multiplicative or Gauss-Seidel variant by setting

Fm(x) :=To(z) + Ta(z — Te(x)). (1.5)
Similar to (1.3), we now try to solve the nonlinearly preconditioned system
fIIl(I*) =0. (16)

To the best knowledge of the authors, no theory for this multiplicative type of nonlinear subspace preconditioning
exists. In order to analyze this case, we first need the following lemma.

Lemma 1.4. Under Assumptions (A1)—(A3), the Jacobian J(x) := F, () is nonsingular in a neighborhood
of x*.
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Proof. Setting T := & — To(z) and applying the chain rule, we have that
J(@)=1-(I-T;@)J - T(x)).

We follow the argumentation for the additive case from [1,5]. There, it is shown that

T/(z) = J Mz — Ti(x))J (x — Ti(z)),

K2

where J; ! (z—T;(x)) is understood as the subdomain inverse, i.e., J; ' (z—Ti(z)) := EF (E; Ji(z—T;(x))EF )~ E;,
which is known to exist by Assumption (A3). By assumption, all terms are continuous and, thus, J(x — T;(z))
and J(T — T;(T)) are close to J(z) in a neighborhood of *. Therefore, J(x) is also continuous around z*.

In order to show the regularity of J(z), we introduce the matrix

B(x) =1 — (= J; (@) J (@) = Jg (2)J ().
Again by continuity arguments, we have that B(z) is continuous in a neighborhood of *, and that

lim J(z) = lim B(z) = J(z"). (1.7)

r—x* T—x*

In the special case of a decomposition into two nonoverlapping sets, it is easy to explicitly construct the inverse
B~Y(z) in terms of the subdomain Jacobians. In particular, if we omit the dependence on x for the moment, it
is easy to see that

Jot 0
B = <Ja_1JaeJe_1 J_1> Ja

a

0 4 J 0
B =y (Jae Ja).

Using the regularity of B(x), the equality (1.7), and continuity, we obtain the desired regularity of J(z) close
to z*. O

and, therefore,

Remark 1.5. The generalization of the proof given above to the case of many nonoverlapping subsets is
straightforward. However, in the case of overlap, the proof of the regularity of B(z) remains to be given.

Concerning the equivalence of (1.1) and (1.6), we show the following result in analogy to Theorem 1.1.

Theorem 1.6. Under Assumptions (A1)—(A3) from Theorem 1.1, the nonlinear systems (1.1) and (1.6) are
equivalent in the sense that they have the same solution in a neighborhood of ©* in D.

Proof. We follow the lines of the proof of Theorem 1.1 provided in [5]. Assuming that z* solves (1.1), we have
Fi(z*) = 0, i = e,a. Comparing this with the definition of 7; in (1.2), and using the local unique solvability
guaranteed by Theorem 1.1, we have T;(z*) = 0. Therefore, z* is also a solution of (1.6). It remains to show
that * is unique in a local neighborhood. By Lemma 1.4, the Jacobian F} (z*) is nonsingular, and therefore,

according to the inverse function theorem, the solution is locally unique. (I
In order to solve (1.6), we apply the damped Richardson iteration (1.4) with F replaced by Fi,, namely,
g D = @ (W), with @, (2) == & — wF(z). (1.8)

We expect that an analogue of Theorem 1.2 has to hold, i.e., the convergence rate should be close to the one
of the corresponding linear iteration applied to the linearized problem. In particular, the Richardson iteration
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in the linear case described above reduces to the standard multiplicative Schwarz method with the iteration
matrix

Mym:=I-w|I- ]I -EA'EA)
i=e,a
Analogous to (A4), we now assume that
[Mym| <¢ <1 (Ad')

Theorem 1.7. Assume (A1)-(A3), (A4"), and let ¢’ € (¢,1). Then there is a neighborhood D((') of x* such
that

[@m(y) — Pm(2)l < ¢ <1, y,z€ D).
i.e., the nonlinear subspace iteration (1.8) converges in D({") and has the same asymptotic convergence rate ¢
as the linear iteration applied to the linearized equations.

Proof. We alternate the proof of Theorem 1.2 presented in [7]. There, the analysis is based on weaker assump-
tions employing a general difference quotient DF. Since (Al) is satisfied, we can choose DF (2, z") € R™*™
as

1
DF(a2',2") := / J(z' + t(2" —2'))dt.
0

In [7], it is shown that
T;(z") — Ty(z") = DTy(2', ") (2" — "), (1.9)
for all 2/, 2" sufficiently close to z*, where DT;(x’, 2") is defined as

DTy(«',2") .= B} (E;DFE}) " 'E;DF, DF := DF(z' —Ti(z'), 2" — T;(2")).
Moreover, DT;(2', z") satisfies
DTi(z',2") — J;Ha*)J(a¥) as o', 2" — z*. (1.10)

In view of (1.5), and starting from z’, 2", we set T := 2’ — To(2'), T := 2" — Tc(2”), and derive from (1.9) the
relation

