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A MULTILEVEL PRECONDITIONER FOR THE MORTAR METHOD
FOR NONCONFORMING P1 FINITE ELEMENT ∗
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Abstract. A multilevel preconditioner based on the abstract framework of the auxiliary space method,
is developed for the mortar method for the nonconforming P1 finite element or the lowest order
Crouzeix-Raviart finite element on nonmatching grids. It is shown that the proposed preconditioner
is quasi-optimal in the sense that the condition number of the preconditioned system is independent
of the mesh size, and depends only quadratically on the number of refinement levels. Some numerical
results confirming the theory are also provided.
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1. Introduction

The mortar method is a special domain decomposition methodology, which appears to be very attractive
to the scientific computing community since it can handle situations where meshes on different subdomains
need not align across the interfaces. The matching between the discretizations on adjacent subdomains is only
enforced weakly. In [6], Bernardi et al. first introduced the basic concept for mortar methods, and applied it
for coupling spectral elements with finite elements. Since then, the methodology has been extensively used
and analyzed by many authors. In [4], Ben Belgacem studied the mortar method under a primal hybrid finite
element formulation. Meanwhile, some extensions to the three dimensional problem, and to using dual basis
for the Lagrange multiplier space were considered, cf. [5,7,16,28]. Recently, much work has been devoted
towards constructing efficient iterative solvers for the discrete system resulting from the mortar finite element
discretization. The first approaches were based on the iterative substructuring method, see for instance [1–3,12].
Multigrid methods for the mortar finite element have also been considered. Gopalakrishnan and Pasciak [14]
presented a variable V -cycle multigrid, while Braess et al. [8], and Wohlmuth [29] established a W -cycle multigrid
based on the hybrid formulation which gives rise to a saddle point problem. We note that Braess et al. [9] have
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recently constructed a subspace cascadic multigrid method for the mortar finite element based on a saddle point
formulation.

There have been some interests in the construction and implementation of the mortar method for the lowest
order Crouzeix-Raviart (CR) finite element or the nonconforming P1 finite element. Marcinkowski [17] first
presented the standard mortar method for the CR finite element. This has been further extended by Rahman
et al. in their recent work, cf. [23], where the standard mortar condition has been replaced by a new approximate
mortar condition. Based on the first approach, Xu and Chen [33] introduced an optimal W-cycle multigrid
method for the discrete system, with a convergence rate which is independent of the mesh size and the level
of refinements. Recently developed domain decomposition methods for elliptic problems with discontinuous
coefficients using the CR mortar finite element can be found in [18,19,22,23].

Multilevel preconditioning methods have also received many researchers’ attention for solving large algebraic
systems resulting from finite element approximation of partial differential equations [31,34]. The objective of
this paper is to propose an effective multilevel preconditioner for the CR mortar finite element. Using the so-
called auxiliary space technique developed in [20,32], also see [10,21,27], we propose a multilevel preconditioner
for the CR mortar finite element. We choose the conforming P1 mortar finite element space as the auxiliary
space. A recently developed effective multilevel preconditioner for the conforming P1 mortar finite element,
cf. [13], is used as the preconditioner for the auxiliary space. The new multilevel preconditioner is shown to
have the same quasi-optimal convergence behavior as the auxiliary preconditioner. The condition number of
the preconditioned system is independent of the mesh size, and only quadratically dependent on the number of
refinement levels.

The rest of this paper is organized as follows. In Section 2, we introduce our discrete problem, in Section 3 we
describe the multilevel preconditioner for the conforming P1 mortar finite element. In Section 4, we construct
our multilevel preconditioner for the CR mortar finite element. Condition number estimate of the multilevel
preconditioner will be given in Section 5. In the last section, some numerical results supporting the theory will
be presented.

2. Mortar method for the nonconforming P1 finite element

For simplicity, we consider the following model problem{
−�u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ R2 is a bounded polygonal domain, and f ∈ L2(Ω). The variational formulation of the problem (2.1)
is to find u ∈ H1

0 (Ω) such that
a(u, v) = (f, v) ∀v ∈ H1

0 (Ω), (2.2)

where the bilinear form a(·, ·) is given as

a(u, v) =
∫

Ω

∇u · ∇v dx ∀u, v ∈ H1(Ω),

and (f, v) =
∫
Ω fv dx.

Remark. It is not difficult to extend the results of this paper to a more general second order elliptic problem.
We now introduce the mortar finite element method of [17] for solving (2.1), where the nonconforming P1

finite element is used for the discretization. Let Ω be partitioned into a set of nonoverlapping polygonal
subdomains {Ωi} such that Ω =

⋃N
i=1 Ωi and Ωi ∩Ωj = ∅, i 	= j. We consider only the case where the partition

is geometrically conforming, that is, the subdomains are arranged so that the intersection Ωi ∩ Ωj for i 	= j
is either an empty set, an edge or a vertex. This intersection, if it is an edge, is called an interface and will
have two sides each being an edge of one of the two neighboring subdomains. The skeleton Γ =

⋃N
i=1 ∂Ωi\∂Ω
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is decomposed into a set of disjoint open straight segments γm (1 ≤ m ≤ M) (edges of subdomains) called the
mortars, such that

Γ =
M⋃

m=1

γ̄m, γm ∩ γn = ∅, if m 	= n.

