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NUMERICAL SIMULATION OF GLUEY PARTICLES

Aline Lefebvre1

Abstract. We propose here a model and a numerical scheme to compute the motion of rigid particles
interacting through the lubrication force. In the case of a particle approaching a plane, we propose
an algorithm and prove its convergence towards the solutions to the gluey particle model described
in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this
gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then,
we describe a multi-particle algorithm for the simulation of such systems and present numerical results.
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1. Introduction

Slurries, lava’s flows or red cells in blood are systems made of rigid particles embedded in viscous fluids
(if we consider as a first approximation that red blood cells are rigid). Such systems can also be found in
industry: concrete, paper pulp or some food industry products. These systems present varieties of noticeable
rheological behaviours, whose study has been the subject of a great amount of researches, with contributions
coming from engineering, chemistry, physics or mathematics. The basic problem is to predict macroscopic
transport properties of these suspensions – viscosity, settling velocity – from microstructures, that is to say,
from the interactions between particles and from their spatial configuration.

In case of dilute suspensions, theoretical results come from neglecting near field interactions. For example,
in 1906, Einstein proposed an asymptotic formula for the apparent viscosity of dilute suspensions in [10,11].
In that case, apparent viscosity only depends on the solid volume fraction. Unfortunately, agreement between
such asymptotic results and experiments generally fails as soon as the solid fraction reaches a few percent. For
higher solid fractions, near field interactions can not be neglected anymore and it becomes essential to take
them into account. Note that, the problem of the behaviour of neighbouring particles also appears in the study
of the fluid/particle system of equations modelling suspensions of particles. For example, existence of solutions
to these equations has been proved as long as the distance between the particles remains strictly positive (see
for example [9,33,34]). Global weak solutions have also been constructed in [12,29], supposing that solids stick
after contact. However, nothing is said concerning the possibility that such a contact may occur in finite time.

The interactions between solids embedded in a viscous fluid are due to lubrication forces: for the solids to
get very close, the fluid must be evacuated from the narrow gap between them, which creates a force penalizing

Keywords and phrases. Fluid/particle systems, fluid/solid interaction, lubrication force, contacts, Stokes fluid.
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their relative motion. This force is singular in the distance and this singularity is sufficient to avoid contacts.
Indeed, it has been proved in [14] that in two dimensions, a smooth particle embedded in a viscous fluid
following Navier-Stokes equations can not touch a plane in finite time. This behaviour can be recovered in
three-dimensions from the asymptotic expansion of the lubrication force:

Flub ∼ −6πμr2 u

d
, (1.1)

where μ is the viscosity of the fluid, r the radius of the particle, u its velocity and d the distance between the
particle and the plane. This expansion is obtained in [7] from the exact solution in three-dimensions to the
Stokes problem outside a sphere with no-slip boundary condition, and in the limit d � r2, though the fluid
is assumed to be a continuum. It has to be noticed that this expansion is valid for perfectly smooth surfaces.
Using this first order approximation, we can write the Fundamental Principle of Dynamics for a particle of
mass m submitted to an external force per unit mass f :

md̈(t) = −6πμr2 ḋ

d
+ mf(t), (1.2)

and the fact that the maximal solution to this ODE is global and never goes to zero (contact) in finite time
comes from the Cauchy-Lipschitz theorem. Similarly, in case of a fixed sphere of radius r1 and another sphere of
radius r2 moving at velocity V along the axe of the centers, the first term of the development of the lubrication
force exerted on the moving particle is (see [6]):

Flub ∼ −6πμ
r2
1r

2
2

(r1 + r2)2
V
d

, (1.3)

and no contact can occur in finite time.

However, from our experience, we know that the particle should touch the plane in finite time. One of the
reasons explaining this behaviour is that physical particles are not smooth. The problem of modelling rough
surfaces motivated a great amount of research, in various domains. For example, in case of flows above a rough
plane, experimentations and asymptotic expansions [28,35], homogenization tools [1,5] as well as Molecular
Dynamics simulations [3] have been used to understand better the boundary condition to impose on the plane
to model its roughness. It has been shown that one had to use slip boundary conditions on the plane, which is
equivalent, in case of shear flow, to consider a shifted plane with no-slip boundary conditions. Unfortunately,
understanding the behaviour of the lubrication force in case of rough solids is much more delicate. A heuristic
model has been proposed in [31], saying that the lubrication force exerted on a rough particle is the one would
be exerted on a shifted smooth particle:

Flub,rough ∼ −6πμr2 u

d + ds
, (1.4)

where ds > 0 is the length of shift. In that article, the authors suggested to take ds = rs, where rs is the
size of roughness. The existence of a shift has been confirmed by experiments [2,18]. It was also obtained
using asymptotic expansions in [19], but for large distances only. More recently, thanks to experimental devices
allowing to measure distances as small as roughness size, it has been shown in [36] that ds was strictly lower
than rs. Note that, as in the smooth case, it can be proved from (1.4), that the equivalent smooth sphere can
not undergo contact with the plane (d + ds doesn’t go to zero in finite time). However, the real surfaces can
collide (d can go to zero).