To(T) — To(@) = DT,(7,Z)(T —7)
= DT,(Z,72)(2' — 2" — (Te(2') — Te(2"))) (1.11)
= DT.(Z,2)(I — DTo(2/,2")) (2’ — 2").
The definition (1.5) of Fy, yields
Ou(2') — P (2”) = (' — 2") —w ((Te(2) = Te(2")) + (Tu(T) — Ta())),
and inserting (1.9) and (1.11), we have
Py (') — P (2") = (I —w(I — (I = DTW(z,7)) (I — DTe(2',2")))) (2" — 2”).
Employing (1.10) and the fact that T, — z* as 2/, 2” — x*, we see that
I—w(I—(I-DTy(z,2))(I — DTo(a',2"))) — Mym  asz’,z”" —z".
Therefore, (A4’) implies the desired assertion. O

Remark 1.8. By using induction arguments, the proof of Theorem 1.7 can easily be generalized to the case of
many subdomains.

Remark 1.9. As mentioned in Remark 1.3, a further improvement could be achieved by employing an inexact
Newton method instead of the Richardson scheme (1.8), yielding a multiplicative variant of ASPIN methods [1,5].
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2. MODEL EQUATIONS

In the following two application-oriented sections of this paper we derive the different nonlinear subproblems
of system (1.1) in order to apply the theoretical results. The field of fluid-structure interactions contains many
applications for elasto-acoustic coupling problems, especially nonlinear ones. Linear elasticity is restricted to the
case of small deformations. Nonlinear acoustic effects including dissipation and generation of higher harmonics
play an important role in ultrasonics. The choice of a velocity potential or pressure based formulation for
the acoustic part and of a displacement one for the elastic part results in Dirichlet-Neumann type interface
conditions. We start with introducing the single field problems of elasto-dynamics and of acoustics, providing
the strong and weak continuous formulations.

2.1. Nonlinear structural dynamics

We investigate the deformation of an elastic body Q¢ C R? with density p, : Q° — R under given time
dependent volume and surface forces f and g. The boundary of 2° with unit normal vector n. is the union of
disjoint subsets I'y and I, on which natural and essential data are given, respectively. If the strains remain
small but the deformations become large, one has at least to consider the geometrically nonlinear elasticity
setting. This amounts to using the full Green-St. Venant tensor

- 1
E:=5(F'F ~1d) = 3(C ~1d), (2.1)

with F' := Id + grad u the deformation gradient and C := F'TF the right Cauchy-Green strain tensor. We have
the constitutive law

S =L (tI‘ E)Id +2u, E=CE, (22)
defining the second Piola-Kirchhoff stress tensor S, with C the Hooke-tensor and the Lamé constants Ay, ur,.

The strong formulation for elasto-dynamic problems then reads as follows:
Given ug, u1, f : Q° — R? find u : Q° x (0,7) — RY such that

pett —div (FS)=f inQ° x (0,7), (2.3a)
complemented by the boundary conditions
u=0 onI§ x (0,7), FSn.=g onI§ x (0,7), (2.3b)

and initial conditions

u(-,0) = ug, u(-,0) =uy in Q°. (2.3¢)
Under additional assumptions on the data, it is possible to establish the well-posedness of (2.1)—(2.3c), cf. [6,16].
For the weak formulation, it is natural to use the space

X° = (H%B Q)= {v e (H'(Q2°)?:v=0o0n 5}

We employ the standard setting of Sobolev spaces for evolution problems; the space L?(0,7T;X) consists of
functions ¢ +— v(t) which are Lebesgue-measurable on (0,7") with respect to the measure dt, such that

T 1/2
llvllz20,1:x) = </0 lv(t)]|% dt) < 0.

The resulting variational problem reads:
Find w € L?(0,T; X¢), ©w € L?(0,T; L*(Q°)), and & € L?(0,T; H~1(Q°)) such that for all times t € (0,7)

<peﬁ'7 ’U>Qe + ae(“’v ’U) - le(’l)) = (fa ’U)Qe + (gav)rﬁa CAS Xea (24)
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together with initial conditions (2.3¢). In (2.4), (-, -)qe indicates the duality product on X°x (X¢)’. Transforming
to the weak setting, the nonlinearity in (2.1) results in the fact that ae(-,-) is nonlinear in the first and linear
. . 4 o

in the second argument, i.e., ac(u,v) ==Y, ae(u,v), is given by, cf. [6],

te1(u,v) := (Ce(u),e(v))qe, e 2(U,v) := %(C [(gradu)” gradu] , grad v)qe,

1
e,3(u,v) := (grad uCe(u), grad v)gqe, e,a(U,v) 1= E(grad uC [(gradu)” gradu] , grad v)qe,

with the linearized strain tensor

e(u) = %(gradu + [grad u]").