If γm is an open edge of a subdomain Ωi, we refer to it as a mortar side of Ωi, and we denote it by γm(i).
Consequently, the other side of γm(i), which is an edge of another subdomain say Ωj occupying the same
geometrical space as that of γm(i), is referred to as the corresponding nonmortar side of Ωj, and is denoted
by δm(j).

For i = 1, . . . , N , let T1,i be the initial shape regular triangulation of Ωi with the mesh size h1
i . The overall

triangulation generally does not match at the subdomain interfaces. Let the global mesh
⋃

i T1,i be denoted by T1

and the corresponding global mesh size denoted by h1 = maxi h1
i . We refine the triangulation T1 to produce T2

by joining the edge midpoints of the triangles in T1. The mesh size h2
i in the triangulation T2 is then given by

h2
i = h2

i /2. Repeating the process for l times, l = 1, . . . , N , we get an l times refined triangulation Tl with the
mesh size hl

i = hl
i2

−l (l = 1, . . . , L). Let the global mesh size on the level l be hl = maxi hl
i (l = 1, . . . , L).

At the finest level L, locally in each subdomain Ωi, we use the nonconforming P1 or the lowest order CR
finite element space, VL,i, whose functions are piecewise linear on the triangulation TL,i, determined uniquely
by their values at the edge midpoints, and vanishing at the edge midpoints of the boundary ∂Ω. The sets of
edge midpoints, also referred to as the nonconforming P1 or the CR nodal points, those belonging to Ωi, ∂Ωi

and ∂Ω are denoted by ΩCR
L,i , ∂ΩCR

L,i and ∂ΩCR
L , respectively. Consequently, the functions of VL,i are piecewise

linear on each triangle of TL,i, continuous at the CR nodes of ΩCR
L,i \∂ΩCR

L,i , and equals to zero at the CR nodes
of ∂ΩCR

L,i ∩ ∂ΩL.
Let

ṼL =
N∏

i=1

VL,i = {vL| vL|Ωi
= vL,i ∈ VL,i}·

Due to nonmatching meshes along subdomain interfaces, each interface γm, where γm = γm(i) = δm(j),
1 ≤ m ≤ M , inherits two independent 1D triangulations TL(γm(i)) and TL(δm(j)). Consequently, there are
two sets of CR nodes belonging to γm, the midpoints of the elements belonging to TL(γm(i)) and TL(δm(j)), we
denote them by γCR

L,m(i) and δCR
L,m(j), respectively. Additionally, we introduce an auxiliary test space SL(δm(j))

defined as

SL(δm(j)) := {v | v ∈ L2(δm(j)), and v is piecewise constant on the
elements of the nonmortar triangulation TL(δm(j))}· (2.3)

The dimension of SL(δm(j)) is equal to the number of midpoints on the δm(j), i.e. to the number of elements
on δm(j). For each nonmortar edge δm(j), let QL,δm(j) : L2(γm) → SL(δm(j)) be the L2-projection operator
defined by

(QL,δm(j)v, w)L2(δm(j)) = (v, w)L2(δm(j)) ∀w ∈ SL(δm(j)), (2.4)

where (·, ·)L2(δm(j)) denotes the L2 inner product in the space L2(δm(j)).
We now define the following mortar finite element space for the nonconforming P1 finite element, associated

with the finest level L:

VL =
{

vL| vL ∈ ṼL, QL,δm(j)

(
vL|δm(j)

)
= QL,δm(j)

(
vL|γm(i)

)
, for ∀γm ∈ Γ

}
·

Let
aL,i(u, v) :=

∑
K∈TL,i

∫
K

∇u · ∇vdx ∀u, v ∈ VL,i,
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and

aL(u, v) :=
N∑

i=1

aL,i(u, v).

The nonconforming P1 mortar finite element approximation of the problem (2.2) then is to find uL ∈ VL such
that

aL(uL, vL) = (f, vL) ∀vL ∈ VL, (2.5)

where (f, vL) =
∑N

i=1

∫
Ωi

fvLdx.
We define

‖v‖2
L,i := aL,i(v, v) and ‖v‖2

L :=
N∑

i=1

‖v‖2
L,i, ∀v ∈ VL.

From [17], we know that the discrete problem (2.5) has a unique solution. Moreover, the following error estimate
can be found in [17]: Let u and uL be the solutions of (2.2) and (2.5), respectively, then

‖u − uL‖2
L ≤ Ch2

L

N∑
i=1

|u|2H2(Ωi)
.

Next we define the operator AL : VL → VL as follows:

(ALvL, wL) = aL(vL, wL) ∀vL, wL ∈ VL.