This lubrication force, while acting at microscopic level, can be very important for the macroscopic behaviour
of the global system, especially in case of high density of particles. Even for Stokes flows, it induces complexity
and nonlinearity. This complex link between microscopic and macroscopic levels makes it difficult to obtain
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theoretical results and studying these systems requires numerical simulations. Lots of numerical tools have
been developed to simulate smooth particles embedded in a Newtonian fluid. In case of dense suspensions,
both far-field and near-field interactions are essential to obtain relevant simulations. For example, Stokesian
Dynamics Simulations (see [4]) are based on asymptotic expansions of both long-range and short-range hydro-
dynamic interactions in shear flows. In this article, we are interested in another class of methods which are
direct numerical simulations. They consist in solving the coupled fluid/rigid problem without any model or
approximation apart from time and space discretizations. They are divided into two classes : the first one relies
on a conforming mesh of the fluid domain (see e.g. [15,16,23]) and the second one is based on an embedding of
the solid phase in a global domain covered by a cartesian mesh (see e.g. [13,20,27,30]). These methods enable to
take into account the many-body character of the hydrodynamic interaction forces. However, because of space
discretization it becomes difficult to solve the fluid in the narrow gap between neighbouring particles and to
take into account with accuracy the lubrication forces. As a consequence, even if the particles are supposed to
be smooth, numerical contacts can be observed in such simulations and physical reasons as well as numerical
robustness make it necessary to develop specific technics to deal with these contacts.

A first idea to solve this problem is to search for a strategy allowing an accurate computation of the lubrication
forces. In [15], a method based on local refinements of the space and time meshes is proposed, so that the
lubrication force in the interparticle gap is taken into account with accuracy and prevents overlappings. However,
the number of refinements needed is not known a priori and the method can become computationally heavy.
Consequently, less time-consuming methods have been developed. Some of them consist in adding a short range
repulsive force (see [13,27] or [37]). In [23] a minimizing algorithm is used to impose a minimal distance between
the particles while, in [30], the particles are allowed to undergo slight overlappings and an elastic repulsive force
is added when such overlappings are detected. All of these methods ensure numerical robustness but introduce
new parameters and do not take into account the underlying physics. Another approach is to use inelastic
collisions, taking advantage of what has been done for numerical simulations of granular media (see [32] for a
review of numerical methods to handle rigid-body contacts in granular flows). This idea has been proposed
in [16] in order to impose a minimal distance between the particles. In [24], a scheme for inelastic collisions,
based on a global projection step of the velocities, has been developed for granular flows and makes it possible
to handle lots of particles. This scheme has been coupled with a fluid/particle solver in [20], to avoid contacts.
More physical strategies, taking the lubrication force into account, have finally been proposed. Each of them
relies on the asymptotic development of the lubrication force (1.3). In [8,26], it is shown that these lubrication
forces are solution to a linear system. They are computed at each time step and added to the simulations.
Unfortunately, this leads to stiff systems and, whereas it better takes into account the underlying physics,
contact problems still occur because of the time discretization. In [22] a method is proposed to stabilize this
problem by computing accurately sensible quantities such as the interparticle distances. However, a projection
step is still needed for big time steps, in order to avoid overlappings.

The purpose of this article is to propose a strategy dealing simultaneously with contacts and lubrication
forces. We restrict ourself here to the study of a gluey contact model which consists in modelling lubrication
forces without taking far-field hydrodynamic interactions into account. This model is based on the gluey model
for smooth particles described in [25], which consists in a vanishing-viscosity limit of (1.2). We propose an
algorithm for this particle/plane model and prove its convergence. We show how the model and the algorithm
can be extended to rough solids. Then, we generalize it to the multi-particle case. The numerical strategy is to
combine the algorithm given for the plane/particle case with the scheme proposed in [24] for inelastic collisions
in granular flows. While programming this multi-particle algorithm, we watched out for dealing with contacts
efficiently in order to manage to simulate collections of many particles. Numerical simulations for few thousands
of gluey particles are presented in the last section. Finally, to take both far-field and near-field hydrodynamic
interaction forces into account, this gluey contact model has to be coupled with a fluid/particle solver. An
example of such a coupling is given in Section 2.4 in the particle/plane case.
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Figure 1. Notations.