2.2. Linear structure dynamics

Assuming small deformations and small strain, it is sufficient to investigate the linear system
pet —div(c) = f inQ° x (0,7),
with the stress tensor o given by Hooke’s Law
o= AL(tre)ld + 2u €,
complemented by the boundary conditions
u=0 onIf x (0,T), on.=g onlg x (0,T),
and initial conditions (2.3c). The weak form is analogous to (2.4) with a.(-,-) replaced by al(-,-) := ac1(-,-).

2.3. Nonlinear acoustic waves

For the description of the acoustic wave propagation within a domain Q* C R?, we use the wave equation
for the velocity potential v, i.e., v, = —grady with v, denoting the acoustic velocity field. The acoustic
pressure p, is then related to the acoustic velocity potential i) by

Pa = pa"b (2.5)

with p, : 2* — R the mean density of the fluid. This connection will be important for an interface condition of
force transition in the coupled system. Analogous to before, n, denotes the unit normal vector to the boundary
of Q?, which is the union of disjoint subsets I}{ and I'3. Indicating with ¢ : * — R the speed of sound, the
acoustic problem with the nonlinear wave equation derived by Kuznetsov reads as follows [11,13]:

Given ¢g, Y1 : Q* — R, find ¢ : Q* x (0,7) — R such that

1. 10 1 B .
c_Qw — divgrady = 23 (bdivgradw + C—2ﬁ¢2 + (gradw)Q) in Q* x (0,7), (2.6a)
with boundary conditions
=0 only x (0,T), grady-m,=g¢g onIf x (0,7), (2.6b)

and initial conditions

¥(-,0) = o, ¥(,0) =41 in Q™ (2.6¢)
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The parameter b involves thermodynamical effects as well as the viscosity of the fluid, whereas B/A is called the
nonlinearity parameter of the fluid. From a modeling point of view one could extend (2.5) to a higher accuracy
relation p, = pa (1) + 1(grady)? — %wQ) [9], which would lead to a different force interface condition. But the
occurrence of the nonlinear effects depends only on the nonlinear wave equation (2.6a). Due to this fact we
consider here condition (2.5). Setting X? := Hllg (©2?), the weak form of (2.6) reads:

Find ¢ € L2(0,T; X?), ¢ € L*(0,T; L*(Q*)), and ¢ € L2(0,T; H'(9?)) such that for all times ¢ € (0,T)

<iww>ﬂ Faabw) =L(w),  we X?, 2.7

in addition with the initial conditions (2.6¢), where aa (1), w) 1= aa,1 (¢, w) + aa,2(1), w) is splitted into one part
deriving from the linear wave operator and another, which arrives from the nonlinear aspect

aa1 (Y, w) := (grad ¢, grad w)qa,

b . B/A -
aa2(Y, w) = (0—2 gradw,gradw> o < /

Mw>

2 .
= o — (0_2 gradw,gradww> o'

The linear functional is similarly defined as
la(w) := la,1 (W) + la2(w)
= <ga 'LU>F1\aI + <ga w>F§
2.4. Linear acoustic waves

The Kuznetsov equation (2.6a) easily allows a connection to the linear wave equation
1 . ) o
—t¢ —divgrady =0 in Q* x (0,7),
c

by setting the right hand side to zero. Hence, we have in (2.7) the bilinear form al®(-,-) := @, 1(-,-) and the
right hand side 159(+) 1= [, 1(-).

3. COUPLED SYSTEMS

In the following, the coupled problem of elasto-acoustics is presented. We first focus on the interface condi-
tions, where the time derivative of the Dirichlet data from one side is coupled with the Neumann data from the
other side. After that, we observe how these conditions enter into the variational formulation. Subsequent to
the continuous weak formulation, the semi-discrete problem obtained after spatial discretization is presented.

3.1. Structure-acoustic interface

At a solid-fluid interface I', as depicted in Figure la, the continuity requires that the normal component of
the mechanical surface velocity of the solid must coincide with the normal component of the acoustic velocity
of the fluid. Thus, the following relation between the velocity v, of the solid expressed by the mechanical
displacement u and the acoustic particle velocity v, expressed by the acoustic scalar potential i arises:

0 = (Ve —va)mn = wn + gradyyn onT x (0,7), (3.1)

where the unit normal vector field m on I' points outward of Q2°. In addition, one has to consider the fact
that the ambient fluid causes a surface force fr = —p.n = —p,¥n, see (2.5), which acts like a pressure load
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(a) (b)

fluid
solid

FIGURE 1. (a) Solid-fluid interface, (b) setup of the coupled elasto-acoustic problem.

on the solid. Therefore, a second coupling condition is given by
FSn + paym = 0 onT x (0,7). (3.2)

For the acoustic part, we will apply the nonlinear wave equation according to Kutznetsov, which models the
dynamics in a viscous heat-conducting fluid [13]. However, assuming motion of a potential character, the
equations reduce to a single nonlinear wave equation [11]. Therewith, our formulation just supports longitudinal
waves (neglecting shear waves) within the acoustic domain, and thus we just have to apply the continuity for
the normal components of fluid particle velocity and mechanical velocity along the common interface.