Then (2.5) can be rewritten as:
ALuL = fL, (2.6)

where fL = QLf , and QL is the L2-projection from the space L2(Ω) to VL. In the following two sections, we
design our multilevel preconditioner for (2.6).

3. A multilevel preconditioner for the conforming P1 mortar FE

In this section, we briefly describe the mortar method for the conforming P1 finite element, cf. [6], and then
formulate the multilevel preconditioner for the method, developed in [13]. In the following section, we will use
this preconditioner to construct our multilevel preconditioner for the discrete system (2.6).

Let W̃l,i be the continuous piecewise linear finite element space over the triangulation Tl,i, whose functions
have zero trace on ∂Ω. Let

W̃l =
N∏

i=1

W̃l,i,

for all l = 1, . . . , L. Obviously, the subspaces {W̃l} are nested, that is, we have

W̃1 ⊆ · · · ⊆ W̃L.

We now describe the conforming P1 mortar finite element method on the finest level L. In order to specify
the mortar interface condition, we need to introduce some trace spaces. Let M̄L(γm(i)) and M̄L(δm(j)) be
the continuous piecewise linear function space corresponding to the triangulation TL(γm(i)) and TL(δm(j)),
respectively. In addition, we define an auxiliary test space ML(δm(j)) as a subspace of the space M̄L(δm(j)) such
that its functions are constants on elements that intersect the ends of δm(j). Based on the above preparation,
we can now define the following conforming P1 mortar finite element space

WL = {vL ∈ W̃L | ∀δm(j) ⊂ Γ,

∫
δm(j)

(vL,i − vL,j)ϕds = 0, ∀ϕ ∈ ML(δm(j))}·
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The conforming P1 mortar finite element approximation of the problem (2.2) on the finest level L, is to find
uL ∈ WL such that

âL(uL, vL) = (f, vL), ∀vL ∈ WL, (3.1)
where

âL(uL, vL) :=
N∑

i=1

∫
Ωi

∇uL · ∇vLdx.

It is shown in [6] that (3.1) has a unique solution.
Let Q̂L,δm(j) : L2(γm) → ML(δm(j)) be the L2-projection, i.e.,

(Q̂L,δm(j)v, wL) = (v, wL) ∀wL ∈ ML(δm(j)).

It is known that, cf. [8],

‖(I − Q̂L,δm(j))v‖L2(γm) ≤ Ch
1
2
L |v|H 1

2 (γm)
∀v ∈ H

1
2 (γm). (3.2)

Define the operator ÂL : WL → WL as follows:

(ÂLvL, wL) = âL(vL, wL) ∀vL, wL ∈ WL.

In [13], an effective multilevel preconditioner B̂L for ÂL has been designed. In the following, we briefly describe
this preconditioner.

First, we define the space Ŝl(δm(j)) by

Ŝl(δm(j)) = {v | v is continuous piecewise linear on Tl(δm(j))
and vanishes at the endpoints of δm(j)}·

Accordingly, we define a projection operator ΠL,δm(j) : L2(γm) → ŜL(δm(j)) as follows [6,14]:∫
δm(j)

(ΠL,δm(j)v)χds =
∫

δm(j)

vχds, ∀χ ∈ ML(δm(j)).

This projection is known to be stable in L2(γm) and H
1/2
00 (γm) [6,8], that is

‖ΠL,δm(j)v‖L2(δm(j)) ≤ C‖v‖L2(γm(i)),

‖ΠL,δm(j)v‖H
1/2
00 (δm(j))

≤ C‖v‖
H

1/2
00 (γm(i))

.

As in [13], we introduce an extension operator Zγm : L2(γm) → W̃L,j on each interface γm as follows:

Zγmv :=
L∑

l=1

Fl,δm(j) (Pl,δm(j) − Pl−1,δm(j))ΠL,δm(j)v, ∀v ∈ L2(γm),

where Fl,δm(j) is the trivial zero extension operator on the level l with respect to the nonmortar subdomain,
and Pl,δm(j) is the L2 projection operator from ŜL(δm(j)) to Ŝl(δm(j)), where we set P0,δm(j) := 0.

Next we define an intergrid transfer operator Zi : W̃l,i → WL in terms of Zγm by means of

Ziv :=

⎧⎪⎨
⎪⎩

v −
∑

δm(i)⊂∂Ωi
Zδm(i)v|Ω̄i∩δm(i)

on Ω̄i,

Zγm(i)v|Ω̄i∩γm(i)
on Ω̄s(γm(i)),

0 elsewhere,
(3.3)
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where Ω̄s(γm(i)) denotes the nonmortar subdomains with γm(i) ⊂ ∂Ωi as mortar edges. It is easy to check that
Ziv ∈ WL. Based on the intergrid transfer operator, we can provide a decomposition of the space WL, that is
(cf. [13])

WL =
L∑

l=1

N∑
i=1

ZiW̃l,i.

