
ESAIM: M2AN 43 (2009) 399–428 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2009009 www.esaim-m2an.org

NUMERICAL APPROACHES TO RATE-INDEPENDENT PROCESSES
AND APPLICATIONS IN INELASTICITY ∗
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Abstract. A conceptual numerical strategy for rate-independent processes in the energetic formu-
lation is proposed and its convergence is proved under various rather mild data qualifications. The
novelty is that we obtain convergence of subsequences of space-time discretizations even in case where
the limit problem does not have a unique solution and we need no additional assumptions on higher
regularity of the limit solution. The variety of general perspectives thus obtained is illustrated on
several specific examples: plasticity with isotropic hardening, damage, debonding, magnetostriction,
and two models of martensitic transformation in shape-memory alloys.
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1. Introduction

Fully rate independent models for processes describing material models occur as limits when the loading rate
slows down to 0. This makes the model simpler by omitting all effects due to interior relaxation processes.
However, the resulting rate-independent mathematical models are somehow degenerate. In particular, in many
cases solutions for a given initial datum are no longer unique and may have jumps in time.

Nevertheless such models, being a subclass of the generalized standard materials [16,21], are widely used
in engineering as they provide good mesoscopic descriptions of hysteretic response during isothermal evolution
processes. Mathematical analysis of such processes, based on the notion of energetic solutions introduced
in [41,44], has been intensively scrutinized and developed in particular in [30,34,37,39,40,42,43,56]. However,
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except for some very particular cases [7,18,22,23,31,57], there has been no numerical analysis developed for such
processes so far.

This paper provides a universally-applicable numerical scheme in the context of rate-independent processes
and its convergence analysis. In particular, it is suited to cases where we do not have uniqueness of solutions
and where solutions may even have jumps in time. In such a situation we cannot hope to establish convergence
rates nor convergence of the whole approximation sequence. We rather obtain that subsequences exist that
converge to solutions, which may be considered as weak version of “stability” of our scheme. In fact, any limit
that is obtained from a converging subsequence of approximations solves the rate-independent system, which
may be considered as weak form of “consistency”.

To present the main ideas and results we expose first a simplified case. Consider a Banach space Q serving
as a state space. The system is described by an energy functional E : Q → R and a dissipation potential
R : Q → [0,∞], the latter being convex and homogeneous of degree 1. Imposing a time-dependent loading
f : [0, T ] → Q∗, the classical evolution law is the following differential inclusion, which is a (generalized) force
balance:

f(t) ∈ ∂R
(dq

dt
(t)
)

+ E′(q(t)) a.e. on [0, T ], (1.1)

where ∂ stands for the subdifferential and E′ is the Gâteaux derivative of E. Rate independence means the fact
that q solves the problem for the loading f if and only if for all λ > 0 the function qλ : t �→ q(λt) solves (1.1)
with loading fλ : t �→ f(λt). This property easily follows from ∂R(v) = ∂R(λv), which implies that (1.1) is a
nonsmooth problem as v �→ ∂R(v) is not continuous.

However, for general E that is nonsmooth or nonconvex, we need a weak form of (1.1), which allows for
solutions q having jumps with respect to time t and for energies E being nonsmooth or nonconvex. In the rate-
independent setting such a weak form is given via the energetic formulation (S) and (E). A process q : [0, T ] → Q
is called an energetic solution if, for all t ∈ [0, T ], we have

stability (S): ∀ q̃ ∈ Q: E
(
q(t)

)− 〈f(t), q(t)
〉 ≤ E

(
q(0)

)− 〈f(0), q(0)
〉

+R(q̃−q(t)), (1.2a)

energy balance (E): E
(
q(t)

)− 〈f(t), q(t)
〉

+
∫ t

0

R(dq) = E
(
q(0)

)− 〈f(0), q(0)
〉− ∫ t

0

〈df
dt

(s), q(s)
〉
ds (1.2b)

where 〈·, ·〉 is the duality pairing between Q∗ and Q. As observed in [42], every differentiable solution q of (1.2)
solves (1.1). To see this one exploits that R is homogeneous of degree 1, giving (i) ∂R(v) ⊂ ∂R(0) for all v and
(ii) η ∈ ∂R(v) if and only if η ∈ ∂R(0) and 〈η, v〉 = R(v). Now (S) implies f ∈ ∂R(0)+E′(q), and differentiating
(E) with respect to time gives 〈E′(q), dq

dt 〉+R(dq
dt ) = 0. Together with (i) and (ii) we obtain (1.1). The opposite

inclusion that (1.1) implies (1.2) holds if E is uniformly convex, see [42].
The importance of the energetic formulation (1.2) is that it is derivative free and thus allows for more general

functionals and solutions. In particular approximation results are easier as we will not need higher regularity
of solutions. A more general setting on topological spaces is introduced in Section 2.1, as the main ideas
introduced in this work are not restricted to Banach spaces and can be applied to a wider class of problems
than exploited in this paper. In particular, they are adjusted to treat geometrically nonlinear problems like
finite-strain elastoplasticity [35,36,38], gradient-Young measures as considered in [31], and for brittle fracture
and crack propagation, see [7].

First we replace the full space Q by a family (Qh)h>0 of finite-dimensional subspaces that exhausts Q in
the sense that each q ∈ Q is the limit of a sequence (qh)h>0 with qh ∈ Qh. Second we introduce a partition
0 = t0τ < t1τ < ... < tkτ

τ = T of the time interval [0, T ] with fineness τ := max{tjτ−tj−1
τ ; j = 1, ..., kτ}. The

algorithm we propose is the following incremental problem, combining the fully implicit Euler method with the
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finite-dimensional discretization: given [q0]h ∈ Qh, find q1h,τ , . . . , q
kτ

τ,h ∈ Qh satisfying

Minimize E(qh) − 〈f(tkτ ), qh〉 +R(qh−qk−1
τ,h )

subject to qh ∈ Qh.

}
(1.3)

Again it is the rate-independence that makes the time-incremental problem especially simple. We have to
minimize the sum of the total energy and the dissipated energy in the given time step, but the length of the
time step does not appear. However the evolutionary character is inherited by the occurrence of qk−1

τ,h . The
intrinsic link between this time-incremental minimization problem and the energetic formulations is manifested
in Proposition 2.3, where we prove that the discrete solutions satisfy a discrete version of the stability condition
(S) and upper and lower a priori energy bounds replacing (E), see (1.2).

The convergence result in Theorem 2.6 for the simultaneous passage to the limit τ, h→ 0 relies on an abstract
joint recovery condition (see (2.19)), which was first established in [45] for general Γ-convergence results. If
qτ,h : [0, T ] → Qh ⊂ Q denote the piecewise constant interpolants of the solutions of (1.3), then there exists a
subsequence (τn, hn) → (0, 0) and a solution q : [0, T ] → Q of (1.2) such that qn = qτn,hn

satisfies the following
convergence properties for all t ∈ [0, T ]:

qn(t) → q(t), E(qn(t)) → E(q(t)),
∫ t

0

R(dqn) →
∫ t

0

R(dq), (1.4)

see Theorem 2.6 for the exact statement. In fact, the result is a consequence of the abstract Γ-convergence
theory developed in [45]. The point is that the concept of Γ-convergence is sufficiently general to deal with
approximation of functionals via finite-dimensional subspaces.

In summary, the abstract results can be reduced to two independent principles that are close to the well-known
principles of stability and consistency in numerical analysis. First, the discrete energetic a priori estimates show
that the solutions qτ,h are bounded independently of τ and h, which is a weak form of stability. Second, the
Γ-convergence theory implies that any limit point for (τ, h) → (0, 0) of the approximations qτ,h is an energetic
solution, which is weak form of consistency that is commonly used for problems where we have to expect multiple
solutions.

In Section 3, the generality is reduced to problems posed on Banach spaces, which in turn allows for various
specific constructions directly applicable in concrete situations. For instance, the joint recovery condition is
satisfied, if E is weakly lower semicontinuous and strongly continuous while R is weakly continuous. Moreover,
while the above version is restricted to the conforming case Qh ⊂ Q, we now can also allow for a constraint
mapping Ξ : Q → X , which will be added to E in the form of the penalty term 1

ε‖Ξ(·)‖α
X . In such a way

nonconforming methods can be included as well. For the augmented functional Eε := E + 1
ε‖Ξ(·)‖α

X we obtain
the discretized solutions qτ,h,ε. The abstract convergence result presented in Theorem 2.6 is already fitted to
this situation and convergence is obtained under a possible additional restriction 0 < hn < H(εn).

This is illustrated in Section 4 on various examples from continuum mechanics of deformable bodies, namely
plasticity with hardening, two models of martensitic transformation, damage, debonding, and magnetostriction.
In particular, it accompanies a large variety of existing models by conceptual finite-element discretizations
supported by rigorous analysis as far as convergence concerns, and in some cases offers new results or improves
known results as far as mere existence of solutions concerns.

2. The abstract setting and approximation result

In this section we first present the abstract energetic formulation for rate-independent systems. This formu-
lation encompasses a wide variety of engineering models for materials with internal variables or/and activated
processes on the boundary. The advantage of the energetic formulation is that it is derivative free and thus
applies in situations where the constitutive laws are not continuous and where solutions may have jumps.
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Moreover, the approach is based in incremental minimization and thus methods for the calculus of variations
are applicable. Second we present a simplified version of the Γ-convergence theory developed in [45]. The
basis of this work is the general observation that numerical approximation for the energetic formulation of
rate-independent processes can be interpreted as a special case of Γ-convergence.

We emphasize that our formulation is kept in the rather abstract form of rate-independent systems (Q, E ,D),
where Q is the state space, D the dissipation distance (see below), and E a general Gibbs-type stored energy
E : [0, T ]×Q → R∪{+∞}, which may be more general than the form E(t, q) = E(q)−〈f(t), q〉 used in Section 1.
Ultimately this general form may not be needed for the applications treated later in Section 4; however, adapting
the theory to a Banach-space setting and/or the mentioned special form E(t, ·) = E + f(t) would not simplify
the presentation, but would make it even less lucid, notationally less elegant, and destroy the comparability
with the developments in [45], which are our basis. Moreover, the general form for E is needed for treating time-
varying Dirichlet boundary conditions qD : [0, T ] → Q that give rise to the form E(t, q) = E(q−qD(t))−〈f(t), q〉,
see e.g. in [14,40]. Finally, we mention that the abstract theory applies also in cases where there is no linear
(Banach-space) structure, namely for the evolution of gradient-Young measures [31], for brittle fracture and crack
propagation [7], and for finite-strain elastoplasticity [35,36,38], although we will not discuss these applications
here.

2.1. The energetic formulation

We consider a state space Q (independent of time) as a topological space. Typically, but not necessarily it is
subset of a Banach space. We will distinguish between a “non-dissipative” component u ∈ U and a “dissipative”
component z ∈ Z of the state q = (u, z) ∈ Q := U × Z.

For a fixed time horizon T > 0, we consider a Gibbs-type stored energy E : [0, T ] × Q → R ∪ {+∞}. The
further ingredient is a time-independent dissipation distance D : Z × Z → [0,+∞] which will later determine
the dissipated energy and which is assumed to satisfy

∀z1, z2, z3∈Z:
(D(z1, z2) = 0 ⇔ z1 = z2

)
& D(z1, z3) ≤ D(z1, z2) + D(z2, z3). (2.1)

Note that we allow for an unsymmetric distance D, i.e., D(z1, z2) �= D(z2, z1) is allowed, and strictly spoken D
is only a quasi-metric. Let us agree to write occasionally D(q1, q2) with the meaning D(z1, z2) for q1 = (u1, z1)
and q2 = (u2, z2).

In case of Q having a linear structure, D(z1, z2) := R(z2 − z1) (as in Sect. 3 below) and convexity of both,
E(t, ·) and R, we want to address an evolution of q = q(t) governed by the doubly nonlinear inclusion

∂R
(∂q
∂t

)
+ ∂qE(t, q) � 0 (2.2)

where “∂” denotes the subdifferential and ∂qE(t, q) the “partial” subdifferential of E(t, ·). Under some additional
qualification, it is equivalent (see [37,42]) to the energetic formulation based on Definition 2.1 below which,
however, works under much weaker data qualification where (2.2) loses any sense. In fact, this definition
is based on a global-minimization hypothesis competing with the maximum-dissipation principle (or rather
Levitas’ realizability principle [32]). In mathematical terms, we are led to stability

∀q̃ ∈ Q: E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃), (2.3)

and energy equality

E(t, q(t)) + VarD(q; s, t) = E(s, q(s)) +
∫ t

s

P(r, q(r)) dr, where (2.4a)

P(t, q) :=
∂

∂t
E(t, q) and VarD(q; s, t) := sup

j∑
i=1

D(q(ti−1), q(ti)
)

(2.4b)
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with the supremum taken over all j ∈ N and over all partitions of [s, t] in the form s = t0 < t1 < ... < tj−1 <
tj = t. The particular terms in (2.4a) represent the stored energy at time t, the energy dissipated by changes
of the internal variable during the time interval [s, t], the stored energy at the initial time s, and the work done
by external loadings during the time interval [s, t]; and P is then the power.