3.2. Coupled field formulation

Let us consider a setup of a coupled mechanical-acoustic problem as shown in Figure 1b, where at the
interface I' we have to consider the solid-fluid coupling. Now, within the domain Q¢ the initial boundary value
problem (2.3) for the mechanical field, within the domain Q* the initial boundary value problem (2.6) for the
acoustic field, and along the interface T" the coupling conditions according to (3.1) and (3.2) have to be satisfied.
Transforming to the weak form, assuming that homogeneous Neumann data is given on I'* = 9Q*\T', we obtain
for the mechanical system

(pett, V)qe + ac(u, v) — (v, FSn)r = le(v), (3.3)
and for the acoustic system
1 . h ————
<—2w,w> + aaap, w) + (1, grad g - mr + <w —2vgradw-n> 0, (3.4)
c Qe c .

where 7 denotes the usual trace operator onto the solid-fluid interface I'. It should be noted that the plus sign
in (3.4) in front of the first boundary integral over T" is due to the choice of m to point outward with respect to
the structure Q¢, see Figure 1b. Incorporating the coupling conditions (3.1) and (3.2), we arrive at the following
coupled system of equations

~~
<pe’i],, U>Qe + ae(uvv) + <pav'na v >F = le(’l}), (35)
<l2'¢)7w> + aa(%“’) - <w7 7“'”>F - <wa %7“”> =0, (36)
C Qa C T

where the lower right hand side is zero due to the choice of homogeneous Neumann boundary conditions on I'®.
Before we perform a domain discretization, we multiply (3.6) by p, in order to obtain a boundary integral similar
to the one in (3.5). Thus, the matrices, occurring from a finite element discretization of these two boundary
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integrals, will be the negative transpose of each other. We finally arrive at the variational problem of finding
(u,v) € L?(0,T; X°© x X?) such that for all times t € (0,7):

(peti, V)ae + ac(u, v) + (pavm, Y )r =le(v), veE X, (3.7a)
a i = b ——
<lc)—21/1, w>Qa + aa(wapaw) - <Paw, 7“'”>F - <pawa c_27un> =0, we X (37b)
r

Our main focus in this paper concentrates on the nonlinear elastic/linear acoustic system on the one hand and
on the linear elastic/nonlinear acoustic system on the other. The problem formulations do not differ essentially
from (3.7) because nearly all of the nonlinear effects are hidden in the definition of ac(-,-) and aa(-,-).

Nonlinear elastic/linear acoustic continuous system

Find (u,v) € L*(0,T; X°¢ x X?), (@,v) € L*(0,T;L*(Q°) x L*(Q%)), and (it,v) € L*(0,T; H '(Q°) x
H~1(Q%)), such that for all times ¢t € (0,7):

A~
(peh, V)qe + ae(u,v) + (pavn, Y )r =lo(v), veE X° (3.8a)
<%w,w>m + a™ (4, paw) — (paw, Fum ) = 0, we X (3.8b)

Linear elastic/nonlinear acoustic continuous system

Find (u,) € L*(0,T; X°¢ x X?), (@,v) € L*(0,T;L*(Q°) x L*(Q%)), and (it,v) € L*(0,T; H'(Q°) x
H=Y(Q®)), such that for all times ¢ € (0,7T):

- lin A €
(pott, V) + ag" (u,v) + (pavn, YU v =l(v), veE XC, (3.9a)
) : b
<%¢, w>Qa + aa (Y, paw) — (paw, Yu-M)p — <paw7 0—27un> =0, we X (3.9b)
r

We remark that an alternative coupled problem can be derived, if, instead of the potential-based formulation,
a displacement-based problem formulation is chosen also for the fluid domain. A rigorous mathematical error
analysis for the purely linear case is provided in [2] for the case of matching grids which could be extended to the
non-matching situation. There, due to the displacement-based formulation, the weak form of the subproblem
for the fluid is an HY"V-problem requiring a non-standard discretization by means of Raviart-Thomas finite
elements. Here, we are able to use standard Lagrangian nodal finite elements in both domains.

3.3. Discretization

For the following considerations, the notation sets up on [12], in combination with [1,5]. For the time
integration, we use the classical Newmark scheme [10,14]. The proposed algorithm is easily extendable to more
sophisticated time stepping schemes like the generalized a-method, but for the sake of brevity and clarity, we
stick with this simple approach. In particular, we decompose the interval [0,7] into subintervals [t,, t,41],
n=20,...,N — 1, with ¢, := nAt, At := T/N;. For a time-dependent quantity x, we denote by z, =
x(nAt) its approximation at ¢ = t,. The defining feature of the classical Newmark method is to compute the
approximations @,4+1 and #,41 as functions of x, 41 and the already known values x,,, &y, Ty,

Fpy1(Tni) = 207 N (2py1 — ) — Dn, (3.10a)
Fpa1(Tng1) = 4O 2 (2py1 — o) — 4O Ny, — . (3.10b)