We now introduce an inexact bilinear form bl,i(·, ·) : W̃l,i × W̃l,i → R as

bl,i(vl,i, wl,i) :=
∑

x∈Nl,i

vl,i(x)wl,i(x), vl,i, wl,i ∈ W̃l,i,

where Nl,i is the set of conforming P1 nodal points of the triangulation Tl,i in Ω̄i \ ∂Ω. The corresponding
projection like operator T̃l,i : WL → W̃l,i can be defined by

bl,i(T̃l,iv, vl,i) := âL(v, Zivl,i), vl,i ∈ W̃l,i.

Let
Tl,i := ZiT̃l,i : WL → WL.

Then the preconditioned system can be expressed by

T := B̂LÂL :=
L∑

l=1

N∑
i=1

Tl,i.

The multilevel preconditioner B̂L has the following algebraic form (cf. [13] for details)

B̂L :=
L∑

l=1

N∑
i=1

ZiRl,i(ZiRl,i)T ,

where Zi is the algebraic representation of Zi, and Rl,i is the prolongation matrix from W̃l,i → W̃L,i (cf. [13]
for details). It states in [13] that the condition number is proportional to the square of the number of refinement
levels.

Theorem 3.1. There holds that [13]

cH2âL(v, v) ≤ âL(B̂LÂLv, v) ≤ CL2âL(v, v), ∀v ∈ WL.

By adding a coarse space solver, based on a continuous vertex basis function for each subdomain vertex, we
could eliminate the dependence of H in the above theorem [13].

Remark 3.2. For the case of two subdomains, we have [13]

câL(v, v) ≤ âL(B̂LÂLv, v) ≤ CâL(v, v), ∀v ∈ WL.

As shown in [13], the algorithm can be efficiently implemented. One application of the preconditioner involves
applying the BPX preconditioner once within each subdomain, and the matrices Zi and Zt

i once on the whole
domain. The cost of applying the BPX preconditioner is O(h−2), and that of Zi or Zt

i is O(h−1) resulting in a
total of O(h−2) operations (h is the mesh size).
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4. A multilevel preconditioner for the nonconforming P1 mortar FE

In this section, we will use the idea from [20,32] to construct our multilevel preconditioner for the mortar
finite element method in Section 2. In doing so, we make an assumption which follows.

As in a standard mortar finite element method, e.g. the conforming P1 mortar finite element, the nodal values
on the nonmortar sides are determined by the nodal values on the neighboring mortar sides. In case of the
nonconforming P1 mortar finite element, however, the nodal values on a nonmortar side may depend on nodal
values from several mortar sides. This complicates the design of an algorithm, see [22,23] for illustrations.

We assume therefore that nodal values on a nonmortar side will depend only on the nodal values on the
corresponding mortar side. There are several ways to achieve this. The first way is to avoid having corner
triangles in the triangulation of each subdomain. A corner triangle is a triangle with two of its sides lying on
the subdomain boundary and sharing a subdomain vertex. The second way is to make sure that the triangle
edge touching a subdomain vertex on the mortar side, is smaller than the corresponding triangle edge touching
the vertex on the nonmortar side. The third way is to replace the exact mortar condition with an approximate
one as the one given in a recent paper [23]. However, this was not the only reason why an approximate mortar
condition was introduced in that paper, see later in this section.

We now move into constructing our multilevel preconditioner. We start by introducing a transfer operator
from the space WL to VL. Define an operator ΞL,δm(j) : ṼL → ṼL by

(ΞL,δm(j)(v))(x) =
{

(QL,δm(j)(v|γm(i)
− v|δm(j)

))(x) x ∈ δCR
L,m(j),

0 otherwise.
(4.1)

Then for any v ∈ W̃L ⊂ ṼL, let

v∗ = v +
M∑

m=1

ΞL,δm(j)(v).

It is easy to check that v∗ ∈ VL. Based on this observation, we define the following transfer operator IL : WL →
VL, which will appear in the following multilevel algorithm:

ILv = v +
M∑

m=1

ΞL,δm(j)(v), ∀v ∈ WL. (4.2)

For the operator IL, we have:

Lemma 4.1. For any v ∈ WL, it holds that

‖v − ILv‖L2(Ω) ≤ ChL‖v‖L, (4.3)
‖ILv‖L ≤ C‖v‖L. (4.4)

Proof. At first, we prove (4.3). It is easy to see that

‖v − ILv‖2
L2(Ω) ≤ C

M∑
m=1

‖ΞL,δm(j)(v)‖2
L2(Ω). (4.5)
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For each nonmortar edge δm(j), we can derive

‖ΞL,δm(j) (v) ‖2
L2(Ω) ≤ Ch2

L

∑
x∈δCR

L,m(j)

(
ΞL,δm(j) (v) (x)

)2

= Ch2
L

∑
x∈δCR

L,m(j)

(
QL,δm(j)

(
v|γm(i)

− v|δm(j)

))2

(x)

≤ ChL

∥∥∥QL,δm(j)

(
v|γm(i)

− v|δm(j)

)∥∥∥2

L2(γm)

≤ ChL

∥∥∥v|γm(i)
− v|δm(j)

∥∥∥2

L2(γm)
. (4.6)