Definition 2.1. The process q : [0, T ] → Q is called an energetic solution to the initial-value problem given
by (Q, E ,D, q0) if

(i) it is stable in the sense that (2.3) holds for all t ∈ [0, T ];
(ii) the energy balance (2.4a) holds for all 0 ≤ s < t ≤ T ; in particular t �→ P(t, q(t)) is in L1(0, T ); and
(iii) the initial condition q(0) = q0 holds.

For the analysis of the rate-independent problems, it is convenient to introduce the sets of stable states S(t)
for any t ∈ [0, T ] by putting

S(t) :=
{
q∈Q; E(t, q) <+∞ & ∀q̃∈Q : E(t, q) ≤ E(t, q̃) + D(q, q̃)

}· (2.5)

This allows us to recast the stability condition (i) in Definition 2.1 in the form q(t) ∈ S(t) for all t ∈ [0, T ]. Yet,
more importantly, we may address closeness properties of S(t).

In Section 3, we will specialize this setting by introducing an additional linear structure, i.e. Q will be (a
subset of) a Banach space equipped with the weak or the norm topology. This will allow us to make the abstract
properties more specific.

2.2. The abstract assumptions

For our abstract approximation we consider three positive parameters τ , h, and ε. Here τ > 0 represents
the fineness of a time discretization by a partition (not necessarily equidistant) of the time interval [0, T ]. The
parameter h > 0 denotes a discretization of the state space Q by a subset Qh again having the structure
Qh := Uh ×Zh. We assume that each Qh is closed and the family (Qh)h>0 is dense in the sense that for each
q ∈ Q there exist qh ∈ Qh such qh → q. The small parameter ε > 0 is used for a possible approximation of the
functionals E and D to be implemented more easily when restricted on Qh (see also Rem. 2.8 below) or just
to guarantee the convergence in some more complicated cases. Typically, a penalization of some constraints
may be involved by this way, cf. Section 4. These last approximations lead to Eε : [0, T ]×Q → R ∪ {+∞} and
Dε : Z × Z → R ∪ {+∞}.

Using the indicator function δQh
: Q → {0,+∞}, i.e. δQh

= 0 on Qh and δQh
= +∞ on Q\Qh, it will

occasionally be convenient to introduce the restriction to Qh also by replacing Eε and Dε respectively by

Eε,h = Eε + δQh
and Dε,h : (q, q̃) �→ Dε(q, q̃) + δQh

(q) + δQh
(q̃). (2.6)

We now collect a few basic assumptions. We include the limit case (Q, E ,D) by setting Q0 = Q, E0 = E , and
D0 = D and by including ε = 0 and h = 0 if desired. Like in (2.1), we assume that each Dε, ε ≥ 0, satisfies a
quasi-metric property:

∀z1, z2, z3∈Z:
(Dε(z1, z2) = 0 ⇔ z1 = z2

)
& Dε(z1, z3) ≤ Dε(z1, z2) + Dε(z2, z3). (2.7)

For proving existence results we will need the following lower semicontinuity and compactness results:

∀ ε, h ≥ 0: Dε : Qh×Qh → R∞ are lower semicontinuous. (2.8)

Next we need a “Γ-liminf estimate” for the family (Dε)ε>0 on (Qh×Qh)h>0 in the limit ε, h→ 0:

z∈Z, zh,ε∈Zh, z = lim
(h,ε)→(0,0)

zh,ε

z̃∈Z, z̃h,ε∈Zh, z̃ = lim
(h,ε)→(0,0)

z̃h,ε

⎫⎬
⎭⇒ D(z, z̃) ≤ lim inf

(h,ε)→(0,0)
Dε(zh,ε, z̃h,ε). (2.9)
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Note that our conditions (2.7) and (2.9) imply zh,ε → z whenever min(D(zh,ε, z),D(z, zh,ε)) → 0 and (zh,ε)h,ε>0

is compact, i.e. the “positivity condition” [45], Assumption (2.4).
The conditions for the energy functionals are as follows:

∀ ε, h ≥ 0 ∀ t∈ [0, T ] ∀ a∈R: the sublevels { q∈Qh ; Eε(t, q)≤a } are sequentially compact in Q. (2.10)

To pass to the limit will need a uniform inf-compactness of the collection (Eε,h)ε,h>0:

∀ a∈R ∀ (tε,h, qh,ε) ∈ [0, T ]×Qh, with Eε(tε,h, qh,ε) ≤ a

∃ q∈Q ∃ subsequence {qhn,εn}n∈N: q = lim
n→∞ qhn,εn . (2.11)

Like for Dε we also need a “Γ-liminf estimate” for the family (Eε,h)ε,h>0:

∀ (t, q)∈[0, T ]×Q ∀ qh,ε∈Qh with q = lim
(h,ε)→(0,0)

qh,ε: E(t, q) ≤ lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε). (2.12)

Note that (2.9) and (2.12) are only “lower” Γ-liminf estimates for (Dε,h)ε,h>0 and (Eε,h)ε,h>0. The corresponding
upper estimates are consequences of the central condition (2.19) postulating existence of joint recovery sequences.

So far all conditions above relate to static concepts. The next three conditions relate to the time dependence,
which involves the power of external forces Pε(t, q) = ∂

∂tEε(t, q). The first assumption provides a uniform
energetic control of the power Pε, viz.,

∃ c0, c1∈R ∀ ε > 0 ∀ q∈Qh with Eε(0, q) < +∞: Eε(·, q) ∈ C1([0, T ]) and (2.13a)

∀ t∈ [0, T ]:
∣∣Pε(t, q)

∣∣ ≤ c1
(Eε(t, q)+c0

)
. (2.13b)

Using a Gronwall estimate we immediately obtain the growth restrictions

∀ s, t ∈ [0, T ]: Eε(s, q) + c0 ≤ ec1|t−s|(Eε(t, q)+c0
)
. (2.14)

The second assumption is a conditioned (with respect to sublevels of E) equi- (with respect to q) uniform (with
respect to t) continuity of P(·, q):

∀a∈R ∀σ > 0 ∃ δ > 0 ∀s, t∈ [0, T ] ∀q∈Q: if E(0, q) ≤ a and |t−s| < δ, then
∣∣P(s, q) − P(t, q)

∣∣ < σ. (2.15)

The third assumption on Pε,h concerns the convergence of Pε,h for ε, h → 0. It is a “continuous convergence”
but conditioned by the fact that the considered arguments are in the associated sets of stable states

Sε,h(t) :=
{
q∈Qh; Eε(t, q) <+∞ & ∀q̃∈Qh: Eε(t, q) ≤ Eε(t, q̃) + Dε(q, q̃)

}
, (2.16)

and that the energies are bounded:

If (εn, hn, tn) → (0, 0, t), qn ∈ Sεn,hn(tn), qn → q, and

sup
n∈N

Eεn,hn(tn, qn) < +∞, then lim
n→∞Pεn(tn, qn) = P(t, q). (2.17)

Recall that Dε and D only depend on the z-component of q = (u, z) and we have agreed to write occasionally,
as e.g. in (2.16), Dε(q, q̃) in the meaning of Dε(z, z̃).

All the assumptions of the previous subsection are either on the family (Dε,h)ε,h>0 or on the family (Eε,h)ε,h>0.
The final condition links the behavior of these two families and thus provide the upper Γ-limit estimates which
are needed to complement the lower Γ-limit estimate for D in (2.9) and for E in (2.12). Sometimes, in particular
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when some holonomic-type constraints are involved in E , it occurs that a convergence criterion of the type
h ≤ H(ε), for some H : R+ → R+ monotone and satisfying H(ε) → 0 for ε→ 0, is needed.

Hence, our final condition in the interaction of Eε,h and Dε,h is the following conditioned upper semicontinuity
of the sets of stable states:

∀ q, q̃∈Q ∀ tn∈ [0, T ] with tn → t ∀ εn, hn → 0 with hn ≤ H(εn)

∀ qn ∈ Sεn,hn(tn) with qn → q and sup
n∈N

Eεn,hn(tn, qn) < +∞: q ∈ S(t). (2.18)

The above assertion says, in other words, that the graph of the set-valued mapping S : [0, T ] ⇒ Q contains
Kuratowski’s limes superior of the graphs of Sε,h : [0, T ] ⇒ Qh at least if restricted to states with bounded
energy as in (2.11) and if h ≤ H(ε) is taken into account. This upper semicontinuity result establishes a certain
stability of sets of stable states that is crucial for the convergence analysis.

The following result gives a necessary condition for the above property (2.18). For various other conditions
we refer to [45], Section 2. The result is based on the existence of a “joint recovery sequence” under suitable
qualifications:

∀ q, q̃∈Q ∀tn∈ [0, T ] with tn → t ∀ εn, hn → 0+ with hn ≤ H(εn)

∀qn ∈ Sεn,hn(tn) with qn → q and supn∈N
Eεn,hn(tn, qn) < +∞

∃ q̃n ∈ Qhn with q̃n → q̃:

lim sup
n→∞

(Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn)
) ≤ E(t, q̃)+D(q, q̃)−E(t, q). (2.19)

Lemma 2.2. Conditions (2.12) and (2.19) imply (2.18).

Proof. By (2.12) we have E(t, q) ≤ lim infn→∞ Eεn,hn(tn, qn) ≤ supn∈N
Eεn,hn(tn, qn) < ∞, where the last

inequality is assumed in (2.19). Next, for q̃ ∈ Q arbitrary, choose q̃n ∈ Qhn as in (2.19). By Definition (2.16),
qn ∈ Sεn,hn(tn) says that Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn) ≥ 0. Using the limsup estimate in (2.19)
gives

0 ≤ lim sup
n→∞

Eεn,hn(tn, q̃n) + Dεn,hn(qn, q̃n) − Eεn,hn(tn, qn) ≤ E(t, q̃) + D(q, q̃) − E(t, q). (2.20)

Since q̃ was arbitrary, definition (2.5) gives q ∈ S(t). �

2.3. Approximate solutions

We consider now τ > 0, and a partition 0 = t0τ < t1τ < ... < tkτ
τ = T with

tτi − tτi−1 ≤ τ for i = 1, ..., kτ . (2.21)

We do not assume this partition to be equidistant. Further, we consider an approximation [q0]h,ε of the initial
condition q0 and the following recursive incremental formula: we put q0τ,h,ε = [q0]h,ε a given initial condition and
for k = 1, ..., kτ we define qk

τ,h,ε, an approximation of a solution at time tkτ , to be a solution of the minimization
problem

Minimize Eε,h(tkτ , q) + Dε,h(zk−1
τ,h,ε, z)

subject to q = (u, z)∈Qh.

}
(2.22)

We define the approximate solution qτ,h,ε : [0, T ] → Q as a piecewise constant approximation, namely

qτ,h,ε(t) :=

{
qk
τ,h,ε for tk−1

τ < t ≤ tkτ , k = 1, ..., kτ ,

q0τ,h,ε = [q0]h,ε for t = 0.
(2.23)
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We also need the “retarded” approximate solution qRτ,h,ε : [0, T ] → Q with

qRτ,h,ε(t) :=

{
qk
τ,h,ε for tk−1

τ ≤ t < tkτ , k = 1, ..., kτ ,

qkτ

τ,h,ε for t = T.
(2.24)

The following result is well known in the theory of rate-independent processes, cf. [14,41]. However, as it is
relatively easy to prove and contributes considerably to the understanding of the numerical analysis, we provide
a full proof.