2. Single particle above a plane

2.1. The gluey particle model

We consider a three-dimensional smooth spherical particle moving perpendicularly to a plane (see Fig. 1).
Its velocity and radius are denoted by V and r respectively. Its distance to the plane is q.

The gluey particle model has been proposed in [25]. It describes, from a macroscopic point of view, the
behaviour of the system near contact. It is built as the vanishing viscosity limit of the lubrication model (1.2)
and relies on two states, glued (q = 0) or unglued (q > 0). These states are described by a new variable γ which
stands for an adhesion potential: the more γ is negative, the more the solids are glued.

We denote by I = ]0, T [ the time interval. The functional space W 1,∞(I) is the Sobolev space of functions
in L∞(I) whose time derivative in also in L∞(I). BV (I) is the space of functions in L∞(I) with bounded
variation on I. We define the dual space M(I) = (Cc(I))′ where Cc(I) is the space of countinous functions with
compact support. To finish with notations, ΠK is the projection operator from R onto K ⊂ R.

The unknowns q and γ belong to the following functional spaces:

q ∈ W 1,∞(I), q̇ ∈ BV (I), γ ∈ BV (I),

and the initial conditions are:

q(0) = q0 > 0, q̇(0) = u0, γ(0) = 0.

In order to be able to generalize the model to the multi-particle case, we use the following second order ODE
formulation of the gluey particle model proposed in [25]:

q̇(t+) = ΠCq,γ(t)q̇(t−), (2.1)

mq̈ = mf + λ in M(I) = (Cc(I))′ , (2.2)
supp(λ) ⊂ {t, q(t) = 0}, (2.3)

γ̇ = −λ, (2.4)
q ≥ 0, γ ≤ 0, (2.5)
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Figure 2. Example of solution to the gluey particle model.

where Cq,γ(t) is the set of admissible velocities at time t:

Cq,γ(t) =

∣∣∣∣∣∣∣∣
{0} if γ(t−) < 0,

R
+ if γ(t−) = 0, q(t) = 0,

R else.

Remark 2.1. In this formulation, q̇ and γ are supposed to be in BV (I). In order to alleviate the notations,
their differential measures have been denoted by q̈ and γ̇ respectively.

The behaviour of the solutions to this problem is the following. By (2.2) and (2.3), q is solution to q̈ = f
while there is no contact (q > 0). Suppose a collision occurs at time t0, we have q̇(t−0 ) < 0 and γ(t−0 ) = 0. Then
Cq,γ(t0) is R

+ and (2.1) gives q̇(t+0 ) = 0. By (2.2), we obtain that, in the sense of distributions, λ identifies to
the Dirac mass at time t0 weighted by the velocity jump m(q̇(t+0 )− q̇(t−0 )) = −mq̇(t−0 ). This, together with (2.4)
finally gives that γ is initialized to the value mq̇(t−0 ) < 0. From then, while γ remains strictly negative, Cq,γ is
reduced to {0} and, combining this with (2.1) gives that there is adhesion between the solids (q = 0). During
this adhesion, q̈ is zero and therefore, (2.4) associated to (2.2) gives γ̇ = mf . By definition of Cq,γ , the particle
is allowed to take off when γ is back to zero. An example of such a behaviour is given in Figure 2, where the
particle is pushed towards the plane until time 2 and then pulled away from it.

Remark 2.2. In [25], the author shows that, if we denote by dμ the solution to the three-dimensional lubrication
model (1.2) (where each constant is set to 1 except the viscosity):

d̈μ(t) = −μ
ḋμ

dμ
+ f(t)

and if we set γμ = μln(dμ), the pair (dμ, γμ) converges, when μ goes to zero, to (q, γ) solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇ + γ = u0 +
∫ t

0

f(s)ds,

γ ≤ 0, q ≥ 0, qγ = 0,

q(0) = q0, q̇(0) = u0.

(2.6)
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Figure 3. A vanishing-viscosity model.

Because of non-uniqueness of the solution to this limit problem (see [25] for a counter example), this convergence
is given up to a subsequence. However, in case q has a finite number of zeros, the limit model admits a unique
solution and therefore the whole sequence (dμ, γμ) converges to (q, γ). This hypothesis is verified if the external
force f changes of sign a finite number of times, which is true in the test proposed in Figure 2. The convergence
for that example is illustrated in Figure 3. Note that this asymptotic model (2.6) can be obtained from any
lubrication model

d̈μ(t) = −μḋμϕ(dμ) + f(t)

where d �→ ϕ(d) > 0 and
∫ 1

d
ϕ → +∞ when d goes to zero. For example, the two-dimensional lubrication

force, for which ϕ(d) = 1/d−3/2 fits into this framework. Modelling gluey particles using a model that does
not depend on the lubrication model and on the viscosity of the underlying fluid may be quite surprising. This
unphysical behaviour will be improved in Section 2.5, when modelling roughness (see Rem. 2.15).