On the other hand, owing to v ∈ WL and (3.2), we have

∥∥∥v|γm(i)
− v|δm(j)

∥∥∥2

L2(γm)
≤ 2

(∥∥∥v|γm(i)
− Q̂L,δm(j)

(
v|γm(i)

)∥∥∥2

L2(γm)

+
∥∥∥v|δm(j)

− Q̂L,δm(j)

(
v|δm(j)

)∥∥∥2

L2(γm)

)

≤ ChL

(∣∣∣∣v|γm(i)
|2
H

1
2 (γm)

+ |v|δm(j)

∣∣∣∣
2

H
1
2 (γm)

)

≤ ChL

(
|v|2H1(Ωi)

+ |v|2H1(Ωj)

)
. (4.7)

Combining the above three inequalities, (4.5)–(4.7), gives (4.3). We now prove (4.4). By using the definition of
the operator ΞL,δm(j) and a similar argument as in the proof of (4.3), we can derive

‖v − ILv‖L ≤ C‖v‖L,

which, together with the triangle inequality, yields (4.4). �

Next we describe a basis for the space VL. Let {φ̃k
L|k = 1, . . . , nL} be the nodal basis of ṼL. By the definition

of the operator ΞL,δm(j) , the basis of VL consists of functions of the form:

φk
L = φ̃k

L +
M∑

m=1

ΞL,δm(j)(φ̃
k
L). (4.8)

From the above definition, we can see that there exist two kinds of basis functions of the space VL:
• Case 1. φk

L and φ̃k
L corresponding to all nodal points in the interior of each subdomain, except those

belonging to the triangles having an edge on a mortar side, are identical.
• Case 2. φk

L corresponding to all nodal points on each mortar edge γm ⊂ Γ, and all nodal points in
the interior of each subdomain, those belonging to the triangles having an edge on a mortar side, are
defined by (4.8).

The above classification is based on the following. A basis function of the first case has nonzero support only
inside the subdomain it belongs to and zero support across interfaces. A basis function of the second case, on
the other hand, may have nonzero support across interfaces. By definition, the basis functions corresponding
to the subdomain interior nodal points those lying closest to the mortar sides may have nonzero supports on
the neighboring nonmortar side. Those nodal points have therefore been removed from the first case, and have
been included in the second case. However, this is easily avoided if the standard mortar condition is modified
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in the way shown in [23]. It is easy to check that φk
L corresponding to all nodal points on each nonmortar edge

δm(j) ⊂ Γ are equal to zero. Consequently, one can see that these φk
L from Case 1 and Case 2 form a basis of VL.

Moreover, by the definition of mortar space and (4.8), we know that the basis function φk
L has local support as

the basis function of a standard finite element space, say for instance the conforming P1 finite element. This is
not the case for the conforming P1 mortar finite element [14].

We now define a smoothing operator RL which corresponds to the Richardson iteration, as the following:

RLv =
nL∑
k=1

(v, φk
L)φk

L ∀v ∈ VL. (4.9)

Lemma 4.2. It holds that
ch2

L(v, v) ≤ (RLv, v) ≤ Ch2
L(v, v) ∀v ∈ VL.

Proof. We only need to prove
‖φk

L‖L2(Ω) = O(h2
L). (4.10)

Indeed, for the basis function φk
L which are in the interior of each subdomains, using a standard scaling argument,

it is easy to check that ‖φk
L‖L2(Ω) = O(h2

L). For the second case basis function, by the definition (4.4), we know

‖φk
L‖L2(Ω) ≤ ‖φ̃k

L‖L2(Ω) + ‖ΞL,δm(j)(φ̃
k
L)‖L2(Ω)

≤ Ch2
L + ChL‖QL,δm(j)(φ̃

k
L)‖L2(δm(j))

≤ Ch2
L + ChL‖φ̃k

L‖L2(γm(i))

≤ Ch2
L.

Then for all basis function in VL, (4.10) is true. Using a similar argument as in [30,31], we know that Lemma 4.2
is valid. �

Finally we can define our multilevel preconditioner for the mortar-type CR element method as follows:

BL = RL + ILB̂LIt
L, (4.11)

where It
L : VL → WL is given by:

(It
Lv, w) = (v, ILw) ∀v ∈ VL, w ∈ WL.

5. Condition number estimate

By the Lemmas 4.1 and 4.2 and the abstract theorem developed in [15,32], we know that the following
theorem is true.

Theorem 5.1. Let BL be defined as in (4.11), and assume that there exists a linear operator JL : VL → WL

such that
‖JLv‖L ≤ C‖v‖L, ∀v ∈ VL, (5.1)

and
‖v − ILJLv‖L2(Ω) ≤ ChL‖v‖L ∀v ∈ VL. (5.2)

Then, we have
cH2aL(v, v) ≤ aL(BLALv, v) ≤ CL2aL(v, v) ∀v ∈ VL.