Proposition 2.3 (discrete stability, energy inequalities, a priori estimates). Let (2.7), the lower semicontinuity
(2.8)–(2.10) of the approximate stored and the dissipated energies, and smoothness of external forcing (2.13)
hold. Then (2.22) has a solution qk

τ,h,ε for any k = 1, ..., kτ and qτ,h,ε is stable in the sense

qτ,h,ε(t) ∈ Sε,h(tkτ ) for any t ∈ (tk−1
τ , tkτ ], k = 0, ..., kτ , (2.25)

and satisfies the discrete upper energy inequality

Eε,h(s, qτ,h,ε(s)) + VarDε,h
(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≤

∫ s

r

∂Eε,h

∂t

(
t, qRτ,h,ε(t)

)
dt (2.26)

for r = tk1
τ < s = tk2

τ with k1, k2 ∈ Z ∩ [0, kτ ], as well as a similar discrete lower energy inequality

Eε,h(s, qτ,h,ε(s)) + VarDε,h
(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≥

∫ s

r

∂Eε,h

∂t

(
t, qτ,h,ε(t)

)
dt (2.27)

for r = tk1
τ < s = tk2

τ but now only for k1, k2 ∈ N ∩ [1, kτ ]. Moreover, we have the a priori estimates

Eε,h(tkτ , q
k
τ,h,ε) ≤ ec1tk

τ
(Eε,h(0, q0τ,h,ε) + c0

)− c0 for all k = 0, 1, . . . , kτ , (2.28)

VarDε,h
(qτ,h,ε; 0, T ) =

kτ∑
k=1

Dε,h

(
qk−1
τ,h,ε, q

k
τ,h,ε

) ≤ ec1T
(Eε,h(0, q0τ,h,ε)+c0

)
. (2.29)

Proof. The existence of qk
τ,h,ε solving (2.22) follows from (2.8) and (2.10) via a recursive argument for k =

1, ..., kτ . Hence qτ,h,ε and qRτ,h,ε exist, too.
The discrete stability condition (2.25) follows by using successively that qk

τ,h,ε is a solution to (2.22) and the
triangle inequality (2.1) for Dε,h:

Eε,h(tkτ , q
k
τ,h,ε) ≤ Eε,h(tkτ , q̃) + Dε,h(qk−1

τ,h,ε, q̃) −Dε,h(qk−1
τ,h,ε, q

k
τ,h,ε) ≤ Eε,h(tkτ , q̃) + Dε,h(qk

τ,h,ε, q̃) (2.30)

for any k = 1, ..., kτ .
As to (2.26), we again use that qk

τ,h,ε solves (2.22) and, comparing it with qk−1
τ,h,ε, we get

Eε,h(tkτ , q
k
τ,h,ε) − Eε,h

(
tk−1
τ , qk−1

τ,h,ε

)
+ Dε,h

(
qk−1
τ,h,ε, q

k
τ,h,ε

) ≤ Eε,h

(
tkτ , q

k−1
τ,h,ε

)− Eε,h

(
tk−1
τ , qk−1

τ,h,ε

)
=
∫ tk

τ

tk−1
τ

∂Eε,h(t, qk−1
τ,h,ε)

∂t
dt. (2.31)
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Now the estimate (2.26) follows after a summation for k = k1+1, ..., k2. As to the estimate (2.27), by the
stability (2.30) written for qk−1

τ,h,ε q̃ = qk
τ,h,ε, we find

Eε,h

(
tkτ , q

k
τ,h,ε

)− Eε,h

(
tk−1
τ , qk−1

τ,h,ε

)
+ Dε,h

(
qk−1
τ,h,ε, q

k
τ,h,ε

) ≥ Eε,h

(
tkτ , q

k
τ,h,ε

)− Eε,h

(
tk−1
τ , qk

τ,h,ε

)
=
∫ tk

τ

tk−1
τ

∂Eε,h(t, qk
τ,h,ε)

∂t
dt. (2.32)

By a summation for k = k1+1, ..., k2, we obtain (2.27).
For the a priori estimates we use (2.13) and (2.14) to estimate the right-hand side of (2.31) as

∫ tk
τ

tk−1
τ

∂Eε,h(t, qk−1
τ,h,ε)

∂t
dt ≤

∫ tk
τ

tk−1
τ

c1
(Eε,h(t, qk−1

τ,h,ε) + c0
)
dt

≤
∫ tk

τ

tk−1
τ

c1ec1(t−tk−1
τ )

(Eε,h(tk−1
τ , qk−1

τ,h,ε) + c0
)
dt =

(
ec1(t

k
τ−tk−1

τ )−1
)(Eε,h(tk−1

τ , qk−1
τ,h,ε) + c0

)
. (2.33)

We insert this into (2.31) and omit Dε,h ≥ 0 to obtain Eε,h(tkτ , qk
τ,h,ε)+c0 ≤ ec1(t

k
τ−tk−1

τ )(Eε,h(tk−1
τ , qk−1

τ,h,ε)+c0).
By induction for k = 1, 2, ..., kτ , assertion (2.28) follows.

Inserting (2.28) into (2.33) and summation for k = 1, ..., kτ gives

∫ T

0

∂Eε,h(t, qRτ,h,ε)
∂t

dt =
kτ∑

k=1

∫ tk
τ

tk−1
τ

∂Eε,h(t, qk−1
τ,h,ε)

∂t
dt

≤ (Eε,h(0, q0τ,h,ε) + c0
) kτ∑

k=1

(
ec1tk

τ − ec1tk−1
τ
)

=
(Eε,h(0, q0τ,h,ε) + c0

)(
ec1T − 1

)
. (2.34)

Inserting this into (2.26) with r = 0 = t0τ and s = T = tkτ
τ and using (2.28) once again yields (2.29). �

Remark 2.4 (approximation of initial conditions). Note that (2.32) does not work for k = 1 because we
(intentionally) did not assume “numerical” stability of the approximate initial condition, i.e. [q0]h,ε ∈ Sε,h(0)
which would only very hardly be guaranteed in concrete numerical schemes. This is also why (2.27) does not
hold with r = 0, unlike (2.26). See also the remark after the statement of Theorem 2.6.

Remark 2.5 (two-sided energy estimate). The two-sided estimate (2.26)–(2.27) is not so crucial for the existence
proof itself. In fact, the upper estimate (2.26) is used only for the quite essential a priori bounds (2.28) and
(2.29). But the lower bound (2.27) is not really needed, see the remarks right after the statement of Theorem 2.6.
However, the two-sided estimate (2.26)–(2.27) has its own relevance as it can be used to check implementation of
numerical calculations. Namely, evaluating the terms in (2.26)–(2.27) at each time step and checking a posteriori
the estimate (2.26)–(2.27) may detect, e.g., a failure of the minimization procedure, which we have to apply to
solve numerically the global optimization problem (2.22) at every current time step; see [3,4,30,31,47,57,58] for
numerical results in concrete examples. Violation of (2.26) or (2.27) mean that qk

τ,h,ε or qk−1
τ,h,ε cannot be stable,

respectively.

2.4. Convergence of the approximate solutions

Now we investigate the asymptotics for (τ, h, ε) → (0, 0, 0). Like for space discretization, we do not assume
the partition of the time interval [0, T ] to be nested, but we assume that both time and space discretization
refines when τ → 0 and h → 0, respectively. Namely (2.21) for the time discretization, while for the spatial
discretization this refinement requirement is implicitly contained in (2.18). Later we will assume explicitly (3.2)
to prove (2.19) to obtain (2.18).
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Theorem 2.6. Assume that (2.7)–(2.13), (2.15), (2.17), (2.18), and (2.21) hold and that the initial condition q0
is stable:

q0 ∈ S(0) (2.35)

and is approximated by [q0]h,ε ∈ Qh in the sense

[q0]h,ε → q0 and Eε(0, [q0]h,ε) → E(0, q0). (2.36)

Then, there exists a subsequence {(τn, hn, εn)}n∈N with (τn, hn, εn) → (0, 0, 0) for n → ∞ satisfying the con-
vergence criterion hn ≤ H(εn) from condition (2.18) and a process q : [0, T ] → Q being an energetic solution
according to Definition 2.1 such that the following holds:

(i) for all t ∈ [0, T ] we have Eεn(t, qn(t)) → E(t, q(t));
(ii) for all t ∈ [0, T ] we have VarDεn

(qn; 0, t) → VarD(q; 0, t);
(iii) for all t ∈ [0, T ] we have zn(t) → z(t) in Z;
(iv) ∂

∂tEεn(·, qn(·)) → ∂
∂tE(·, q(·)) in L1(0, T );

(v) for all t ∈ [0, T ] there is a subsequence {nl}l∈N such that lim
l→∞

unl
(t) = u(t) in U ; hence lim

l→∞
qnl

(t) = q(t)

in Q,
where we wrote shortly qn = (un, zn) for qRτn,hn,εn

= (uR
τn,hn,εn

, zR
τn,hn,εn

). If additionally, Eε(t, ·, z) : U → R∞
is strictly convex, then (v) can be strengthened into qn(t) → q(t) in Q (without further subsequences).

The proof of this result is a direct adaptation of the proof of Theorem 3.4 in [45]. However, we are more
general as we do not require [q0]h,ε to be stable as in [45], equation (3.6). However, an easy check of the proof
shows that the stability of the approximations [q0]h,ε is not needed. In fact, the only use of this stability would
be that the lower energy estimate (2.27) could be extended to k1 = 0. But this estimate is not used as the lower
energy estimate only needed in the limit (ε, h) = (0, 0), see Step 5 in the proof of Theorem 3.4 in [45]. The last
statement of the result is proved in [34], see also [46].

Remark 2.7 (weak versus strong convergence). In the Banach-space setting used in the subsequent sections,
the typical application is that Q = U ×Z is a Banach space equipped with the weak topology. In such cases the
convergences stated in (iii) and (v) mean the weak convergence. However, the additional energy convergence
stated in (i) improves this convergence into strong convergence if E(t, ·) is strictly convex, cf. [65]. In fact, it is
sufficient that the integrand of E(t, ·) is strictly convex in the highest derivatives of u and z.

Remark 2.8 (numerical integration). Another approximation of Eε and Dε involving, e.g., numerical integration
can quite easily be incorporated, too. For this, Eε and Dε in the conditions in Section 2.2 should depend on h in
a more complicated way than by adding δQh

(cf. (2.6)), for instance Eεh and Dεh may be defined by integration
rules rather than by replacing exact integrals. As such a generalization would complicate, in particular Section 3,
and as it will not be used in Section 4, we have omitted it completely.

3. Linear structure

We consider now the case that U and Z are subsets of some reflexive separable Banach spaces U and Z,
respectively. This enables more detailed considerations.

3.1. Setting the data and their approximation

The weak topology, if restricted on bounded convex sets, will play the role of the sequentially compact
topology used in Section 2.1 for (2.8)–(2.12), (2.17), and (2.19). Here we will denote it by “w-lim” or “ w→ ” to
distinguish it from the norm topology which we will denote by “s-lim” or “ s→ ”. In case of non-reflexive spaces
having preduals, we could work with weak* topologies instead of the weak ones. For an abstract parameter h > 0,
we consider finite-dimensional subspaces Uh ⊂ U and Zh ⊂ Z. The concrete constructions of Qh := Uh × Zh
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used in numerical analysis are created by (here an abstract) “(quasi-)interpolation” linear bounded operators
ΠU,h : U → U and ΠZ,h : Z → Z. We put Πh = ΠU,h × ΠZ,h : Q→ Q, and

Uh := ΠU,hU , Zh := ΠZ,hZ, Qh := Uh×Zh = ΠhQ. (3.1)

To guarantee the central condition (2.19), we assume the natural basic approximation property that Πh converges
pointwise to the identity, i.e.

∀q ∈ Q: s-lim
h→0

Πhq = q. (3.2)

The quasi-interpolation operators need not be conformal with constraints involved implicitly in U and Z so that
Qh need not be a subset of Q. As an analytical tool the Γ-convergence approach allow also for such situations
(cf. [45]) but, in order to use the theory from Section 2.1 in a quantitative numerical way, we will always restrict
ourselves on “conformal” situations when

ΠU,hU ⊂ U and ΠU,hZ ⊂ Z; (3.3)

i.e. Qh = ΠhQ ⊂ Q. Possible “nonconformities” can be handled via the penalization parameter ε.
For X another Banach space, it is often useful to consider a mapping Ξ : U × Z → X to describe possible

equality constraints of the form Ξ(u, z) = 0 that may implicitly be involved in the definition of E . Moreover,
like in Section 1, we assume the forcing by f : [0, T ] → U∗ × Z∗ to be given explicitly in E , which covers many
applications (except, e.g., “hard-device” loading of mechanical systems through Dirichlet boundary conditions).
Then, for E : U × Z → R we consider

E(t, u, z) :=
{
E(u, z) − 〈f(t), (u, z)〉 if u ∈ U , z ∈ Z, Ξ(u, z) = 0,
+∞ otherwise. (3.4)

The approximate energy deals with possible incompatibility of the finite-dimensional discretization with the
equality constraints by a penalization of them (cf. [53]):

Eε(t, u, z) :=

{
E(u, z)− 〈f(t), (u, z)〉 +

1
ε

∥∥Ξ(u, z)
∥∥α

X
if u ∈ U , z ∈ Z,

+∞ otherwise.
(3.5)

To satisfy (2.10), we assume a super-linear growth of E to dominate the linear behavior of 〈f(t), ·〉:

lim
q∈Q

‖q‖→∞

E(q)
‖q‖ = +∞. (3.6)

Obviously, (3.4) and (3.5) yield simply ∂
∂tE(t, q) = ∂

∂tEε(t, q) = 〈 ∂
∂tf(t), q〉 and (2.13a) requires

f ∈ C1([0, T ];Q∗). (3.7)

The coercivity (3.6) with (3.7) ensure also (2.13b), (2.15) and (2.17).
A quite canonical way to induce the dissipation distances in simpler cases is through a degree-1 homogeneous

dissipation potentials. For this, we consider K ⊂ Z a closed convex cone with the vertex at 0, R : Z → R a
continuous convex degree-1 homogeneous functional, i.e. R(aż) = aR(ż) for any ż ∈ Z and a ≥ 0. Then we
consider the special case of D defined by

D(z1, z2) :=
{
R(z2 − z1) if z2 − z1 ∈ K,
+∞ otherwise. (3.8)
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Figure 1. Illustration of D(0, ·) for a special case Z := R, R(z) := |z|, K = [0,+∞) (left)
and its approximation by (3.9) (middle) and by (3.10) (right). The last figure depicts also the
original D(0, ·) and the Moreau-Yosida approximation for comparison.

Note that D(z1, z1) = 0 and the triangle inequality (2.1) holds. As R is convex and continuous and K convex
closed, D : Z × Z → R ∪ {+∞} is weakly lower semicontinuous.