Remark 2.3. The second order ODE formulation (2.1)–(2.5) is formally equivalent to (2.6). Moreover, in case
q has a finite number of zeros, it can be shown that (2.1)–(2.5) and (2.6) are equivalent, in the sense that a
solution to one of the problem is also solution to the other (the demonstration of this result can be found in [21],
p. 223).

Note that the constraint qγ = 0 is not needed anymore in (2.1)–(2.5): it can be checked that it is automat-
ically verified using (2.3) together with the fact that γ is initialized to zero. To the contrary, the additional
constraints (2.5) are necessary. Indeed, suppose that t1 is an unsticky contact time (q(t1) = 0, γ(t−1 ) = 0,
q̇(t−1 ) = 0). If the force is negative after this instant and if we do not impose q ≥ 0, then γ ≡ 0 and
q̇(t) =

∫ t

t1
f(s)ds is a solution to the problem and the particle can enter the wall. Similarly, if the force is

positive and if the constraint γ ≥ 0 is not imposed, q ≡ 0 and γ(t) = m
∫ t

t1
f(s)ds is a solution and γ can

become strictly positive.

Before proposing an algorithm to compute the solutions to this model, we make a few remarks about its
interpretation and its physical relevance.

Remark 2.4 (physical interpretation). As already mentioned, a smooth particle embedded in a Newtonian
fluid never touches the plane in finite time. In the context of the gluey particle model, the variable q can be
seen as a macroscopic distance between the solids: it is equal to zero as soon as the solids are near contact. The
new variable γ, which is obtained as the limit of γμ = μ ln(dμ), stands for the microscopic distance.

To understand the behaviour of the gluey particle system presented in Figure 2, one can consider a rigid
ball falling on a table coated with a viscous fluid like honey. When the particle reaches the layer of fluid,
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it instantaneously sinks in it and the depth it reaches is linked to the impact velocity. From then, the ball is
glued to the layer of fluid, the macroscopic contact begins, q is set to zero and γ stores the impact velocity.
As long as it is pushed, the particle sinks deeper in the fluid and gets closer to the plane (γ decreases). Then
the particle is pulled. From that moment on, it smoothly moves back from the fluid (γ increases) and comes
unstuck from the layer of fluid when the pulling forces have balanced the impact velocity and the pushing forces
(γ reaches zero).

Note that, from (2.2), λ can be interpreted as an additional force, exerted by the plane on the particle, in
order to satisfy the constraint (2.1). It follows from (2.3) that the plane is allowed to act on the particle through
this force only if they are in macroscopic contact.

Remark 2.5 (radius). This gluey particle model is built in [25] as the vanishing viscosity limit of the lubrication
model (1.2) where each constant except the viscosity is taken equal to 1. Taking all constants into account leads
to define γ as the limit of γμ = 6πμ ln(dμ) and the equation governing its evolution becomes

γ̇ = − 1
r2

λ. (2.7)

The larger r is, the less the microscopic distance γ varies (the more it is difficult for the particle to move).
Note that, provided we are only interested in the macroscopic trajectory q of the particle, the previous model
(2.1)–(2.5) was valid for any radius: these trajectories only depend on the sign of γ (and not its value) which
is independent of r from (2.7).

Remark 2.6 (viscous or not viscous?). Since this model is built by letting the viscosity go to zero, one may
wonder whether it models viscous fluids or not. First, in our limit model, sticky collisions occur (q can reach
zero), whereas smooth solids in viscous fluids can not collide. This does not limit the model, since q stands for a
macroscopic distance. The fact that the lubrication forces continue to act on the solids during the macroscopic
contact is taken into account through γ. The point is to know whether q reflects the macroscopic behaviour of
a smooth particle embedded in a viscous fluid. To answer to this question, we consider the same experiment as
in Figure 2 (pushing until time 2 and then pulling) for a particle falling on a plane coated with different viscous
fluids. In Figure 4, we compare the trajectory given by the gluey particle model to the trajectories computed
for these systems where the viscous fluid layer is modeled by (1.2). Of course, trajectories converge to the limit
model when the viscosity goes to zero. We also observe that, from a macroscopic point of view, as long as we
are interested in hitting and unsticking times, the limit model seems to agree with all trajectories. As a matter
of fact, in case of smooth solids and from this macroscopic point of view, what is important is not the viscosity
of the fluid but whether it is viscous or not. However, it has to be pointed out that, for small viscosities, the
distances can become very small and reach domains wherein the lubrication formula (1.1) is no longer valid
(fluid assumed to be a continuum, solids supposed to be smooth). Consequently, our model being based on
this expansion, it shall be employed to represent the macroscopic behaviour of very viscous systems for which
distances are not too small.

