Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.
Mots clés : gradient constraints, active set strategy, regularization, semi-smooth Newton method, primal-dual active set method
@article{M2AN_2009__43_2_209_0, author = {Griesse, Roland and Kunisch, Karl}, title = {A semi-smooth {Newton} method for solving elliptic equations with gradient constraints}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {209--238}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/m2an:2008049}, mrnumber = {2512495}, zbl = {1161.65338}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2008049/} }
TY - JOUR AU - Griesse, Roland AU - Kunisch, Karl TI - A semi-smooth Newton method for solving elliptic equations with gradient constraints JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 209 EP - 238 VL - 43 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2008049/ DO - 10.1051/m2an:2008049 LA - en ID - M2AN_2009__43_2_209_0 ER -
%0 Journal Article %A Griesse, Roland %A Kunisch, Karl %T A semi-smooth Newton method for solving elliptic equations with gradient constraints %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 209-238 %V 43 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2008049/ %R 10.1051/m2an:2008049 %G en %F M2AN_2009__43_2_209_0
Griesse, Roland; Kunisch, Karl. A semi-smooth Newton method for solving elliptic equations with gradient constraints. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 2, pp. 209-238. doi : 10.1051/m2an:2008049. http://www.numdam.org/articles/10.1051/m2an:2008049/
[1] Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265 (1967) 333-336. | MR | Zbl
,[2] Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 99-259. | MR | Zbl
and ,[3] Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math. 80 (1997) 105-126. | MR | Zbl
,[4] Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001). | MR | Zbl
and ,[5] A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 4 (1979) 555-572. | MR | Zbl
,[6] Elliptic Differential Equations of Second Order. Springer, New York (1977). | MR | Zbl
and ,[7] Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear). | MR
and ,[8] The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865-888. | MR | Zbl
, and ,[9] Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 8 (1983) 317-346. | MR | Zbl
and ,[10] The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt. 43 (2004) 357-376. | MR | Zbl
and ,[11] Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). | MR | Zbl
,[12] Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563-568. | Zbl
and ,[13] Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968). | Zbl
and ,[14] Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994) 609-692. | MR | Zbl
and ,[15] Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981). | MR | Zbl
,[16] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | MR | Zbl
,[17] The -character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ. 6 (1981) 361-371. | MR | Zbl
,Cité par Sources :