If K �= Z, then it might be numerically suitable to avoid the unilateral constraints involved by exact penal-
ization by choosing the approximate potential Dε in the form

Dε(z1, z2) := Rε(z2 − z1) where Rε(z) := R(z) + inf
ẑ∈K

‖z − ẑ‖
ε

· (3.9)

Alternatively, we could also consider

Rε(z) := inf
ẑ∈K

(
R(ẑ) +

‖z − ẑ‖a

aε

)
with a = 1. (3.10)

For a = 2 in (3.10), we would obtain the standard Moreau-Yosida approximation of R + δK which is smooth
(cf. Fig. 1 (right)) and thus often favorable, but since it fails to be homogeneous degree-1; thus the triangle
inequality (2.7) does not hold and its usage would need nontrivial modifications of our theory in Section 2.1. As
K is a cone and a = 1 in (3.10), both Rε from (3.9) and from (3.10) are again homogeneous degree-1 functionals
for all ε > 0, and thus (2.7) holds. As R is convex and continuous and K is convex, Rε is convex and continuous,
implying the weak lower-semicontinuity (2.8) for Rε. Moreover, we always have Rε ≤ R + δK .

The stability (2.35) of the initial condition q0 is, in general, difficult to verify and explicit constructions can
be done in very special cases only. Anyhow, there is one universal way how to design a “gentle start”, namely
taking q0 = (u0, z0) minimizing E(0, ·), i.e. here a solution to the problem

minimize E(u, z) − 〈f(0), (u, z)〉,
subject to Ξ(u, z) = 0, u ∈ U , z ∈ Z.

}
(3.11)

Such a “gentle start” is, in fact, practically the only option applied in engineering simulations.
The other assumptions from Section 2.1 deserve a more detailed proof.

Proposition 3.1 (verification of (2.9), (2.11), and (2.12)). Let E be weakly lower semicontinuous, Ξ : Q→ X
be weakly continuous, and let K be convex and closed, R be convex and also positive on K\{0}, i.e.

∀z∈K: z �= 0 ⇒ R(z) > 0. (3.12)

Then, (2.9), (2.11), and (2.12) with “→” referring to the weak topology hold.

Proof. In view of (3.4), the condition Eε(θ, qh,ε) ≤ a < +∞ in (2.11) implies E(qh,ε) ≤ C + 〈f(θ), qh,ε〉, and
by (3.6) a sequence of {qh,ε}h,ε>0 must be bounded hence it has a subsequence which converges weakly (recall
that we assume reflexivity of Q), which proves (2.11).
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As to (2.9), for z2 − z1 ∈ K we have

lim inf
(h,ε)→(0,0)

Dε(zh,ε, z̃h,ε) = lim inf
(h,ε)→(0,0)

R(z̃h,ε − zh,ε) + inf
ẑ∈K

‖z̃h,ε − zh,ε − ẑ‖
ε

≥ lim inf
(h,ε)→(0,0)

R(z̃h,ε − zh,ε) ≥ R(z̃ − z) = D(z, z̃) (3.13)

because R is weakly lower semicontinuous. If z2 − z1 �∈ K, then inf ẑ∈K ‖z̃ − z − ẑ‖ > 0 because K is closed.
Using also (3.12), we then have

lim inf
(h,ε)→(0,0)

Dε(zh,ε, z̃h,ε) ≥ lim
(h,ε)→(0,0)

inf
ẑ∈K

‖zh,ε − z̃h,ε − ẑ‖
ε

= +∞ = D(z, z̃). (3.14)

As to (2.12), let us distinguish whether Ξ(q) = 0 or Ξ(q) �= 0. The former case ensures the last equality in
the following estimate:

lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε) = lim inf
(h,ε)→(0,0)

E(qh,ε) − 〈f(θ), qh,ε〉 +
1
ε
‖Ξ(qh,ε)‖α

X

≥ lim inf
(h,ε,θ)→(0,0,t)

E(qh,ε) − 〈f(θ), qh,ε〉 ≥ E(q) − 〈f(t), q〉 = E(t, q), (3.15)

where the last inequality is by the weak lower semicontinuity of E. This proves that (2.12) holds with respect
to the weak topology if Ξ(q) = 0. In the case Ξ(q) �= 0, qh,ε

w→ q and the weak continuity of Ξ ensures
lim inf ‖Ξ(qh,ε)‖X ≥ ‖w- lim Ξ(qh,ε)‖X = ‖Ξ(q)‖X > 0. Then, because of the coercivity (3.6) of E, we have

lim inf
θ→t

(h,ε)→(0,0)

Eε(θ, qh,ε) ≥ inf
q̃∈Q

θ∈[0,T ]

[
E−f(θ)

]
(q̃) + lim

(h,ε)→(0,0)

1
ε

∥∥Ξ(qh,ε)
∥∥α

X
= +∞ = E(t, q). �

In view of the above considerations, we have guaranteed the assumptions needed in Theorem 2.6 except
(2.19) and (2.36). This conditions are still to be verified in particular cases, some of them scrutinized in
Sections 3.2–3.4.

Remark 3.2 (BV-estimates). Assuming coercivity of R+ δK on some Banach space Z1 ⊃ Z, i.e.

lim
z∈K, ‖z‖Z1→∞

R(z) = +∞, (3.16)

together with the degree-1 homogeneity will make (3.12) more specific, namely [R+ δK ](z) ≥ c‖z‖Z1 with some
c > 0, hence by (3.8) also D(q1, q2) ≥ c‖z1 − z2‖Z1 , and by the definition of “Var” in (2.4b) then also

VarD(q; 0, T ) ≥ cVar‖·‖Z1
(z; 0, T ). (3.17)

In view of Definition (2.4b) applied now with the norm ‖ · ‖Z1 , the last expression is just the standard total
variation and the estimate (2.29) yields boundedness of zτ,h,ε and thus also the limit z in the bounded-variation
space BV(0, T ;Z1).

3.2. The case K = Z

Let us consider an additional norm | · |, which may induce a weaker topology than the canonical norm making
Q a Banach space.
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Proposition 3.3 (verification of (2.19) and (2.36) for K = Z). Let (3.6) and (3.7) hold, and let α ≥ 1, let
E : Q → R in (3.4) be weakly lower semicontinuous and norm continuous, both Ξ : Q → X and R : Z → R be
weakly continuous, and K = Z (hence Rε ≡ R), and Ξ be also Lipschitz continuous with respect to | · |, i.e.

∃�Ξ ∈ R ∀q1, q2 ∈ Q:
∥∥Ξ(q1) − Ξ(q2)

∥∥
X

≤ �Ξ
∣∣q1 − q2

∣∣ (3.18)

and let the operator Πh satisfies the convergence-rate estimate

∃γ > 0, C ∈ R ∀q ∈ Q:
∣∣q − Πhq

∣∣ ≤ Chγ
∥∥q∥∥. (3.19)

Then (2.19) and (2.36) with q0 ∈ S(0) are satisfied, the last two conditions relying on the convergence criterion

H(ε) = o
(
ε

1
αγ
)

and with q̃h,ε
s→ q̃. (3.20)

Proof. Let us prove (2.19). For any q̃ ∈ Q, with Ξ(q̃) = 0, by (3.18) and (3.19), we have

∥∥Ξ(Πhq̃)
∥∥

X
=
∥∥Ξ(Πhq̃) − Ξ(q̃)

∥∥
X

≤ �Ξ
∣∣q̃ − Πhq̃

∣∣ ≤ C�Ξh
γ
∥∥q̃∥∥. (3.21)

For (h, ε) → (0, 0) with h ≤ H(ε) with H from (3.20) we therefore have

1
ε

∥∥Ξ(Πhq̃)
∥∥α

X
≤ Cα�αΞ

hαγ

ε

∥∥q̃∥∥α → 0. (3.22)

We put q̃h,ε := Πhq̃ for (2.19); note that, in fact, we do not need any explicit dependence on ε except that we
assume h ≤ H(ε). As E is strongly continuous and, by (3.2), q̃h,ε

s→ q̃, and as R is weakly continuous and
qh,ε

w→ q is assumed in (2.19), it holds

lim
h≤H(ε)

(ε,h)→(0,0)

Eε(θ, q̃h,ε) + D(qh,ε, q̃h,ε) = lim
h≤H(ε)

(ε,h)→(0,0)

E(q̃h,ε) − 〈f(θ), q̃h,ε〉 +R(q̃h,ε−qh,ε) +
1
ε

∥∥Ξ(Πhq̃)
∥∥α

X

= E(q̃) − 〈f(t), q̃〉 +R(q̃−q) = E(t, q̃) + D(q, q̃) (3.23)

whenever Ξ(q̃) = 0. Combining this with (2.12), we obtain (2.19) for Ξ(q̃) = 0. If Ξ(q̃) �= 0, then due to the
definition (3.4) the right-hand side in (2.19) is +∞ and (2.19) is fulfilled trivially.

The stability of q0 considered in Theorem 2.6 implies E(0, q0) < +∞, and then the assumption (2.36) is
fulfilled if one chooses

[
q0
]
h,ε

:= Πhq0 in (2.36). Indeed, [q0]h,ε
s→ q0 for h → 0 just by (3.2) and then also

Eε(0, [q0]h,ε) = E(Πhq0) + 1
ε‖Ξ(Πhq0)‖α

X − 〈f(0),Πhq0〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) because E is assumed
norm continuous and because, since the finite energy of q0 implies Ξ(q0) = 0, we can employ the estimate (3.22)
for h ≤ H(ε). �

3.3. The case K �Z

Certain applications to unidirectional processes (like damage, delamination, debonding, or hardening in
plasticity or in ferromagnets) require modeling with K � Z. This needs further finer investigations for which
we consider some topology σ on U ×Z which is finer than the weak one and coarser than the norm one; see the
particular examples in Section 4.

Proposition 3.4 (unconditional convergence for K � Z). Let E : Q → R be weakly lower semicontinuous
and σ-continuous. Assume both R : Z → R and Ξ : Q → X be weakly continuous, and let (3.7), and that the
following attainability condition, expressing certain consistency of the discretization with the constraints given
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by Ξ and K, hold:

∀q, q̃∈Q, Ξ(q) = 0, q̃−q ∈ K, Ξ(q̃) = 0, ∀qh∈Qh, qh
w→ q

∃q̃h∈Qh: q̃h
σ→ q̃,

∥∥Ξ(q̃h)
∥∥

X
≤ ∥∥Ξ(qh)

∥∥
X
, q̃h−qh ∈ K. (3.24)

Then (2.19) with Dε,h from (3.9) is satisfied, now with H ≡ 1, i.e. “unconditionally”. Moreover, the qualification
(2.36) of the stable initial condition q0 holds if

∃q0h ∈ Qh: Ξ(q0h) = 0 & q0h
σ→ q0. (3.25)

Proof. The a priori bound Eε,h(θ, qh,ε) ≤ C assumed in (2.19) means

1
ε

∥∥Ξ(qh,ε)
∥∥α

X
≤ C − E(qh,ε) +

〈
f(θ), qh,ε

〉 ≤ C + sup
q∈Q, θ∈[0,T ]

[
f(θ)−E](q) <+∞ (3.26)

due to (3.6) so that ‖Ξ(qh,ε)‖X = O(ε1/α). In the limit therefore Ξ(q) = 0 because Ξ is assumed weakly
continuous. Thus we take qh,ε from (2.19) for qh in (3.24). As (2.19) is trivially satisfied if Ξ(q̃) �= 0 because
the right-hand side in (2.19) is +∞, we can consider only Ξ(q̃) = 0. Then we can take q̃h from (3.24) for q̃h,ε

in (2.19). Note that q̃h,ε − qh,ε ∈ K in (3.24) ensures Dε,h(qh,ε, q̃h,ε) = R(qh,ε − q̃h,ε) due to Definition (3.9) and
by the assumed weak continuity of R and closeness and convexity of K, we have

lim
(h,ε)→(0,0)

Dε,h(qh,ε, q̃h,ε) = lim
(h,ε)→(0,0)

R(q̃h,ε − qh,ε) = R(q̃ − q) = D(q, q̃). (3.27)

Then, using the σ-continuity and weak lower semicontinuity ofE the continuity of f (see (3.7)), and ‖Ξ(q̃h,ε)‖X ≤
‖Ξ(qh,ε)‖X (see (3.24)), we obtain

lim sup
(h,ε,θ)→(0,0,t)

(
Eε,h(θ, q̃h,ε) + Dε,h(qh,ε, q̃h,ε) − Eε,h(θ, qh,ε)

)
=

lim sup
(h,ε,θ)→(0,0,t)

(
E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 +

1
ε
‖Ξ(q̃h,ε)‖α

X + D(qh,ε, q̃h,ε) − E(qh,ε) − 1
ε
‖Ξ(q̃h,ε)‖α

X

)

≤ lim sup
(h,ε,θ)→(0,0,t)

(
E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε) − E(qh,ε)

)

= lim
(h,ε,θ)→(0,0,t)

(
E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε)

)
− lim inf

(h,ε)→(0,0)
E(qh,ε)

≤ E(q̃) − 〈f(t), q̃−q〉 + D(q, q̃) − E(q) = E(t, q̃) + D(q, q̃) − E(t, q). (3.28)

Eventually, we are to prove (2.36) provided (3.25) and provided q0 ∈ S(0); the last inclusion implies
E(0, q0) < +∞ which here further implies Ξ(q0) = 0. Then, with [q0]h,ε := q0h in (3.25), it holds

Eε,h(0, [q0]h,ε) = E(q0h) − 〈f(0), q0h〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) (3.29)

as required in (2.36) because E is assumed σ-continuous. Note that the last equality in (3.29) relies on Ξ(q0) = 0
for which σ-continuity of Ξ is needed; in fact, we assumed even weak continuity of Ξ. �

3.4. The case K �Z and “semiquadratic” E

Some applications exhibits the “main” part of the stored energy E quadratic in terms of the dissipating
variable z in the sense

E(u, z) :=
1
2
〈Bz, z〉+ E0(u, z) , B : Z → Z∗ linear and bounded,

E0 : U×Z → R (s×w)-continuous. (3.30)
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In smooth cases, this corresponds to problems governed by “semilinear” mappings E′(q) =
( 0 0

0 B

)
+ E′

0(q).