It is well known that the classical Newmark scheme is unconditionally stable and of quadratic order with respect
to time.
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3.3.1. Structural part
For the uncoupled structural model (2.4) on the spatially discrete level, this yields the system

Meunﬂ + Ne(unJrl) = fnJrl, n > 0, (311)

with the constant mass matrix M., the internal forces N,, and the external load f, given in the standard way
by (pes*)ae, ae(u,-), and lo(-), respectively. We remark that for n = —1, the balance equation (3.11) admits
to calculate an initial acceleration o out of the knowledge of the initial values ug and g for displacement
and velocity, respectively. Then, for n > 0, relations (3.10) can be employed to express i,41 in terms of the
unknown displacements u,11 and known values from the last timestep. After new displacements wu,1 are
found by means of (3.11), new velocities and accelerations are calculated via (3.10).

This gives the effective structural equation

0= Fe(Unq1) := Mettp i1 (tny1) + Ne(tpny1) — fn+1a (3.12)

where the dependence of 4,41 on wu,41 has to be seen with respect to (3.10). If we only consider a linear
elasticity model corresponding to Section 2.2, the system above simplifies to

0= ﬁe,lin(unJrl) = MeunJrl(unJrl) + Keun+1 - .fn+1a (313)

lin

Jn(.,-) of the elasticity bilinear form.

where the constant matrix K, is associated with the linear part a

3.3.2. Acoustic part

The Newmark method applied to the weak form (2.7) of the wave equation (2.6a) for the acoustic velocity
potential v gives

Mot + Catbit + Kathnir = Ni(%ns1)Pns1 + No(@ni1) Ui, (3.14)

with constant matrices M,, C,, and K, assembled from (Ciz, Jqa, (C% grad -, grad -)g=, and (grad -, grad-)qa,
respectively, as well as the nonlinear contributions given by

. A . _ .
Wi = [ PRS0, ()= [ 50 srade - gradv. (3.15)

Here, ¢" denotes the standard nodal basis functions for the acoustic potential associated with the node r.
Similar as for the elastic part, we can write (3.14) in the form

0= ﬁa("pn-{-l) = Ma¢n+1(¢n+1) + Ca¢n+1(wn+1) + Kawn—i-l - Na(wn+1)7 (316)

where N,(1,,11) denotes the Newmark representation of the right hand side in (3.14). By simply dropping the
nonlinear term N,(-), we obtain the fully discretized linear acoustic problem corresponding to Section 2.4,

0= Fatin(¥nt1) = Mathns1(ni1) + Catbnir (Ynt1) + Katbni1. (3.17)

3.3.3. Coupling and global systems

It remains to realize the discrete coupling of the structural and the acoustic quantities. Corresponding to
the boundary integrals appearing in (3.7b), we define the coupling matrices Ce, and M, by

(Cea)ij = (pa¢i 'n, ¢j)Fa (Mae)ij = (p;abﬁbj ' n, ¢z) ) (3'18)

2
¢ r

where ¢ and ¢* denote basis functions associated with the elastic and the acoustic part, respectively. In
particular, we remind that the surface grids inherited by the triangulations of the two subdomains do not need
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to match on I' in order to realize the coupling. Moreover, the matrices Ce, and M, do not depend on the
solution.

In order to establish the connection to the abstract framework presented in Section 1, we set z,41 =
(Wni1,%ni1)T for the global solution to be determined in each time step. The fully discrete and fully nonlinear
global system is now given by

(3.19)

0= Flani) = (Fe(xn-‘rl))

ﬁe(un—i-l) + Cea"bn-l—l(wn—i-l)
Fa(l'nJrl) .

<ﬁa(wn+1) - CeTai‘fnJrl(unJrl) + Mae'unJrl(unJrl)

As mentioned above, the coupling of a linear model in one part with a nonlinear model in the other part
is of our particular interest. This amounts to replacing in (3.19) the nonlinear functions E(unH) defined
by (3.12), (3.16) by the linear functions E,lin(un_l,_l) defined by (3.13), (3.17), respectively. In particular, we
will elaborate on the following two systems.

Nonlinear elastic/linear acoustic discrete system

The global discrete system coupling nonlinear structural dynamics with linear acoustics and discretizing (3.8)
reads

(3.20)

0= F(zni1) = ( Fo(wpi1) ) _ ( Fo(tns1) + Coathni1 (ni1) ) |

Fa,lin(wn-i-l) ﬁa,lin(wnJrl) - Cg:l'anJrl(unJrl))

where the mass coupling matrix M, vanishes since the corresponding boundary integral vanishes in (3.8b).