For the case of two subdomains we have

caL(v, v) ≤ aL(BLALv, v) ≤ CaL(v, v) ∀v ∈ VL.
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Proof. The proof follows immediately from the abstract framework of the auxiliary space method [32],
Lemmas 4.1, 4.2, and Theorem 3.1. �

We note here that the proposed multilevel preconditioner for the CR mortar finite element has the same
quasi optimality as the multilevel preconditioner for the conforming P1 mortar finite element.

It follows from Theorem 5.1 that, if we can show (5.1) and (5.2) for the spaces VL and WL, then BL will be
a good multilevel preconditioner for the CR mortar finite element.

At first, we introduce a transfer operator EL from ṼL to W̃L, which is similar to the one constructed in [33].
On each subdomain, we define an operator EL,i : VL,i → WL,i as follows:

• Case 1. If x ∈ ΩP
L,i, and x 	∈ ∂Ω, then

(EL,iv)(x) =
1

q(x)

∑
Ki

v|Ki(x)

where ΩP
L,i is the set of the vertices of the triangulation TL,i that are in Ω̄i, and the sum is taken over

all triangles K ∈ TL,i having x as their common vertex, and q(x) being the number of those triangles.
• Case 2. If x ∈ ∂Ω ∩ ∂ΩP

L,i, then
(EL,iv)(x) = 0,

where ∂ΩP
L,i is the set of vertices of the triangulation TL,i that are on ∂Ωi.

For the operator EL,i, we have:

Lemma 5.2. For any v ∈ VL,i, it holds that

|EL,iv|H1(Ωi) ≤ C‖v‖L,i, (5.3)
‖EL,iv − v‖L2(Ωi) ≤ ChL‖v‖L,i, (5.4)

‖EL,iv − v‖L2(γm) ≤ Ch
1/2
L ‖v‖L,i, (5.5)

where γm is an edge of Ωi.

Proof. The proof of (5.3) and (5.4) can be found in [24,25,35]. For the proof of (5.5), we refer to Lemma 3.3
in [17]. �

Based on the operator EL,i, we define an intergrid transfer operator EL : ṼL → W̃L as follows: for any
v = (v1, . . . , vN ) ∈ ṼL,

ELv = (EL,1v1, . . . , EL,NvN ) ∈ W̃L.

We then define the transfer operator JL as follows:

JLv = ELv +
M∑

m=1

Ξ̃L,δm(j)(ELv), (5.6)

where Ξ̃L,δm(j) : W̃L → W̃L is given by

(Ξ̃L,δm(j)(v))(x) =
{

(ΠL,δm(j)(v|γm(i)
− v|δm(j)

))(x) x ∈ δP
L,m(j),

0 otherwise.
(5.7)

Here δP
L,m(j) denotes the set of the vertices belonging to δm(j). It is easy to check that JLv ∈ WL.
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Theorem 5.3. For any v ∈ VL, it holds that

‖v − JLv‖L2(Ω) ≤ ChL‖v‖L, (5.8)
‖JLv‖L ≤ C‖v‖L. (5.9)

Proof. We prove (5.8) first. Using Lemma 5.2, we get

‖v − JLv‖2
L2(Ω) ≤ C

(
‖v − ELv‖2

L2(Ω) +
M∑

m=1

∥∥∥Ξ̃L,δm(j) (ELv)
∥∥∥2

L2(Ω)

)

≤ C

(
h2

L‖v‖2
L +

M∑
m=1

∥∥∥Ξ̃L,δm(j) (ELv)
∥∥∥2

L2(Ω)

)
. (5.10)

For each nonmortar edge δm(j),

‖Ξ̃L,δm(j) (ELv) ‖2
L2(Ω) ≤ Ch2

L

∑
x∈δP

L,m(j)

(
Ξ̃L,δm(j) (ELv) (x)

)2

= Ch2
L

∑
x∈δP

L,m(j)

(
ΠL,δm(j)

(
(ELv)|γm(i)

− (ELv)|δm(j)

))2

(x)

≤ ChL

∥∥∥ΠL,δm(j)

(
(ELv)|γm(i)

− (ELv)|δm(j)

)∥∥∥2

L2(δm(j))

≤ ChL

∥∥∥(ELv)|γm(i)
− (ELv)|δm(j)

∥∥∥2

L2(γm)

≤ ChL

(∥∥∥(ELv)|γm(i)
− v|δm(j)

∥∥∥2

L2(γm)

+
∥∥∥v|δm(j)

− (ELv)|δm(j)

∥∥∥2

L2(δm(j))

)
:= ChL (K1 + K2) . (5.11)

It follows immediately from Lemma 5.2 that

K2 ≤ ChL‖v‖2
L,j. (5.12)

In the following, we estimate the term K1. Since v ∈ VL, we get

∥∥∥(ELv)|γm(i)
− v|δm(j)

∥∥∥2

L2(γm)
≤ 2

∥∥∥(ELv)|γm(i)
− QL,δm(j)

(
v|γm(i)

)∥∥∥2

L2(γm)

+ 2
∥∥∥QL,δm(j)

(
v|δm(j)

)
− v|δm(j)

∥∥∥2

L2(δm(j))
. (5.13)