Such problems are well fitted for unconditional convergence under some particular circumstances.
As to (2.36), we can guarantee it again through (3.25) now with σ the strong topology to have the quadratic

term in (3.30) continuous. The verification of (2.19) is now more sophisticated:

Proposition 3.5 (“semiquadratic” case: unconditional convergence). Let (3.7) and (3.30) hold, R be continu-
ous, let further Ξ be independent of u, affine and continuous, i.e. in the form Ξ(u, z) = Ξ0(z) + ξ with ξ ∈ X,
and Ξ0 ∈ L(Z,X) compatible with the discretization operator ΠZ,h in the sense that ΠZ,h(KerΞ0) ⊂ KerΞ0.
Let also Z +K ⊂ Z, and the cone K be compatible with ΠZ,h in the sense that ΠZ,hK ⊂ K. Then (2.19) with
H ≡ 1 holds.

Proof. We will prove (2.19) by using Proposition 3.4 and for this we will verify (3.24) with σ being the
strong × weak topology on U × Z. The recovery element q̃h in (3.24) can be chosen simply as

ũh := ΠU,hũ, (3.31a)

z̃h := zh + ΠZ,h(z̃ − z). (3.31b)

It holds q̃h ∈ Qh; indeed, ũh ∈ Uh just by Definitions (3.1) and (3.31a) while z̃h ∈ Zh because z̃ − z ∈ K,
assumed in (3.24), implies z̃h − zh = ΠZ,h(z̃ − z) ∈ ΠZ,hK and further Z + K ⊂ Z implies Zh = ΠZ,hZ ⊃
ΠZ,h(Z +K) = Zh + ΠZ,hK and eventually zh ∈ Zh is assumed in (3.24), hence z̃h ∈ Zh indeed follows.

Also, the inequality ‖Ξ(qh)‖X ≤ ‖Ξ(q̃h)‖X in (3.24) follows from

Ξ(q̃h) = Ξ0z̃h + ξ = Ξ0(zh + ΠZ,h(z̃ − z)) + ξ = Ξ(qh) (3.32)

because Ξ0(ΠZ,h(z − z̃)) = 0 holds. Indeed, Ξ(q̃) = 0 is also explicitly assumed in (3.24) while Ξ(q) = 0 follows
from qh

w→ q assumed in (3.24) by the continuity of Ξ, and therefore Ξ0(z − z̃) = Ξ(q) − Ξ(q̃) = 0, hence
z − z̃ ∈ KerΠ0, and by the assumed compatibility ΠZ,h(Ker Ξ0) ⊂ KerΞ0 also ΠZ,h(z − z̃) ∈ KerΞ0, hence
eventually Ξ0(ΠZ,h(z − z̃)) = 0. Then also, by using also (3.2), it holds

(s×w)-lim
h→0

q̃h =
(

s-lim
h→0

ũh , w-lim
h→0

z̃h

)
=
(

s-lim
h→0

ΠU,hũ , w-lim
h→0

zh + s-lim
h→0

ΠZ,h(z̃−z)
)

=
(
ũ, z + (z̃−z)) = q̃.

Although for σ = s × w the energy E itself need not be σ-continuous like in Proposition 3.4, in the case (3.30)
it is however possible to pass to the limit in the difference E(θ, q̃h) − E(θ, qh) by using (3.32) and the binomial
formula:

Eε(θ, q̃h) − Eε(θ, qh) = E(θ, q̃h) + 1
ε‖Ξ(q̃h)‖α

X − E(θ, qh) − 1
ε‖Ξ(qh)‖α

X

= E(θ, q̃h) − E(θ, qh)

= 1
2 〈Bz̃h, z̃h〉 − 1

2 〈Bzh, zh〉 + E0(q̃h) − E0(qh) − 〈f(θ), q̃h−qh〉
= 1

2 〈B(z̃h − zh), z̃h + zh〉 + E0(q̃h) − E0(qh) − 〈f(θ), q̃h−qh〉
→ 1

2 〈B(z̃ − z), z̃ + z〉 + E0(q̃) − E0(q) − 〈f(t), q̃ − q〉
= 1

2 〈Bz̃, z̃〉 − 1
2 〈Bz, z〉+ E0(q̃) − E0(q) − 〈f(t), q̃ − q〉 = E(t, q̃) − E(t, q). (3.33)

For the limit passage it was important that z̃h−zh = ΠZ,h(z̃−z) s→ z̃−z because of (3.2) so that

〈B(z̃h−zh), z̃h+zh〉 → 〈B(z̃ − z), z̃ + z〉 (3.34)
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Table 1. Organization and features of the examples presented in Section 4.

Process Unidirectional Constraints Quadratic Proposition/
Section (i.e.K � Z) (i.e.X �={0}) energy E used

Plasticity with hardening
+ − + 3.5

at small strains / 4.2
Phase transformation: − − − 3.4 (σ =s)
mixture approach / 4.3

Phase transformation: − + − 3.4 (σ = s)
non-mixture approach/4.4

Damage / 4.5 + − ± 3.5

Debonding / 4.6 + − − 3.4 (σ = s × w∗)

Magnetostriction / 4.7 − + − 3.3

because z̃h+zh
w→ z+z̃. We have z̃h − zh = ΠZ,h(z̃ − z) ∈ ΠZ,hK ⊂ K. Then, in view of the definition in (3.8)

and the strong continuity of R, we have

lim
(ε,h)→(0,0)

Dε(qh, q̃h) = lim
(ε,h)→(0,0)

Rε(z̃h−zh) = lim
h→0

R(z̃h−zh)

= lim
h→0

R
(
ΠZ,h(z̃−z)) = R

(
lim
h→0

ΠZ,h(z̃−z)) = R(z̃−z) = D(q, q̃). (3.35)

By (3.33) and (3.35), we can pass to the limit in (3.28). Thus (2.19) with H≡1 is proved in this case, too. �
Remark 3.6 (no penalization). In case of the unconditional convergence, one can consider a numerical scheme
with ε = 0, i.e. with the original E and D instead of Eε,h and Dε,h. The corresponding incremental problem
might then involve unilateral constraint; cf. also Remark 4.3.

4. Particular examples in continuum mechanics

The doubly-nonlinear inclusion (2.2) is a framework for description of so-called generalized standard materials
with internal parameters as introduced by Halphen and Nguyen [21] in those cases where convexity of stored
and dissipated energies can be expected and inertial effects can be neglected. Here we have in mind various
inelastic rate-independent processes in such materials having possibly a nonconvex stored energy. The following
examples illustrate how the general theory applies in particular situations, cf. Table 1 for a survey. As a by-
product of the presented numerical theory, we obtain analytical existence/convergence results which have not
yet been derived in literature. For the sake of explanatory lucidity, we confine ourselves to rather conventional
models from continuum mechanics although some less conventional models (e.g. those involving a microstructure
described by so-called Young measures, see [31,55–57]) allow for such numerical analysis, too. In Section 4.7
we present a combination of mechanical and ferromagnetic effects, i.e. magnetostriction with hysteretic effects,
but the combination with ferroelectric effects, i.e. piezoelectricity with hysteresis (see [43]), or even purely non-
mechanical rate-independent models developed in ferromagnetics (e.g. [55,56,66,67]) and ferroelectrics (e.g. [25,
52,60]) could be treated similarly. We neglect any temperature dependence or, in other words, if there is a
possible dependence of data on temperature, we consider sufficiently slow processes so that the released heat
due to dissipative processes can efficiently be transferred away to allow for considering isothermal processes.

4.1. Sketch of continuum mechanics of deformable bodies

We assume a specimen occupying in its reference configuration a bounded domain Ω ⊂ R3. As usual,
y : Ω → R3 denotes the deformation and u : Ω → R3 the displacement, related to each other by y(x) = x+u(x),
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x ∈ Ω. Hence the deformation gradient equals F = ∇y = I + ∇u with I ∈ R3×3 being the identity matrix
and ∇ is the gradient operator. For simplicity, we will treat only the soft-device loading realized through
traction (Neumann or Robin-type) boundary conditions. The state of the material and possibly also of boundary
conditions is assumed to depend on (a set of) certain parameters z that may evolve in time in a rate-independent
manner. Then naturally U and Z used before will be the spaces of u’s and of z’s, respectively.

The specific energy stored in the inter-atomic links in the homogeneous (possibly anisotropic) continuum
ϕ̂ = ϕ̂(F, z) is phenomenologically described as a function of the deformation gradient F and the mentioned
variable z ∈ Rm. Mostly the vector z ∈ Z0 ⊂ Rm in not directly accessible for a macroscopical loading
(for an exception see Sect. 4.7) and will thus play the role of internal parameters. The frame-indifference,
i.e. ϕ̂(F, z) = ϕ̂(RF, z) for any R ∈ SO(3) = the group of orientation-preserving rotations, requires that ϕ̂(·, z)
in fact depends only on the (right) Cauchy-Green stretch tensor

F	F = (I + ∇u)	(I + ∇u) = I + (∇u)	 + ∇u+ (∇u)	∇u. (4.1)

An important property of ϕ̂(·, z) is quasiconvexity, which means ϕ(A, z) ≤ infu∈W 1,p
0 (Ω;R3)

∫
Ω
ϕ(A + ∇u, z) dx

for any A ∈ R3×3. The following assertion modifies the celebrated result by Acerbi and Fusco [1]:

Lemma 4.1. Let ϕ : R3×3 × Rm → R be continuous, ϕ(·, z) quasiconvex, p, p1 ∈ (1,+∞) and, for some
c2 ≥ c1 > 0,

∀A∈R3×3 ∀z∈Z0: c1
(|A|p+|z|p1−1

) ≤ ϕ(A, z) ≤ c2
(
1+|A|p+|z|p1

)
. (4.2)

Then the functional (u, z) �→ ∫
Ω ϕ(∇u, z) dx is (w × s)-lower semicontinuous on W 1,p(Ω; R3)×{z∈Lp1(Ω; Rm);

z(·)∈Z0 a.e. on Ω}.
Sketch of the proof. By coercivity, we do not need to distinguish between sequential and topological lower
semicontinuity.

Let us take a sequence {(un, zn)}n∈N (w × s)-converging to (u, z). Then (∇un, zn) (w × s)-converges to
(∇u, z) in Lp(Ω; R3×3) × Lp1(Ω; Rm). Also, selecting a suitable subsequence, it generates (a set) of Lp × Lp1-
Young measures of the form ν⊗μz where μz = {δz(x)}x∈Ω with δz(x) denoting here the Dirac distribution on Rm

supported at z(x); cf. [48], Corollary 3.4. This means, in terms of a mentioned subsequence, that

lim
n→∞

∫
Ω

v(∇un, zn)dx =
∫

Ω

∫
R3×3×Rm

v(A, r)
[
νx ⊗ δz(x)

]
(dA×dr)dx =

∫
Ω

∫
R3×3

v(A, z(x)) νx(dA)dx (4.3)

for any v continuous of a growth less than p in the A-variable, while for ϕ continuous satisfying (4.2) we have

lim inf
n→∞

∫
Ω

ϕ(∇un, zn) dx ≥
∫

Ω

∫
R3×3

ϕ(A, z(x)) νx(dA)dx; (4.4)

cf. [49], Theorem 3.2. As νx is a gradient Lp-Young measure with
∫

R3×3 Aνx(dA) = ∇u(x) for a.a. x ∈ Ω, and
as ϕ(·, z(x)) is quasiconvex, for a.a. x ∈ Ω it holds

∫
R3×3

ϕ(A, z(x))νx(dA) ≥ ϕ
(∫

R3×3
Aνx(dA), z(x)

)
= ϕ(∇u(x), z(x)). (4.5)

see [29,49]. Combining (4.4) and (4.5) yields lim infn→∞
∫
Ω
ϕ(∇un, zn) dx ≥ ∫

Ω
ϕ(∇u(x), z(x)) dx. As the

Young measure is not involved in the last estimate at all, this estimate holds, in fact, for the whole original
sequence. �
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An example of a frame-indifferent quasiconvex (in fact even polyconvex, i.e. convex in terms of F and its
determinant and cofactors) energy ϕ̂(F, z) := ϕ̃(F ) satisfying (4.2) is the Ogden-type material

ϕ(F, z) = α1tr
(
F	F − I

)p/2 + α2

∣∣tr(cof(F	F )−I
)∣∣p0 + φ0

(
det(F )

)
; (4.6)

here α1, α2 > 0, p ≥ 3, p0 ≤ p/2, φ0 is a convex function of at most p/3 growth, and finally tr(·) in (4.6) denotes
the trace of a matrix.