Linear elastic/nonlinear acoustic discrete system

The global discrete system coupling linear structural dynamics with nonlinear acoustics and discretizing (3.9)
reads

(3.21)

0= F($n+1) — <Fe,lin(xn+1)> — <ﬁ (w ﬁe,lin(unJrl) + Ceau-)nJrl(wnJrl) ) .
a n+1

Fa(In+1) ) - C;;I;ﬂn-',-l(un—i-l) + Mae'un-l—l(un-i-l)

3.4. Analysis within the Schwarz framework

Above, we have derived the requested form (1.1) of different nonlinearities in structure-acoustic interaction
application. It remains to show that the theory of Section 1 can be applied to the systems (3.20) and (3.21).
In particular, we have to verify Assumptions (A1)—(A3) from Theorem 1.1 by investigating the Jacobian J(x),
which in the case of the fully nonlinear problem (3.19) decomposes to

_ (Ki(w) B
J(m) B ( Eae K;("b)) , (3.22)

with the effective elastic and acoustic stiffness matrices K (u) and K (v) given by
K{(w) = 0Fc(u)/0u,  K[(V) = 0F.(v)/00, (323)
respectively, and the constant matrices Be, = 2At 1Cen and Bae = —BL + 4At=2M,., due to (3.19) in

combination with (3.10). Above and in the sequel, the subscript n+1 is dropped for convenience. We will
separately treat problems (3.20) and (3.21) by means of the following two lemmas.
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Lemma 3.1. Assume that At is small enough. Then, Assumptions (A1)—(A3) hold for F defined by (3.20)
and the decomposition introduced above.
Proof. By the definition of F' in (3.20), the Jacobian J(z) simplifies from the fully nonlinear case (3.22) to

J(x) = <Kj*g‘) g:) : (3.24)

with K defined according to (3.17) and (3.10) by
K} = K, +2At7'C, + 4At 2 M, (3.25)

and BT := 2At 'C,,. Being constant, it is obvious that K* and B are continuous. Moreover, due to the
use of the geometrically nonlinear elasticity model (2.1)—(2.3a), the effective tangent matrix Kf(u) is given
in terms of polynomials of the gradient gradu, and is also continuous, which proves (Al). The subdomain

matrices E;J(z*)EL, i = e, a, are given by K (u) and K, respectively. Looking closer at K;(u) by means

of (3.23), (3.12), and (3.10), we see that
K (u) = ON.(u)/0u + 4At "2 M. (3.26)
Therefore, one component of both stiffness matrices is the multiple 4At=2M; with M; being the corresponding

mass matrix, and thus both matrices are positive definite for At small enough, regardless of the underlying
boundary conditions. This shows (A3), and (A2) follows immediately. O

Lemma 3.2. Assume that b and ¢ are constant, and that At is small enough. Then, Assumptions (A1)—(A3)
hold for F defined by (3.21) and the decomposition introduced above.

Proof. We can alter the proof from Lemma 3.1 in order to use it for the linear elastic/nonlinear acoustic
problem (3.21). Now, the Jacobian J(x) simplifies from (3.22) to

Sy — [EE Bea
(1’)* Bae K;("(/}) )

with K defined according to (3.13) and (3.10) by

K! = K, +4At 2 M.. (3.27)
From definition (3.15), we see that K (1) depends continuously on 1) and grad ¢). Together with the fact that K7,
Bea, and B, are constant, condition (A1) is fulfilled. Furthermore, we set as before BT := B, := 2At1Ce,.

Since b and ¢ are assumed to be constant, we have M,, = —bc=2CZL due to (3.18), and hence B, = aB with
a = —(1+2At"1bc™2). Thus, we have that

oy (Ko BT
D= \a K1)

We can simply divide the last line and the corresponding right hand side by a, yielding

o (K BT
DB akiw)

for which similar arguments as for (3.24) hold. O



500 R. ERNST ET AL.

3.5. The iterative solution procedures

We present the overall iterative solution procedure for system (3.20) in Algorithm 1 and for system (3.21)
in Algorithm 2. The essential algorithmic difference is that we use Newton’s method for the resolution of the
nonlinear elastic subproblem, while we employ a fixed point iteration for the nonlinear acoustic part.

Algorithm 1 Iterative solution for the nonlinear elastic/linear acoustic discrete system (3.20).

Set up the matrices M;, Cy, Cea, K. (3.11), (3.14), (3.18), (3.25)
Set up the initial values =, & given by the continuous data, and & by satisfying the initial balance. (3.20)
for all time steps n =1,... do

Calculate f, 1) := Co(2At~14p + ) + Mo (4AE 20 + 2A 1) + 1)),
for all Richardson steps K =1,... do
for all Newton steps ¢ =1, ... do
Calculate KX (u), Fo(x). (3.23), (3.20)
Solve K (u)Au = —F(z).
Update u +— u + Au.
Check for Newton convergence.
end for
Update . (3.10)
Solve K ) =1 + CL 4.
Update z. (1.8)
Check for Richardson convergence.
end for
Update z, Z. (3.10)
end for

For system (3.20) we remark that most of the matrices only have to be assembled once in the very beginning,
and only the relatively small tangential stiffness matrix K} (u) has to be calculated in every Newton step. The
only difference between the additive and the multiplicative variant is the update of the displacement degrees
of freedom before the solution for the new velocity potential in the latter case. Thus, as in the linear case, for
single processor architectures, the costs per iteration step are almost the same, and the multiplicative variant
is clearly superior to the additive one. As is well-known, this argument has to be reconsidered in the case of
parallel computing architectures.