2.2. Numerical algorithm

We propose here an algorithm for problem (2.1)–(2.5). Let h = T/N be the time step. The problem is
initialized to q0 > 0, u0 ∈ R and γ0 = λ0 = 0. We denote by qn, un, γn and λn the computed values of q, u, γ

and λ at time tn. We define fn by fn = 1
h

∫ tn+1

tn f(s)ds. We have to compute qn+1, un+1, γn+1 and λn+1.
In order to compute un+1 and λn+1, we define the discrete counterpart of Cq,γ(tn) the following way:

∣∣∣∣∣
K(qn, γn) = {v, qn + hv ≥ 0} if γn = 0,

K(qn, γn) = {v, qn + hv = 0} if γn < 0.
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Figure 4. Comparison gluey particle model/layer of viscous fluid.

K(qn, γn) is called the set of admissible velocities at time tn. The collision law (2.1) and the Fundamental
Principle of Dynamics (2.2) then become,

⎧⎪⎨
⎪⎩

un+1/2 = un + hfn,

un+1 ∈ K(qn, γn),
1
2

∣∣∣un+1 − un+1/2
∣∣∣2
m

= min
v∈K(qn,γn)

1
2

∣∣∣v − un+1/2
∣∣∣2
m

,

where (v, w)m = (mv, w). Note that un+1/2 is the velocity the particle would have at time tn+1 if there were
no plane. un+1 is the projection of this a priori velocity on the set of admissible velocities K(qn, γn) for an
adapted scalar product. From this projection step, arises a Lagrange multiplier, denoted by λn+1, and such
that

m(un+1 − un+1/2) = hλn+1.

This can be rewritten as

m
un+1 − un

h
= mfn + λn+1, (2.8)

which is a discretization of (2.2). Note that, when γn = 0, λn+1 is a Lagrange multiplier associated to an
inequality constraint (qn + hun+1 ≥ 0) and therefore, λn+1 is positive.

Then, γn+1 is given by an explicit Euler discretization of (2.4),

γn+1 = γn − hλn+1.

This equation is valid while γn+1 is negative. If it becomes strictly positive, it means that the particle has
taken off at a time t∗ ∈ ]tn, tn+1[. In that instance, γn+1/m has integrated the force on ]t∗, tn+1[ instead of un+1
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which was fixed to zero. Therefore, in that case, we modify un+1 and γn+1 the following way:

if γn+1 > 0, un+1 = γn+1/m and γn+1 = 0.

Finally the position qn+1 is given by

qn+1 = qn + hun+1.

To sum up, the algorithm is the following:

Algorithm 2.7 (particle/plane). For all n ≥ 0, let qn, un, γn and λn be given. We define fn =
1
h

∫ tn+1

tn

f(s)ds.

(1) Computation of the a priori velocity, without taking the lubrication force into account

un+1/2 = un + hfn.

(2) Projection of the a priori velocity onto the set of admissible velocities,

ūn+1 ∈ K(qn, γn),
1
2

∣∣∣ūn+1 − un+1/2
∣∣∣2
m

= min
v∈K(qn,γn)

1
2

∣∣∣v − un+1/2
∣∣∣2
m

,

where K(q, γ) = {v, q + hv ≥ 0} if γ = 0,

K(q, γ) = {v, q + hv = 0} if γ < 0.

From this projection step, we obtain λn+1.

(3) Updating of γ,

γ̄n+1 = γn − hλn+1.

(4) Modification if unsticking,

if γ̄n+1 ≤ 0, un+1 = ūn+1 and γn+1 = γ̄n+1,
if γ̄n+1 > 0, un+1 = γ̄n+1/m and γn+1 = 0.

(5) Updating of q,

qn+1 = qn + hun+1.