As F = I+∇u, we can express the specific stored energy in terms of the displacement gradient as

ϕ = ϕ(∇u, z) = ϕ̂
(
I+∇u, z). (4.7)

The Piola-Kirchhoff stress σ : R3×3 → R3×3 is given by σ = ϕ′
∇u(∇u, z) = ϕ̂′

F (I+∇u, z) with ϕ′
∇u and ϕ̂′

F

denoting the tensor-valued partial gradients.
If the displacement gradient ∇u is small, one can neglect the quadratic term (4.1) so that the Green-

Lagrange strain tensor E from (4.6) turns into a so-called small-strain tensor e(u) := 1
2∇u + 1

2 (∇u)	, i.e.
eij(u) = 1

2
∂ui

∂xj
+ 1

2
∂uj

∂xi
, i, j = 1, ..., 3.

For all examples below, we assume Ω ⊂ R3 to be a polyhedral domain. The discretization is made by a family
of regular triangulations of Ω with the mesh parameter h > 0 and ΠU,h and ΠZ,h will always be considered as
quasi-interpolation operators related with standard conformal finite elements of polynomial type, namely P0
(i.e. element-wise constant functions) or P1 (i.e. element-wise affine continuous functions). To be more explicit,
we can consider a mollifier u �→ ũh with ũh(x) =

∫
Ω kh(x, ξ)u(ξ)dξ using a continuous kernel kh : Ω×Ω → R+

supported on an h-neighborhood of the diagonal in Ω × Ω and
∫
Ω
kh(x, ξ) dξ = 1 for all x ∈ Ω. Then define

uh = ΠU,hu as a Lagrange piecewise affine interpolation of ũh using the nodal points in case of P1-elements,
or piecewise constant interpolation using barycenters of the simplexes of the particular triangulation in case of
P0-elements. Moreover, we will assume the triangulations conformal with the specific disjoint partition of Γ
where possibly different boundary conditions are prescribed. As to the initial condition q0, we will always
assume its stability (2.35), e.g. ensured by a “gentle start” (3.11) and thus not discussed in particular cases.

4.2. Plasticity with hardening at small strains

The first example on which we want to demonstrate our theory is a fully rate-independent plasticity with
isotropic hardening. This is a standard model for inelastic materials for which existence, uniqueness and
numerical convergence results are classical, see [22,61–63] for a survey. However, most of the numerical results
derive convergence rates under the assumption of unjustified higher regularity, cf. the above references and
e.g., [2]. Here we show that our abstract method provides an alternate proof of the result in [23], where strong
convergence without rates was proved “under conditions of minimal regularity”, namely those that follow directly
from the existence theory.

The vector of the internal parameters z := (π, η) ∈ L2(Ω; R3×3
sym,0) × L2(Ω) is therefore now composed from

the plastic strain π and a hardening variable η; here we used the notation

R3×3
sym,0 :=

{
A ∈ R3×3; A	 = A, tr(A) = 0

}· (4.8)

For simplicity, we consider homogeneous Dirichlet boundary conditions on a part Γ0 of the boundary ∂Ω with
nonvanishing surface measure, so that

U := U =
{
u∈W 1,2(Ω; R3); u = 0 a.e. on Γ0

}
and Z := L2(Ω; R3×3

sym,0×R) ∩K, (4.9)

where K is the cone of admissible evolution directions, see (4.11) below. We postulate the stored energy as

E(t, u, π, η) :=
1
2

∫
Ω

(e(u)−π):C:(e(u)−π) + bη2 dx− 〈f(t), u
〉

with
〈
f(t), u

〉
=
∫

Γ1

g(t, x)·u(x) dS, (4.10)
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where C = [Cijkl ] ∈ R3×3×3×3 is a positive-definite 4th-order tensor of elastic moduli, σ : e =
∑3

i,j=1 σijeij ,
b > 0 a hardening parameter, Γ1 := ∂Ω\Γ0, and g ∈ C1([0, T ];L2(Γ1)).

The hardening is a unidirectional process and is, in standardly accepted models, reflected by the cone of
admissible evolution directions in the form

K := {(π, η) ∈ L2(Ω; R3×3
sym,0 × R); δ∗P (π) ≤ η a.e. on Ω}, (4.11)

where P ⊂ R3×3
sym,0 is closed, bounded, convex, and contains 0 in its interior and δ∗P (π) = max{π : σ; σ ∈ P}.

The associated dissipation potential takes the form

R(π̇, η̇) :=

{ ∫
Ω δ

∗
P (π̇) dx if δ∗P (π̇) ≤ η̇ a.e. on Ω,

+∞ otherwise.
(4.12)

This leads naturally to Z1 := L1(Ω; R3×3
sym,0) × L1(Ω) in Remark 3.2. Beside the natural initial condition

η(0, ·) = 1, we must prescribe π(0, ·) = π0 ∈ L2(Ω; R3×3
sym,0). The required stability (2.35) of q0, achieved

e.g. through the “gentle start” (3.11) as suggested in Section 4.1, yields z0 = (π0, η0) ∈ K, i.e. here δ∗K(π0) ≤ 1.
The mentioned initial condition η0 = 1 is, in general, guaranteed by this way only if f(0) is small enough.
Moreover, it is well-known (cf. [22,37]) that this problem has a unique energetic solution
(u, z) ∈ W 1,∞([0, T ];U × Z).

We assume a polyhedral domain Ω with also Γ0 and Γ1 having a polyhedral shape, and assume Ω triangulated
by a family of regular triangulations with the mesh parameter h > 0 conformal with the partition Γ = Γ0∪Γ1, and
ΠU,h and ΠZ,h quasi-interpolation operators related with conformal P1-elements and P0-elements, respectively.
It is also important that the P0-elements are conformal with the cone K from (4.11) used also for Z in (4.9) in
the sense ΠZ,hK ⊂ K, as needed for Proposition 3.5. As there is no Ξ in this problem, we have Eε = E but Rε

from (3.9) is to be considered (unless one thinks about R + δK in place of Rε as suggested in Rem. 3.6), and
also (3.25) with σ the norm topology works simply for [q0]h,ε := Πhq0.

Theorem 4.2. Let the data Ω, Γ0, Γ1, P , and q0 be qualified as above, and g ∈ C1([0, T ];L4/3(Γ1; R3)) and
[q0]h,ε be taken as above. Then the approximate solutions qε,τ,h = (uε,τ,h, πε,τ,h, ηε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)), (4.13a)

πε,τ,h ∈ L∞(0, T ;L2(Ω; R3×3
sym,0)) ∩ BV([0, T ];L1(Ω; R3×3)), (4.13b)

ηε,τ,h ∈ L∞(0, T ;L2(Ω)) ∩ BV([0, T ];L1(Ω)), (4.13c)

based on the P0-elements for π and η and the P1-elements for u converge, for all t ∈ [0, T ], strongly in
W 1,2(Ω; R3) × L2(Ω; R3×3

sym,0 × R) for (ε, τ, h) → (0, 0, 0) to the energetic solution of the initial value problem
given by (U × Z, E , R, q0).

The proof is a direct application of Proposition 3.5, since it is routine to check that its assumptions hold,
cf. [43,45]. Here it is important to realize that the choice of K and R via δ∗P is such that the coercivity
E(t, u, π, η) ≥ c

(‖u‖2
W 1,2(Ω;R3) + ‖(π, η)‖2

L2(Ω;R3×3×R)

)− ‖g‖L4/3‖u‖W 1,2(Ω;R3) holds on K.
Note that the whole sequence converges since the limit solution is unique, cf. Remark 3.2. Moreover the

convergence is strong by the uniform convexity of E , see Remark 2.7.

Remark 4.3 (implementation without regularization by LQ-program). In anisotropic media like single-crystals,
the domain P is considered to be polyhedral, cf. e.g. [12], hence δ∗P has a polyhedral epigraph and the incremental
problem (2.22) without any regularization (cf. Rem. 3.6) represents a minimization problem of a sum of a
quadratic and a polyhedral-graph functional which can be, after a computationally cheap enhancement, solved
by efficient linear-quadratic solvers; cf. [55], Lemma 4, for this enhancement.
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4.3. Phase transformation: a mixture approach

In engineering, modeling of inelastic response of the materials undergoing martensitic transformation is of
high interest. Here we demonstrate our theory on a simplified mixture-like model for martensitic transformation.
Taking Γ0 as in Section 4.2 and Z0 := {s ∈ Rm; sl ≥ 0 &

∑m
l=1 sl = 1} the Gibbs simplex, we put

U := U =
{
u ∈W 1,p(Ω; R3); u = 0 a.e. on Γ0}, (4.14)

Z :=
{
z∈Z := Wα,2(Ω; Rm); z(x)∈Z0 for a.a. x∈Ω

}
(4.15)

with α > 0 denoting (possibly a fractional) order of derivatives of the vector of the internal parameters z which
now represents volume fractions referring to m phases (or phase variants). For simplicity, we consider the
loading again through g as in Section 4.2, i.e. f is again defined by (4.10). We postulate the stored energy as

E(u, z) :=
∫

Ω

ϕ(∇u, z) dx+
κ

2
|z|2α (4.16)

with κ, α > 0 and | · |α denoting the usual seminorm in the Sobolev (or, for α noninteger, Sobolev-Slobodetskĭı)
space, i.e.

|z|2α =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

|∇αz|2 dx for α ∈ N,

1
4

∫
Ω

∫
Ω

|∇[α]z(x) −∇[α]z(ξ)|2
|x− ξ|3+2(α−[α])

dxdξ for α > 0 noninteger
(4.17)

with [α] the integer part of α. In principle, more physically justified kernels with a support localized around
the diagonal {x = ξ} with the same singular behavior as |x− ξ|−3−2(α−[α]) for |x− ξ| → 0 could equally be used
in (4.17).

The degree-1 homogeneous dissipation potential is now postulated as

R(z) :=
∫

Ω

δ∗M (z) dx (4.18)

where δ∗M is determined, in analogy with δ∗P from Section 4.2, by a convex compact neighborhoodM ⊂ Rm of the
origin which prescribes activation energies for martensite/austenite phase-transformation or for re-orientation
of particular martensitic variants. In particular, the martensitic transformation is a reversible process, so that
K = Z. Also, there is nor Ξ neither K �= Z and thus both Eε ≡ E and Dε ≡ D and the ε-regularization is
irrelevant here.

For the discretization, we consider naturally P1-elements for u and either P0-elements for z (if α < 1/2)
or P1-element also for z if (α < 3/2). Again, taking [q0]h,ε := Πhq0 guarantees (3.25) with σ being the norm
topology.

Theorem 4.4. Let the data Ω, Γ0, and Γ1 be qualified as in Section 4.2, let ϕ be qualified as in Lemma 4.1
(now p1 is irrelevant, as Z0 is bounded here), let M in (4.18) be a bounded convex neighbourhood of 0 ∈ Rm, let

g ∈ C1([0, T ];Lp#/(p#−1)(Γ1; R3)), where p#

⎧⎨
⎩

= 2p
3−p for p < 3,

< +∞ for p = 3,
= +∞ for p > 3,

(4.19)

and let q0 ∈ S(0) be approximated by [q0]h,ε := Πhq0. Then the approximate solutions qτ,h = (uτ,h, zτ,h) with

uτ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (4.20a)

zτ,h ∈ L∞(0, T ;Wα,2(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (4.20b)
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based on the P1-elements for u and the P0- or P1-elements for z converge for (τ, h) → (0, 0) (in terms of
subsequences in the sense of Thm. 2.6 with Rem. 3.2) to energetic solutions of the problem given by E, R, f
and q0 above.

Proof. Coercivity on Q = U × Z follows from the assumed coercivity (4.2) of ϕ(·, z) by Poincaré inequality
combined with the Dirichlet condition on Γ0 and by the regularizing κ-term in (4.16) combined with the
constraint z(x) ∈ Z0 involved in Z in (4.15).

The lower-semicontinuity of the first term in (4.16) needed for (2.12) follows by Lemma 4.1 with p1 < +∞
arbitrary since Z0 is now bounded. The continuity of R : L1(Ω) → R follows from (in fact is equivalent to) the
assumed boundedness of M ⊂ Rm used in (4.18).