4. NUMERICAL COMPUTATIONS

We provide several numerical results illustrating the applicability and efficiency of our approach. In particular,
we validate our theoretical results in Section 4.1, and discuss some further improvements in Sections 4.2 and 4.3.

4.1. Validation of the theoretical results

In the following, we investigate Theorems 1.2 and 1.7 by means of a numerical example simulating the sound
emission of a vibrating structure in water. The structure ¢ is of width 0.2 m and height 0.01 m and has the
material parameters of silicon, p. := 2.3 x 10% kgm™3, F := 1.62 x 10" N-m~2, v := 0.2. It is fixed at its
left and right boundary, and a surface traction of 10% sin(271000¢) N-m~2 is acting in vertical direction at its
lower boundary. We assume the structure to behave geometrically nonlinear. The acoustic fluid domain Q* of
width 1.4 m and height 0.7 m is centered above the structure. The mean density is p, := 103 kg-m ™3, the speed
of sound is ¢ := 1.5 x 10® m-s~'. The corresponding parameters for the nonlinear wave equation in water are
B/A:=5and b:=1.83 x 10719 m?.s~1. Due to symmetry reasons, we can set the computational domain to one
half of the original one, see Figure 2. As described in [8], we are able to use nonmatching grids in the different
subdomains. This allows us to be as flexible as possible in the choice of the grids.
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(a) (b)

FIGURE 2. (a) Computational grid: lower small part = structure, upper part = acoustic;
(b) use of nonmatching grids.

Algorithm 2 Iterative solution for the linear elastic/nonlinear acoustic discrete system (3.21).

Set up the matrices M;, Ca, Cea, Mae, K, K. (3.11), (3.14), (3.18), (3.25), (3.27)
Set up the initial values z, & given by the continuous data, and & by satisfying the initial balance. (3.21)
for all time stepsn =1,... do

Calculate f, f:= f+ Mo(4At2u + 2A¢ 1 + i),
V= Ca(2At 1) + ) + Ma(AAE 20 + 2AL 14 + 1)),
for all Richardson steps k =1,... do
Solve Ku = f — Ceat).

Update 1, . (3.10)

for all Fixed point iteration steps ¢ =1,... do
Calculate N (¢, %, ¢) := Nlu(w)v,b + No(e)o. (3.15)
Solve K1p = ¢ + N (¢, ¥, ) + CLit + M.
Update 1), 1). (3.10)
Check for Fixed point convergence.

end for

Update z. (1.8)

Check for Richardson convergence.

end for
end for

A test series with varying damping parameter w is performed. In each test, 20 time steps of size 2.5 x 107° s
are carried out. Figures 3a and 3b show the averaged convergence rate versus the value of w for the nonlinear
scheme (1.4) and for its linearized variant. We observe that even the averaged convergence rate of the nonlinear
iteration, which is directly related to the number of iterations necessary to achieve a desired reduction of the
error, is in good agreement with the one of the linear iteration. This nicely confirms and even strengthens
the statement of Theorem 1.2. Moreover, for this particular example, a damping parameter w := 0.7 seems
to be optimal. However, the minimum achievable convergence rate of around 0.55 is far too high for a block
2 x 2-scheme to be efficient. In the following section, we therefore will gradually improve our iteration scheme.

We perform the same test series for the multiplicative variant (1.8) as described above. In Figure 4, the
resulting averaged convergence rates are plotted against the damping parameter as before. Additionally, the
result for the additive variant from before is given for comparison.
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FIGURE 3. Test of the additive Richardson scheme (1.4): average convergence rate versus
damping parameter (a) for system (3.20) and (b) for system (3.21).
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FIGURE 4. Test of the multiplicative variant (1.8): convergence rate versus damping parameter
(a) for system (3.20) and (b) for system (3.21).

We observe that the nonlinear and the linearized multiplicative variant are in reasonable agreement. However,
for the system (3.20), the difference to the left of the optimum value becomes quite remarkable. More important,
the convergence rates are in general much better than for the additive Jacobi scheme. It is possible to reach a
minimum value of roughly 0.2. Yet, this is still quite high for a block 2 x 2-system. We will discuss a further
improvement in the next section.

4.2. Overlapping subdomains

In order to improve the convergence behavior of the Richardson scheme, we further decompose v into
(1,12, \), where u couples with ¢ via Ce,, and 11 with 1y via the Lagrange multiplier A in the manner
of mortar finite element methods [3,4]. We note that this procedure admits to use nonconforming grids in the
acoustic subdomains associated with ¢, and 5. However, we will not exploit this fact in our presentation.