Remark 2.8 (coupling with fluid simulations). This algorithm simulates collections of gluey particles, where
the lubrication force acts on the particles only if they are near to contact (macroscopic contact, q = 0). Let
us now suppose that the particles are embedded in a viscous fluid. In that case, we have to take both short-
range and long-range hydrodynamic interactions into account. To do so, a splitting method can be used to
couple a fluid/particle solver with the gluey particle algorithm. We denote by un and pn the velocity and
pressure fields into the fluid at time tn. Let S be any fluid/particle solver: from un, qn and fn, S computes
the a priori velocities of the particles, without taking the lubrication force into account carefully. To couple the
two algorithms we propose to modify step (1) of Algorithm 2.7 writing:

un+1/2 = S(qn,un, fn).
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2.3. Convergence result

In this section, we establish a convergence result for the proposed algorithm. To do so, we are going to use
the initial formulation of the gluey particle model (2.6):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mq̇ + γ = m

(
q̇(0) +

∫ t

0

f(s)ds

)
,

q ≥ 0, γ ≤ 0, qγ = 0,

q(0) = q0 > 0, q̇(0) = u0.

We recall that h is the constant time step. We denote by qh the piecewise affine function with qh(tn) = qn.
Similarly, γh is the piecewise affine function with γh(tn) = γn. We denote by uh the derivative of qh, piecewise
constant equal to un+1 on ]tn, tn+1[. Finally, we define λh = −γ̇h, piecewise constant. Note that, due to step (4),
λh is generally not equal to λn+1 on ]tn, tn+1[. We will denote by λ̃n+1 = −(γn+1 − γn)/h its value on this
interval. If the particle does not take off between times tn and tn+1, no modification is made during step (4)
and we obtain λ̃n+1 = λn+1. The convergence theorem is the following:

Theorem 2.9. Let f be integrable on I = ]0, T [. When h goes to zero, there exists subsequences, still denoted
by (qh)h, (uh)h, (λh)h and (γh)h, q ∈ W 1,1(I) ∩ C(I) and γ ∈ BV (I) such that

uh −→ u in L1(I),

qh −→ q in W 1,1(I) and L∞(I) with q̇ = u,

λh
�−⇀ λ in M(I),

γh −→ γ in L1(I) with γ̇ = −λ,

where (q, γ) is solution to (2.6).

Remark 2.10. Non-uniqueness for the limit problem (see Rem. 2.2) prevents from using the standard approach
based on consistence and stability. Consequently, we use compactness methods and obtain convergence up to
a subsequence. However, in case q has a finite number of zeros, the limit model admits a unique solution and
therefore the convergence of the algorithm to problem (2.6) is proved. Moreover, in that case, since (2.1)–(2.5)
and (2.6) are equivalent, Theorem 2.9 shows that Algorithm 2.7 converges to (2.1)–(2.5).

Remark 2.11. In Theorem 2.9 no hypothesis is made on the time steps: the result of convergence holds even
if time steps do not reach hitting and unsticking times. In Figure 5 we consider again the case f = −2 on
[0, 2] and f = 2 on [2, +∞]. The curves t → q(t) and t → γ(t) are obtained from the numerical solutions to
Algorithm 2.7 for dt = 0.03. In that case, although hitting and unsticking times are not reached by the time
steps, the numerical solutions can not be distinguished from the exact ones. Actually, the behaviour of the
numerical algorithm is reasonable, even for large time steps, when the specific points can not be detected with
accuracy. To illustrate this, we plot in Figure 5 the numerical solutions obtained for dt = 0.63. We suppose
that the computation of fn is exact for all n. We can observe that γ is exactly computed from time tn1+1 and
that the numerical trajectory is close to the exact one. The reason why it works is that the derivatives γ̇ and
q̇ are exactly computed, even if the specific points do not correspond to time steps. Indeed, let’s denote by n1

the numerical hitting time step (n1 = 2 in our case). The particle hits the plane at t = tn1 > 1. It is an easy
computation to show that λn1 stores a part of the impact velocity and that, at the next time step, λn1+1 takes
into account the missing part and is equal to λ(tn1+1). Then, for n > n1 + 1 and as long as the contact exists,
it is clear that λn = λ(tn). Consequently, although it takes two time steps long, the error on γn for n ≥ n1 + 1
is strictly caused by the Euler explicit discretization of γ̇ = −λ (step 3 of Algorithm 2.7). In our case, since γ
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Figure 5. Behaviour of the numerical algorithm for large time steps.

is an affine function, it is computed exactly. Similarly, concerning the unsticking time, the velocity is exactly
computed thanks to step 4: the particle unsticks at time tn2 < 4 with a corrected velocity and, as before, the
exact value of the velocity is recovered at the following time step.

Proof of Theorem 2.9. To begin, note that a discrete form of the Fundamental Principle of Dynamics (2.2) is
verified:

∀n, m
un+1 − un

h
= mfn + λ̃n+1. (2.9)

Indeed, in case the particle does not take off between times tn and tn+1, the equality follows from (2.8), together
with λ̃n+1 = λn+1. If the particle takes off, it comes from (2.8) and step 4 of the algorithm.

The proof will be divided into 4 steps.