The assumption in Proposition 3.4 are satisfied simply if σ : equals the strong topology on W 1,p(Ω; R3) ×
Wα,2(Ω; Rm). Here the convexity of the Gibbs simplex Z0 involved in Z is used, which makes both P0- and
P1-elements compatible with Z in the sense ΠZ,hZ ⊂ Z, cf. (3.3), which makes our results from Section 3.3
working. �

Example 4.5. At small strains, a popular model takes a “mixture” of quadratic energies in the form

ϕ(∇u, z) :=
m∑

	=1

z	

2
(e(u)−e	) : C	 : (e(u)−e	) + ψ(z) where e	 :=

U	
	 +U	

2
, (4.21)

with the distortion matrices U	 of particular pure phases (or phase variants). The setting here is related with the
situation of martensitic transformation in a single-crystal and z’s are volume fractions of the so-called austenite
and of particular variants of martensite, e.g. m = 4 or 7 for tetragonal or orthorhombic martensite, respectively.
The function ψ reflects the difference between chemical energies of austenite and martensite and also between
pure phases and “mixtures”. As ϕ(·, z) is now convex, it qualifies for Lemma 4.1 with Z0 bounded. The
philosophy of mixtures of austenite/martensite phases in so-called shape-memory alloys has been proposed by
Frémond [15]; in rate-independent variant also presented in [16]. For its analysis and numerical implementation
see [10,11,17,24,46]. Gradients of mesoscopical volume fractions (i.e. (4.16) with α = 1 has already been used
in Frémond’s model [16], p. 364, or [17], Formula (7.20). Another way for obtaining physically relevant mixture
energies is the quasiconvexification under volume constrains, also called cross-quasiconvexification, see [44]. For
models with equal elastic moduli we refer e.g. to [5,6,8,19,20,28,46,68].

4.4. Phase transformation: non-mixture approach

The mixture approach in Section 4.3 is rather designed for phenomenological models of polycrystals but is
too coarse for the description of complicated microstructures occurring in shape-memory-alloy single-crystals.
A microscopical model has been developed in [33] (see also [34]) by restricting z to be valued in vertices of
the Gibbs’ simplex, i.e. only pure phase(variant)s are allowed; then α < 1/2 should be taken in (4.16) or, as
considered in [33,34], a BV-like term κ|∇z|. In this model, z “switches” ϕ.

A different philosophy with presumably similar effects, pioneered by Falk [13], considers the vectorial “order
parameter” z related to the deformation gradient ∇u and particular shapes are then switched rather by ∇u.
Spinodal regions are then allowed instead of mixtures. The specific stored energy ϕ now depends only on ∇u
but need not be quasiconvex. For example, in [3,4,31,54,57], a multiwell potential ϕ̂ (related with ϕ by (4.7))
arises by the combination of St.Venant-Kirchhoff materials considered for each particular phase:

f̂(F ) := min
	=1,...,m

(1
2
(U−	

	 F	FU−1
	 − I) : C	 : (U−	

	 F	FU−1
	 − I) + c	

)
, (4.22)
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where U	 are distortion matrices as in Example 4.5, C	 are elastic-moduli tensors, c	 are some constants, and
U−	

	 := (U	
	 )−1. Now naturally p = 4. We postulate the stored energy in terms of E and Ξ as

E(u, z) :=
∫

Ω

ϕ(∇u) dx+
κ

2
|u|2α and Ξ(u, z) := z − L(∇u), (4.23)

with κ > 0, α > 1 and L : R3×3 → Z0 playing the role of a “phase indicator” with Z0 being again the Gibbs
simplex. The seminorm | · |α defined in (4.17) used for 1 < α < 2 with the Frobenius norm in the enumerator,
now acting on (3×3)-matrices is frame-indifferent, as observed by Arndt in [3]. We consider the same loading
as in Sections 4.2 and 4.3, i.e. f from (4.10), but now we put

U := U =
{
u ∈Wα,2(Ω; R3); u = 0 a.e. on Γ0}, (4.24)

Z :=
{
z ∈ Z := L2(Ω; Rm); z(x) ∈ Z0 for a.a. x ∈ Ω

}
, (4.25)

and then naturally X := Z. The dissipation potential R is again from (4.18). There is no K involved, hence
Dε = D, but as Ξ from (4.23) occurs, the regularization Eε is, in principle, to be considered.

Choosing α < 3/2 allows for the usage of P1-elements for u and P0-elements for z. As now Q = Q and
K = Z, so in particular their conformity (3.3) is automatic. The proof of the following assertion shows that
they are conformal also with the constraints Ξ(q) = 0 so, in view of Remark 3.6, it would be possible to avoid
the ε-regularization at all. When taking [u0]h,ε = ΠU,hu0, we have ∇[u0]h,ε element-wise constant and so is
L(∇[u0]h,ε) =: [z0]h,ε, and (3.25) is satisfied.

Theorem 4.6. Let ϕ : R3×3 → R be continuous (not necessarily quasiconvex) satisfying (4.2) here with m := 0
(so no z-dependence), let g satisfy (4.19), L : R3×3 → Z0 be continuous, and α ∈ (1, 3/2) and p < 6/(5−2α)
in (4.2), and q0 and [q0]h,ε as specified above. Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;Wα,2(Ω; R3)), (4.26a)

zε,τ,h ∈ L∞(0, T ;L∞(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (4.26b)

based on the P1-elements for u and the P0-elements for z converge for (ε, τ, h) → (0, 0, 0) (in terms of subse-
quences in the sense of Thm. 2.6 with Rem. 3.2) to energetic solutions of the problem given by E, R, f and q0
above.

Proof. Weak lower semicontinuity of E is due to convexity of the regularizing term κ|u|2α in (4.23) while ϕ is
now treated by compactness of the embedding Wα,2(Ω) ⊂ W 1,p(Ω) (guaranteed if p < 6/(5−2α)) as a lower-
order term. The limit passage in the z-variable is trivial. This compactness also ensures the weak continuity of
Ξ : U × Z → X .

As K = Z, condition (3.24) with σ being the strong topology holds, if we show, for given z̃ = L(∇ũ),
the existence of (ũh, z̃h) σ→ (ũ, z̃) such that z̃h = L(∇ũh). As far as ũh, this can be done by a density
argument of smooth functions in Wα,2(Ω; R3), and then the usual Lagrange interpolation. By the embedding
Wα,2(Ω) ⊂ W 1,p(Ω), ∇ũh

s→ ∇ũ in Lp(Ω; R3×3) and z̃h = L(∇ũh) s→ L(∇ũ) = z̃ by continuity of the
Nemytskĭı mapping induced by L.

Then we use the results from Section 2.1 via Proposition 3.4 with σ being the strong topology onWα,2(Ω; R3)×
L2(Ω; Rm). �
Remark 4.7. The inequalities α < 3/2 and p < 6/(5−2α) restrict us to p < 3, which unfortunately excludes
(4.22). Hence we are tempted to take higher α which, however, brings the necessity to use higher-order elements
(or to split the problem to a system). Considering P2-elements for u would allow for α < 5/2 which, in turn,
would allow for arbitrarily high p. Since L is inevitable nonlinear, it is no longer conformal with the constraint
Ξ(q) = 0 no matter what (polynomial) elements are taken for z. This would drive us to a penalization technique
based on Proposition 3.3. However, here it is simpler to modify our analysis to allow for expressing the model
in terms of u only, cf. the following Remark 4.8.
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Remark 4.8. In fact, a “viscous” rate-dependent variant of the above model was proposed in [54], for the rate-
independent dissipation term cf. [54], Formula (33). The regularizing term | · |α used for α < 1/2 and the P0/P1-
discretization was suggested and implemented in [3] and computational experiments on NiMnGa single crystals
reported in [4]. In [50], the model was analyzed and implemented in the 1-dimensional case with α = 2. Pure
analysis then followed also in [51]; in particular for α ≥ 3, [51], Proposition 3, investigated an inviscid variant of
this model accounting, contrary to our paper, also for inertial effects. In fact, the model was formulated only in
terms of u in [3,50,51,54] but then the dissipation distance took the form D(u1, u2) =

∫
Ω
|L(∇u1)−L(∇u2)| dx,

having lost the structure based on the degree-1 homogeneous potential R. Neglecting difficulties in numerical
evaluation of such D if α = 2 would be considered, by this way one gets rid of the necessity to penalize Ξ (which,
in case α < 1/2, is made possible due to Thm. 4.6 together with Rem. 3.6 in our case too). Nevertheless,
a fully rate-independent model, used in fact for calculations in [4], has not been subjected to any rigorous
mathematical/numerical analysis, and therefore Theorem 4.6 brings indeed new results.

4.5. Damage at large strains

In engineering, other inelastic process in the materials of a high interest is damage. We consider a fully rate-
independent isotropic and nonlocal damage, and again consider the body Ω fixed on a nonvanishing part Γ0

and loaded by a surface force g on Γ1 = ∂Ω \ Γ0, so that U = U is again from (4.14). As we consider isotropic
damage, the internal parameter z ∈ Z will be scalar valued with

Z :=
{
z ∈ Z := Wα,2(Ω); z(x) ≥ 0 for a.a. x ∈ Ω

}· (4.27)

We postulate the stored energy again by the formula (4.16); κ > 0 in (4.16) is now a coefficient responsible
for nonlocal effects in gradient-of-damage theories as, e.g., in [16], cf. [40] for a discussion and more references.
Note that we admitted, rather formally, ϕ operating on the argument z nonrestricted from above to allow for
a simple construction of the recovery sequence (3.31). The loading f is considered again by (4.10).

Like isotropic hardening in Section 4.2, the process of damaging is unidirectional in the sense that, if in
progress, it can only increase but the material never can heal, which leads us to define the cone of admissible
evolution directions and the degree-1 homogeneous dissipation potential as

K :=
{
z∈Wα,2(Ω); z ≥ 0 a.e. on Ω

} ≡ Z and R(z) :=
∫

Ω

c1z dx, (4.28)

where c1 is a phenomenological specific energy (with physical dimension J·m−3 = Pa) expressing the energy
needed for a damage of a unit volume described by a unit jump of the damage parameter z. Considering the
initial condition for z0 = 0 and ϕ(A, ·) decreasing for z ∈ [0, 1] and with ϕ(A, z) = ϕ(A, 1) + (z − 1)2 for
z ∈ (1,+∞), we effectively force the values of z to range only the interval [0, 1] and c1 refers to the specific
energy dissipated by damaging the original material (having the stored-energy ϕ(·, 0)) to the fully damaged
material (having the stored-energy ϕ(·, 1) assumed to be still coercive so we exclude the case when the material
fully disintegrates).

As no equality constraints of the type Ξ(q) = 0 are involved, we have Eε = E but the ε-regularization Dε from
(3.9) is to be still considered unless one takes R+ δK instead of Rε, cf. Remark 3.6. For the discretization, as
in Section 4.3, we consider P1-elements for u and either P0-elements for z (if α < 1/2) or P1-element also for z
if (α < 3/2). Again, both P0- and P1-elements are conformal with the constraints in Z = K from (4.27)–(4.28)
in the sense ΠZ,hZ ⊂ Z and ΠZ,hK ⊂ K, as required in Proposition 3.5.

Theorem 4.9. Let the data Ω, Γ0, and Γ1 be qualified as in Section 4.2, let ϕ be qualified as in Lemma 4.1
with m := 1 and Z0 := {z ≥ 0} and p1 := 2, let g satisfy (4.19), and let q0 ∈ S(0) and [q0]h,ε := Πhq0.
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Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (4.29a)

zε,τ,h ∈ L∞(0, T ;Wα,2(Ω)) ∩ BV([0, T ];L1(Ω)), (4.29b)

based on the P1-elements for u and the P0- or P1-elements for z converge for (ε, τ, h) → (0, 0, 0) (in terms of
subsequences in the sense of Thm. 2.6 with Rem. 3.2) to energetic solutions of the problem given by E, R, K,
f and q0 above.

Proof. Coercivity on Q = U × Z follows from the assumed condition |A|p ≤ ϕ(A, z) by the Poincaré inequality
combined with the Dirichlet condition on Γ0 and by the regularizing κ-term in (4.16) combined with the
constraint z(x) ≥ 0 involved in Z in (4.27). Then we use Proposition 3.5 with the decomposition (3.30) using
B = E′

1 with E1(z) := κ
2 |z|2α and E0(u, z) =

∫
Ω
ϕ(∇u, z) dx. Note also that [q0]h,ε := Πhq0 satisfies (3.25). �

Remark 4.10. The partial damage at large strains has been analyzed in [40] but without any numerical
approximation and a nonquadratic regularizing term κ

p1
|∇z|p1 with p1 > 3 had to be used, contrary to the

quadratic term in (4.16) which is usual in engineering literature but never was mathematically analyzed so far.
Hence Theorem 4.9 represents a new extension in this field.