In Figure 5, the computational grid is plotted, visualizing the structure in the lower left part. The thicker
horizontal line inside the acoustic domain indicates the upper boundary of the overlapping region. We first
concentrate on system (3.20). For the effective stiffness matrix associated with Q* and arranged with respect
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(2

U

FiGURE 5. Computational domain with four layers overlap.

to the decomposition into (1,12, \), we have

Ki1 0 Kia cCi 0 0 My 0 O
K;; = 0 Koy Koyx| +a1 0 Cy 0] +as 0 My 0 s
Ky Ky 0 0O 0 0 0 0 O
with the obvious meanings for the submatrices. We now choose a decomposition of (1,...,m) into I and I,

with I, as before including the indices associated with the Lagrange multiplier A, but with IQ being I, enhanced
by the indices associated with ;1. Now, this decomposition is overlapping, i.e., |Io| + |I.| > m. The resulting
subspace function F? associated with I is given by

o ._ po _ Fe(m)
FJ(xz) := PYF(x) = ((Fa,lin(x))l +K1/\)\) , (4.1)

where (F,1in(2))1 is defined analogously to (3.20), but only contains the components associated with ;. We
now apply the Richardson iteration (1.8) to the preconditioned system
0=7F,

m

(2) 1= T2(") + Tule® — T2(2°)). (1.2)

For the resulting algorithm, only the Newton iteration has to be changed, i.e. the shaded region in Algorithm 1.
The modified Newton scheme is given in Algorithm 3.

Algorithm 3 Newton iteration for overlapping scheme for (3.20).

for all Newton steps ¢ =1,... do
Calculate KX (u), F2(x). (3.23), (4.1)

Set up K} := (Kf((*u) Il%f).
ae 1

Solve KA <u = —F2(x).
U1

u u u
Update (7/11) — (1/)1) + A (1/)1)'

Check for Newton convergence.
end for
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FIGURE 6. Test of overlapping scheme: iteration count versus time step, varying the overlap
(a) for system (3.20) and (b) for system (3.21).

The goal of this overlapping scheme is to include in I$ only comparatively few degrees of freedom from
the acoustic part, such that the computational costs for one iteration step are not much higher than for the
non-overlapping variant, but to overlap enough to substantially improve the convergence rate.

In the case of the linear elastic/nonlinear acoustic system (3.21), we also introduce the overlap in the acoustic
region. In contrast to Algorithm 3 we solve the linearized acoustic equation, i.e. we only make one fixed point
iteration step, on the overlapping region. With the same notations as above we only have to change the equation
outside the fixed point iteration in Algorithm 2 as is written in Algorithm 4.

Algorithm 4 Linearized adaption for overlapping scheme.

for all Richardson steps k =1,... do
Calculate N (v1,1,11).
Perform one fixed point step for solving

(k. w3 (5) = ()~ (vien) (e i)

Update 1, 91, 1. (1.8), (3.10)
for all Fixed point iteration steps ¢ =1,... do

end for
Update z, ¢, . (1.8), (3.10)
Check for Richardson convergence.

end for

We use the same example as above to investigate the behaviour of the overlapping method. In particular, we
vary the thickness of the overlap. In Figures 6a and 6b, the iteration counts for different numbers of overlapping
layers are visualized against the time steps. Convergence for the Richardson iteration was declared, when the
relative difference of two successive iterates went below 10710, Already a very small number of layers results in
a strong improvement. With four or eight layers, the count is around 5 or 4, which is quite reasonable.

4.3. An inexact strategy

For the system (3.8), so far, in each Richardson step, there have been made so many Newton steps as
necessary to meet the stopping criteria of the relative difference of two iterates to be below 1071°. In Figure 7,
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the number of Newton iterations is plotted versus the time step for the multiplicative scheme using four layers
of overlap. In particular, the total number of Newton iterations per time step determines the height of the
columns, whereas each column is subdivided to display the number of Newton iterations per Richardson step
within each time step. The first observation to be made is that the total number of Newton iterations per time
step is almost constant, as already suggested by the stable behaviour of the multiplicative scheme. Moreover,
the number of Newton iterations in each Richardson step is very low. Starting from the solution of the previous
time step, it only takes four Newton iterations in the first Richardson step, three in the second, and between
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one and two in the subsequent steps. Nevertheless, the efficiency of the scheme can further be improved by
employing an inexact strategy.

To this end, only one single Newton step is performed in each Richardson step. Figure 8 shows the resulting
iteration count for the multiplicative scheme versus the time steps for different numbers of overlapping layers.
Up to eight layers, almost no difference between the exact and the inexact method can be observed. This means
that the number of Newton steps per time step reduces significantly to the number of Richardson steps per time
step. We remark that the resulting number of Newton steps per time step for the inexact strategy seems to be
bounded from below by the number of Newton steps for the first Richardson step of the exact strategy. Thus, if
the size of the overlap further increases, the iteration count for the inexact method becomes worse than the one
for the exact method. However, in the reasonable range between four and eight layers of overlap, the inexact
strategy is clearly superior.
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