(1) Convergence of qh and uh

Lemma 2.12. (uh)h is bounded in L∞(I).

Proof. In case the particle does not take off, the projection step (2) gives

|un+1| = |ūn+1| ≤ |un+1/2| ≤ |un| + h|fn|.

In the other case, it can be proved that un+1λ̃n+1 ≤ 0 and combining this with (2.9) gives the same
result. By summing up all these inequalities we obtain

|un+1| ≤ |u0| +
∫ T

0

|f |,

and the result follows from definition of uh. �

Lemma 2.13. (uh)h is bounded in BV (I).
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tp1 tn1tp0 tn0

Figure 6. Proof of Lemma 2.13: notations.

Proof. By Lemma 2.12, the result will follow provided we prove Var(uh) is bounded independently
from h, where

Var(uh) =
N−1∑
n=1

|un+1 − un|.

To check this, we first split the sum and consider the sums between indexes p1 and n1 where tp1 and
tn1 are successive unsticking times (see Fig. 6):

Var[tp1 ,tn1 [(uh) =
n1−1∑
n=p1

|un+1 − un|.

The total variation of uh is made of a sum of such terms.
The idea behind the above decomposition is that, at each unsticking time tp1 , the velocity of the

particle is small and that its variations over [tp1 , tn1 [ only depend on the integral of f over the same
interval. These terms will be summed up to obtain a bound on the total variation.

More precisely, the bound for Var[tp1 ,tn1 [(uh) can be found by analysing each jump |un+1 − un|,
paying attention to what happens at time tn (hitting time, sticking time, unsticking time).

First, note that the particle can stick to the plane during a single time step (n1 = n0 + 1) or during
more than one instant (n1 > n0 + 1 and un = 0 for n ∈ [n0 + 1, n1 − 1]). In both of these cases, we can
show that

Var[tp1 ,tn1 [(uh) ≤
n0−2∑
n=p1

|un+1 − un| + 2|un0 | + |un0−1| + |un1 |. (2.10)

To obtain a bound on the variation of uh, it remains to bound each term in the right-hand side of
this inequality. First, for n ∈ [p1, n0 − 2], the constraint is not activated when computing un+1 and
therefore λ̃n+1 = λn+1 = 0. From this, together with (2.9), we have

p1 ≤ n ≤ n0 − 2 =⇒ |un+1 − un| = h|fn|.

Then, we study un1 , which corresponds to an unsticking time. Combining (2.9) with the fact that
un1 λ̃n1 ≤ 0 and with un1 > 0 we obtain

un1 ≤ un1−1 + hfn1−1.

In the case the particle only sticks to the plane during a single time step, un1−1 is negative. On the
other case, un1−1 is zero. In both cases, we can write

0 < un1 ≤ hfn1−1.

To finish, it remains to study un0 and un0−1. Using the fact that, for all n, |un+1| ≤ |un| + h|fn| (see
previous lemma) we obtain

|un0 | ≤ |up1 | +
n0−1∑
n=p1

h|fn|.
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Since p1 is an unsticking time, the same argument as the one we used for un1 gives 0 < up1 ≤ hfp1−1

and then

|un0 | ≤
n0−1∑

n=p1−1

h|fn|.

Similarly, we have

|un0−1| ≤
n0−2∑

n=p1−1

h|fn|.

Putting these inequalities all together in (2.10) we finally prove

Var[tp1 ,tn1 [(uh) ≤ 4
∫ tn1

tp1−1
|f(s)|ds.

Summing up all these contributions and the bounding terms, we obtain

Var(uh) ≤ u0 + 8
∫ T

0

|f(s)|ds,

and Var(uh) is bounded independently from h as required. �
Lemma 2.13, together with the compact embedding of BV (I) in L1(I) gives (up to a subsequence)

uh −→ u in L1(I) with u ∈ BV (I), (2.11)

qh −→ q in W 1,1(I) with q̇ = u.

Uniform convergence of qh to q then follows from the continuous embedding of W 1,1(I) in L∞(I):

qh −→ q in L∞(I). (2.12)

Finally, since qh is positive, we have q ≥ 0 everywhere.

(2) Convergence of γh

Lemma 2.14. (λh)h is bounded in L1(I).

Proof. By (2.9) and the fact that λ̃0 = 0 we get

∫ T

0

|λh| ≤ mVar(uh) + ‖f‖L1(I).