4.6. Debonding at large strains

Other inelastic processes may occur not in the materials themselves but on the boundary. Here we want to
consider a possible debonding of an elastic support on a part Γ2 of the boundary ∂Ω. The internal parameter
z ∈ L∞(Γ2) is therefore now a scalar debonding parameter assumed to range [0, 1] and expressing volume
fraction of the adhesive which fixes elastically the body on Γ2 if not debonded. It is natural also to consider
a unilateral Signorini contact on Γ2. Moreover, we again consider the body Ω fixed on a nonvanishing part Γ0

of ∂Ω (disjoint with Γ2) and loaded by a surface time-varying force g on Γ1 = ∂Ω\(Γ0 ∪ Γ2), so that

U :=
{
u ∈ W 1,p(Ω; R3); u = 0 a.e. on Γ0, ν · u ≥ 0 a.e. on Γ2}, (4.30)

Z :=
{
z ∈ Z := L∞(Γ2); 0 ≤ z ≤ 1 a.e. on Γ2

}
(4.31)

with ν = ν(x) a normal to Γ2. We postulate the stored energy as

E(u, z) :=
∫

Ω

ϕ(∇u) dx+
∫

Γ2

(1 − z)ψ(u) dS, (4.32)

where ψ : R3 → R+ describes the elastic response of the adhesive fixing the body on Γ2.
Considering naturally that debonding can only develop but never heal back leads us to pose the cone of

admissible evolution directions and, similarly like in (4.28), the degree-1 homogeneous dissipation potential as

K :=
{
z∈L∞(Γ2); z ≥ 0 a.e. on Γ2

}
and R(z) :=

∫
Γ2

c2z dS (4.33)

with c2 a phenomenological specific energy (with physical dimension J·m−2) expressing the energy needed for
a full debonding of a unit area of Γ2.

Natural finite-element approximation is now P1-elements for u and P0-elements on the boundary for z. We
assume that the disjoint partition Γ = Γ0∪Γ1 ∪Γ2 is polyhedral and that the triangulations are conformal with
this partition. To simplify technical details, let us assume that Γ2 is flat; this ensures ΠU,hU ⊂ U , cf. (3.3).
Also the constraints in (4.31) are conformal with P0-elements in the sense ΠZ,hZ ⊂ Z. As there is no Ξ here,
we have Eε ≡ E but Dε �= D is still to be considered.
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Theorem 4.11. Let the disjoint partition Γ = Γ0 ∪ Γ1 ∪ Γ2 be polyhedral, Γ2 flat, and the triangulations be
conformal with this partition, ϕ be qualified as in Lemma 4.1 with m := 0 (i.e. with no z-dependence in ϕ), g
satisfy (4.19), and ψ : R3 → R be continuous satisfying the growth condition 0 ≤ ψ(u) ≤ C(1 + |u|p#−ε) with
p# from (4.19) and ε > 0, and q0 ∈ S(0) is approximated by [q0]h,ε := Πhq0. Then the approximate solutions
qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (4.34a)

zε,τ,h ∈ L∞(0, T ;L∞(Γ2)) ∩ BV([0, T ];L1(Γ2)), (4.34b)

based on the P1-elements for u and the P0-elements for z converge for (ε, τ, h) → (0, 0, 0) (in terms of subse-
quences in the sense of Thm. 2.6 with Rem. 3.2) to some energetic solutions of the problem given by E, R, K,
f and q0 above.

Proof. The coercivity of E follows as in Theorem 4.4; note that the term on Γ2, being nonnegative, cannot destroy
it. The weak lower-semicontinuity is again as in Theorem 4.4, the term on Γ2 being even weakly continuous due to
affinity in z-variable and due to the compactness of the trace operator u �→ u|Γ2 : W 1,p(Ω; R3) → Lp#−ε(Γ2; R3).

We will explicitly construct the recovery sequence {q̃h}h>0 for (3.24). As to ũh we use the construction
(3.31a); as Γ2 is flat, ν is constant on Γ2, and ΠU,hU = Uh ∩U , which ensures Uh ⊂ U because Uh := ΠU,hU . As
for ΠZ,h, we have in mind the standard Clément’s quasi-interpolation by element-wise constant averages, hence
e.g. functions valued in [0,1] are again mapped to (element-wise constant) functions valued in [0,1]. We put

z̃h := 1 − (1 − zh)ΠZ,h

(1 − z̃

1 − z

)
· (4.35)

If z(x) = 1, then also z̃(x) = 1 because always z ≤ z̃ ≤ 1 and the fraction in (4.35) can be defined arbitrarily
in valued [0, 1]. The product of element-wise constant functions 1 − zh and ΠZ,h(1−z̃

1−z ) is again element-wise
constant, hence zh ∈ Zh. As 0 ≤ ΠZ,h(1−z̃

1−z ) ≤ 1, we have also zh ≤ z̃h ≤ 1, hence z̃h ∈ Zh and z̃h − zh ∈ K.

As ΠZ,h(1−z̃
1−z ) s→ 1−z̃

1−z in any Lp(Γ2), p < +∞, and zh
w*→ z, from (4.35) we have z̃h

w*→ 1 − (1 − z)1−z̃
1−z = z̃ in

fact in L∞(Γ2) due to the a priori bound of values in [0, 1].
Then, having (3.24) proved, we can verify (2.19) through Proposition 3.4 used with the topology σ := s×w∗

on W 1,p(Ω; R3) × L∞(Γ2). �

Remark 4.12. As we do not have any gradient-type regularization like in Section 4.5, we had to assume
E(u, ·) affine to allow for a passage via weak convergence. It however does not allow for any artificial definition
like we did for ϕ in Section 4.5 for z > 1, which is why here we had to include the constraint z(x) ∈ [0, 1]
explicitly into Z in (4.31) but this, in turn, destroyed any quadratic structure in z and hence we had to rely on
Proposition 3.4 supported by the rather sophisticated construction (4.35).

Remark 4.13. A debonding on a priori prescribed surfaces inside the body, called then rather a delamination,
could be treated similarly only by introducing a more extensive notation, cf. [30]. Let us emphasize that
Theorem 4.11 adapted to such a problem substantially improves results from [30], where convergence has only
been proved for a semidiscretization in time while the convergence of the full time-space discretization has only
silently been assumed under an additional convergence criterion h/τ → 0 and small strains.

4.7. Magnetostriction at small strains

In this section, we illustrate our theory on a deformable ferromagnet occupying a domain Ω ⊂ R3 and
undergoing quasistatic isothermal evolution at small strains. Again, the non-dissipative component u : Ω → R3

will be the displacement while the dissipating variable z : Ω → R3 will now be the magnetization vector;
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thus m = 3 here. The stored energy is then considered in the form

E(u, z) :=
∫

Ω

(
ϕ
(∇u(x), z(x)

)
+
κ

2

∣∣∇z∣∣2)dx+
μ0

2

∫
R3

∣∣∇φ∣∣2 dx. (4.36)

The particular terms in (4.36) represent the mechanical stored energy interacting with an anisotropic magne-
tization energy, the exchange energy (with κ > 0 a coefficient having a quantum-mechanical origin), and the
energy of the demagnetizing field φ ∈ W 1,2(Ω) (with μ0 > 0 the vacuum permeability) which is determined
by the magnetization z by the (weak solution to the) following 2nd-order linear elliptic equation on the whole
space R3:

div(μ0∇φ− χΩz) = 0 on R3, (4.37)

where χΩ : R3 → {0, 1} denotes the characteristic function on Ω. The external forcing might be both mechanical
and magnetic. Let us consider it again via a surface force g (as in Sect. 4.2) and by an external magnetic field
hext:

〈
f(t), (u, z)

〉
:=
∫

Γ1

g(t, x) · u(x) dS +
∫

Ω

hext(t, x) · z(x) dx. (4.38)

Contrary to the previous sections, z is not any internal parameter because it can be subjected directly to outer
loading by hext. For notational simplicity, we consider again the Dirichlet condition on Γ0 and then take U = U
from (4.14) while Z is naturally to be taken as W 1,2(Ω; R3). The standard model involves also the so-called
Heisenberg constraint ∣∣z(x)∣∣ = ms for a.a. x (4.39)

with ms > 0 a given saturation magnetization. In fact, due to (4.39) we can redefine ϕ(A, z) for |z| > ms, if
needed, suitably so that the coercivity (4.2) holds. For the dissipation potential R we consider, for example,

R(z) :=
∫

Ω

d0

∣∣z∣∣+ d1

∣∣e3 · z∣∣dx (4.40)

where d0 > 0 and d1 ≥ 0 and e3 = (0, 0, 1). The d0-term has been considered in [66] while for the d1-term see
[67] or also [55,56]. The former term corresponds to a basic dissipation and ensures coercivity of R while the
latter term describes dissipation during remagnetization in a uniaxial magnet with easy-magnetization axis in
the direction e3; then the anisotropic energy ϕ(A, ·) is assumed to have minima along this axis and d0 + d1 is
a so-called coercive force which determines the width of a parent hysteresis loop during cyclic magnetization
processes. The magnetization process is fully reversible (because we do not consider any sort of unidirectional
“hardening” like in [56]) and therefore we put K = Z = W 1,2(Ω; R3). The initial magnetization z0 should
satisfy the constraint (4.39) and, together with u0, be stable with respect to the loading hext(0, ·) and g(0, ·);
we will not specify this rather technical condition.

We cannot simply involve the constraint (4.39) into Z because (3.3) cannot conventionally be achieved because
no polynomial finite elements are compatible with the Heisenberg constraints (4.39). Hence we implement it
by Ξ and then take simply Z := Z = W 1,2(Ω; R3) and define Ξ as

Ξ : U × Z → X := L2(Ω) : (u, z) �→ |z|2 −m2
s√|z|2 +m2
s

· (4.41)

Note that the nonlinearity r �→ (|r|2 −m2
s )/
√|r|2 +m2

s involved in (4.41) has a linear growth and is Lipschitz
continuous, and so is Ξ : L2(Ω; R3 ×R3) → L2(Ω). Simultaneously, Ξ is weakly continuous on U ×Z due to the
compact embedding of U × Z into L2(Ω; R3 × R3).
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Again we consider a polyhedral domain Ω and its regular triangulations, and in view of (4.36) take P1-
elements both for u and z. Then, in principle, exact integration formulae can be exploited for (4.37) and for
the last term in (4.36), too. So no discretization of ϕ would be needed, although practical calculations usually
exploit some numerical approximation of this procedure (and hence of E itself, too). As we did not consider it
in previous sections, we omit it here too. Because of the mentioned incompatibility of the P1-elements (and in
fact with any polynomial finite-elements), with the constraint Ξ(u, z) = 0, i.e. |z| = ms, we must consider the
penalization method. Using α = 2 in (3.5), it yields

Eε(u, z) =
∫

Ω

(
ϕ
(∇u(x), z(x)

)
+
κ

2
|∇z|2 +

(|z|2−m2
s

)2
ε
(|z|2+m2

s

))dx+
μ0

2

∫
R3
|∇φ|2 dx. (4.42)

The conformity (3.3) is here automatic because there are no other constraints involved, i.e. Q ≡ Q and K ≡ Z.

Theorem 4.14. Let the data Ω, Γ0, and Γ1 be qualified as in Section 4.2, let ϕ be qualified as in Lemma 4.1
with Z0 := Rm, m = 3, p1 = 2, let g satisfy (4.19), and let further hext ∈ C1([0, T ];L6/5(Ω; R3)), q0 ∈ S(0) and
[q0]h,ε := Πhq0. Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (4.43a)

zε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)) ∩ BV([0, T ];L1(Ω; R3)), (4.43b)

based on the P1-elements and the penalization of the Heisenberg constraint (4.39) as in (4.42) converge for
(ε, τ, h) → (0, 0, 0) (in terms of subsequences in the sense of Thm. 2.6 with Rem. 3.2) to energetic solutions of
the problem given by E, R, Ξ, f and q0 above under the convergence criterion h2/ε→ 0.

For the convergence criterion h ≤ H(ε) can take H , e.g., in the form

H(ε) = εa with any 0 < a < 1/2. (4.44)

Proof of Theorem 4.14. The weak lower semicontinuity in the sense (2.12) of the ϕ-term in (4.42) is by
Lemma 4.1, while that of the terms |∇z|2 and |∇φ|2 is due to the convexity and linearity of (4.37). The
penalty term in (4.42) has the 2nd-order-polynomial growth and is therefore continuous because of the compact
embedding of W 1,2(Ω) into L2(Ω). The coercivity of E on U×Z follows from (4.2) through Poincaré’s inequality.

For our P1-elements, the estimate (3.19) with γ = 1 is then known to hold with | · | and ‖·‖ being respectively
the L2- and the W 1,2-norms. The Lipschitz continuity (3.18) of Ξ from (4.41) holds for X := L2(Ω), which just
makes the penalty form in (4.42) with α = 2. The choice [q0]h,ε := Πhq0 again satisfies (3.25). Our assertion
then follows from Theorem 2.6 through Proposition 3.3 where (3.20) just says that h = o(

√
ε), as claimed. �

Remark 4.15. References for magnetostriction usually addresses large strains where more complications arise,
cf. [9,26,27,59,64]. Mathematical analysis at large strains needs some additional regularization, e.g. like [59]. A
conventional form of ϕ in (4.36) in term of small strains, as considered here, is ϕ(∇u, z) = ϕ0(z) + 1

2 (e(u) −
ez):C:(e(u) − ez) with ez a preferred strain tensor corresponding to the magnetization z; for the concrete form
of ez we refer to [27,64]. No numerical and even purely theoretical analysis of this rate-independent evolution
problem seems to be reported in literature hence Theorem 4.14 represents a new result for this conceptual
algorithm.
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