For the second term in the above inequality, cf. [17,33], we have

∥∥∥QL,δm(j)

(
v|δm(j)

)
− v|δm(j)

∥∥∥
L2(δm(j))

≤ Ch
1/2
L ‖v‖L,j. (5.14)
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For the first term on the right hand side of (5.13), we deduce that

∥∥∥(ELv)|γm(i)
− QL,δm(j)

(
v|γm(i)

)∥∥∥2

L2(γm)
≤ 2

∥∥∥∥(EL,iv)|γm(i)
− QL,δm(j)

(
(EL,iv)|γm(i)

)∥∥∥∥
2

L2(γm)

+ 2
∥∥∥∥QL,δm(j)

(
(EL,iv)|γm(i)

)
− v|γm(i)

)∥∥∥∥
2

L2(δm(j))
:= F1 + F2. (5.15)

Applying a similar argument as in the proof of (5.14), and Lemma 5.2 we get

F1 ≤ ChL|EL,iv|2H1(Ωi)
≤ ChL‖v‖2

L,i. (5.16)

For F2, using Lemma 5.2 and the stability results of QL,δm(j) [17], we have

F2 ≤ C
∥∥∥(EL,iv)|γm(i)

− v|γm(i)

∥∥∥2

L2(γm(i))
≤ ChL‖v‖2

L,i, (5.17)

which, together with (5.10)–(5.13), and (5.14)–(5.16), gives (5.8).
We now prove (5.9). In fact, by the definition of EL, and Lemma 5.2, we deduce

‖v − JLv‖2
L ≤ ‖v − ELv‖2

L +
M∑

m=1

‖Ξ̃L,δm(j)(ELv)‖2
L

≤ C(‖v‖2
L +

M∑
m=1

‖Ξ̃L,δm(j)(ELv)‖2
L). (5.18)

Using a similar argument as in the proof of (5.8), we can derive

‖Ξ̃L,δm(j)(ELv)‖2
L ≤ C

(
‖v‖2

L,i + ‖v‖2
L,j

)
. (5.19)

Combining (5.18) with (5.19) yields (5.9). �

Based on Theorem 5.3, we know that (5.1) is true. On the other hand, by Lemma 4.1 and Theorem 5.3, we
have

‖v − ILJLv‖L2(Ω) ≤ ‖v − JLv‖L2(Ω) + ‖(I − IL)JLv‖L2(Ω)

≤ ChL‖v‖L + ChL‖JLv‖L

≤ ChL‖v‖L,

which is (5.2). The assumptions of Theorem 5.1 are thereby satisfied.

Remark 5.4. Using the same technique developed in this paper, we can construct an effective multilevel
preconditioner for the mortar Wilson element proposed in [26].

Remark 5.5. Normally, when we consider a multigrid or a multilevel method for the mortar method, we always
have to require that the mesh sizes hl

i, for all i, are comparable (cf. [8,9,15] for instance). It is a big challenge to
design a multilevel or a multigrid algorithm that is independent of the mesh size ratio hl

i/hl
j across interfaces,

or even mildly dependent. This topic will be further investigated.
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Figure 1. Initial nonmatching grids as a result of calling Matlab’s triangulation routine
initmesh separately for each subdomain, with the input parameter hmax = 0.2 and 0.35 (on
the left) and hmax alternatingly equal to 0.15 and 0.30 (on the right).

Remark 5.6. Although, by using the domain decomposition framework, we have already succeeded to design
a number of powerful preconditioners for the nonconforming P1 mortar element on problems with discontinuous
coefficients, it is still a difficult task to design a multilevel preconditioner for the nonconforming P1 mortar
element for the problem. It is a topic of further investigation.

6. Numerical results

We present in this section the numerical results from our experiments. The model problem is defined on a
unit square domain, Ω = (0, 1)2, with the forcing function f equal to 2π2 sin(πx) sin(πy), and a homogeneous
Dirichlet boundary condition resulting in the exact solution u equals to sin(πx) sin(πy). At first, the domain Ω
is partitioned into a dx × dy rectangular subdomains (subregions). Initially, each subdomain Ωi is triangulated
using Matlab’s discretization routine initmesh with the mesh size parameter hmax as an input parameter. The
parameter hmax is one of two real numbers defining two different mesh sizes distributed among the subdomains
in a checkerboard fashion. Starting from the initial triangulation (l = 1), we decompose each triangle into four
subtriangles in each refinement step. The resulting grid is nonmatching across all interfaces, and we use the
CR mortar finite element [17] for the discretization of the model problem. The resulting discrete problem is
solved using the Preconditioned Conjugate Gradients (PCG) method with the multilevel preconditioner for the
CR mortar finite element proposed in this paper. For the smoothing operator we consider only the Richardson
type here as it is simple, and turned out to be very effective for our case.

For our first experiment, we consider two different partitions of the domain, one with two subdomains without
resulting in any internal crosspoint, cf. Figure 1 (left picture), and one with nine subdomains resulting in four
internal crosspoints, cf. Figure 1 (right picture). In the first case there are no corner triangles in the entire
triangulation, and we choose the mortar side with hmax = 0.35. In the second case there are corner triangles in
the triangulation of each subdomain, and we choose mortar sides with the smallest hmax = 0.15. Clearly, the
assumption made in the beginning of Section 4 is supported in both cases.

The numerical results are presented in Tables 1 and 2, showing, for each test case, the following quantities:
number of levels (‘levels’), number of interior degrees of freedom (‘dofs’), condition number estimate (‘κ’) with
the number of iterations (‘iter’, inside parentheses) required to reduce the residual norm by the factor 10−6,
and the L2 norm of the error (‘errorL2’) in the computed solution. For the comparison, we also include the
corresponding numerical results from applying, to our model problem, the original multilevel preconditioner for
the conforming P1 mortar finite element as proposed in [13]. Mortar sides are chosen so the best convergence
results are observed, i.e., mortar sides with hmax = 0.35 and hmax = 0.30 in the first and second partitions,
respectively.
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Table 1. The multilevel Schwarz for the conforming P1 mortar element and the proposed
multilevel Schwarz for the CR mortar element on dx × dy = 2 × 1 nonmatching grids.

Multilevel for P1 mortar Multilevel for CR mortar
Levels Dofs ErrorL2 κ (iter) Dofs ErrorL2 κ (iter)

3 377 4.269 e–3 15.00 (21) 1208 1.131 e–3 19.21 (26)
4 1585 1.069 e–3 17.58 (24) 4912 2.839 e–4 20.51 (30)
5 6497 2.672 e–4 19.46 (27) 19 808 7.103 e–5 21.72 (32)
6 26 305 6.679 e–5 20.95 (30) 79 552 1.776 e–5 22.90 (34)

Table 2. The multilevel Schwarz for the conforming P1 mortar element and the proposed
multilevel Schwarz for the CR mortar element on dx × dy = 3 × 3 nonmatching grids.

Multilevel for P1 mortar Multilevel for CR mortar
Levels Dofs ErrorL2 κ (iter) Dofs ErrorL2 κ (iter)

3 597 2.742 e–3 50.17 (25) 1976 1.109 e–3 59.17 (34)
4 2525 6.903 e–4 68.36 (32) 7984 2.737 e–4 77.90 (40)
5 10 413 1.729 e–4 89.69 (39) 32 096 6.772 e–5 103.79 (43)
6 42 317 4.326 e–5 114.49 (44) 128 320 1.692 e–5 134.37 (50)

Generally speaking, the condition number estimates and the iteration counts as seen from the tables, support
our theory presented in this paper. The numerical results simply reflect the fact that the convergence behavior
of the multilevel preconditioner for the CR mortar finite element is similar to that of the original multilevel
preconditioner for the conforming P1 mortar finite element. Table 1 corresponds to the initial discretization
shown in the left picture of Figure 1, representing the case without any crosspoint. As seen from the table,
the condition number estimates depend very mildly on the number of refinement levels. Table 2 corresponds to
the initial discretization shown in the right picture of Figure 1, where there are four internal crosspoints. We
observe asymptotically a quadratic and a linear dependence of the condition number estimates and the iteration
counts, respectively, on the number of grid refinement levels. This is in agreement with our theory.

In our next experiment, we show how the multilevel Schwarz methods depend on the subdomain size using
two different subdomain sizes H and keeping the level L fixed. We note that the level L is proportional to
log2(H/hL), and hence fixing L implies that the ratio H/hL should be kept fixed. We start with the partition
dx × dy = 3 × 3 with hmax = 0.15 and 0.30 as in Figure 1, and halve the subdomain size by doubling the
number of subdomains in both directions and using hmax = 0.075 and 0.15. The mortar sides are chosen in the
same way as before, i.e., in case of the nonconforming P1 mortar element, on the side of smallest hmax, and in
case of the conforming P1 mortar element, on the side of largest hmax. The numerical results are presented in
Table 3. For a fixed level, as we halve the subdomain size, the condition number estimate quadruples, showing
a quadratic dependence of the condition number on the mesh size H . This is in accordance with the theory.
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Table 3. Illustrating the H-dependence of the multilevel Schwarz for the conforming P1 mortar
element and the proposed multilevel Schwarz for the CR mortar element.

Multilevel for P1 mortar Multilevel for CR mortar
dx × dy = 3 × 3 dx × dy = 6 × 6 dx × dy = 3 × 3 dx × dy = 6 × 6

Levels Dofs κ (iter) Dofs κ (iter) Dofs κ (iter) Dofs κ (iter)
2 137 39.29 (18) 604 140.14 (37) 484 43.03 (29) 1944 160.99 (44)
3 597 50.17 (25) 2428 181.86 (43) 1976 59.17 (34) 7776 217.24 (53)
4 2525 68.36 (32) 9964 242.20 (50) 7984 77.90 (40) 31 104 284.75 (61)
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suggestions which lead to an improved presentation of this paper.
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