The result follows by combining this with Lemma 2.13. �
By Lemma 2.14, (λh)h is bounded in M(I), which implies that there exists a subsequence and

λ ∈ M(I) such that
λh

�−⇀ λ in M(I).
Moreover, combining Lemma 2.14 with γ̇h = −λh it comes that (γh)h is bounded in BV (I). This,

together with compact embedding of BV (I) in L1(I), implies that there exists a subsequence and
γ ∈ BV (I) such that

γh −→ γ in L1(I) and a.e. (2.13)
Since γh is negative, it follows from this convergence result that so is γ. Finally, since γ̇h = −λh, we
can check that γ̇ = −λ in M(I).
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(3) Continuous FPD

We are now going to prove that mq̇ + γ = m

(
q̇(0) +

∫ t

0

f(s)ds

)
almost everywhere on I.

In order to do so, the first step is to prove that (2.2) is verified in the sense of distributions. From (2.9)
it follows that

∀ϕ ∈ D(I), 〈mu̇h, ϕ〉 =
N−1∑
n=1

mhfnϕ(tn) +
N−1∑
n=1

hλ̃n+1ϕ(tn). (2.14)

We are going to pass to the limit in this equation. By (2.11), 〈mu̇h, ϕ〉 converges to 〈mu̇, ϕ〉. To study
the first term of the right-hand side, we write

h

N−1∑
n=1

fnϕ(tn) =
∫ T

0

f(s)ϕ(s)ds +
N−1∑
n=1

∫ tn+1

tn

f(s) [ϕ(tn) − ϕ(s)] ds −
∫ t1

t0
f(s)ϕ(s)ds.

The convergence to zero of the sum over n comes from uniform continuity of ϕ. Combining this with
|t1 − t0| = h gives

N−1∑
n=1

mhfnϕ(tn) −→ m

∫ T

0

f(s)ϕ(s)ds when h → 0.

The argument for the last term is similar. We write

N−1∑
n=1

hλ̃n+1ϕ(tn) =
∫ T

0

λh(s)ϕ(s)ds +
N−1∑
n=1

∫ tn+1

tn

λh(s) [ϕ(tn) − ϕ(s)] ds −
∫ t1

t0
λh(s)ϕ(s)ds.

The convergence to zero of the sum over n comes from uniform continuity of ϕ and Lemma 2.14, and
the last term is equal to zero for all h. This, together with Lemma 2.14 gives

N−1∑
n=1

hλ̃n+1ϕ(tn) −→ 〈λ, ϕ〉 = −〈γ̇, ϕ〉 when h → 0.

Finally, passing to the limit in (2.14) we obtain

〈mq̈ − γ̇, ϕ〉 = 〈mf, ϕ〉, ∀ϕ ∈ D(I),

as required.
Then, by density of D(I) in C0

0(I) and the fact that mq̇ − γ is in BV (I), we get

mq̈ − γ̇ = mf in M(I).

Integrating this equality over [0, t[ (Stieltjes integral of BV functions) we obtain

(mq̇ − γ)(t+) − (mq̇ − γ)(0−) =
∫ t

0

mf,

and the result follows from this, by using γ(0−) = 0 and a.e. continuity of mq̇ − γ.
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(4) Proof of qγ = 0
To prove that (q, γ) is solution to (2.6), it remains to show that qγ = 0 almost everywhere. For all n

we have qnγn = 0. However, qhγh is not identically equal to zero. We build new functions q̃h and γ̃h,
piecewise constant, with respective values qn and γn on ]tn, tn+1[. We now have q̃hγ̃h = 0 and simple
computations give

‖q̃h − q‖L∞(I) ≤ ‖q̃h − qh‖L∞(I) + ‖qh − q‖L∞(I) ≤ h‖uh‖L∞(I) + ‖qh − q‖L∞(I)

and

‖γ̃h − γ‖L1(I) ≤ ‖γ̃h − γh‖L1(I) + ‖γh − γ‖L1(I) ≤ h

2
‖λh‖L1(I) + ‖γh − γ‖L1(I).

Combining the first inequality with Lemma 2.12 and (2.12) gives uniform convergence of q̃h to q. Putting
together the second inequality, Lemma 2.14 and (2.13), we see that γ̃h converges to γ in L1(I) which
implies that the sequence converges up to a subsequence almost everywhere on I. Finally, letting h go
to zero in q̃hγ̃h = 0 gives qγ = 0 almost everywhere as required.

This completes the proof of Theorem 2.9. �

2.4. Validation: coupling with a fluid/particle solver

We consider the experiment described in Section 2 and suppose there are no inertia. The radius and the
mass of the particle are taken equal to 1 and the viscosity of the fluid is μ = 3. The external force is f(t) = −2
until time 2 and f(t) = 2 if t > 2. The balance of forces on the particle reads

∀t, Flub(q(t), u(t)) + f(t) = 0, (2.15)

where Flub(q, u) is the lubrication force exerted on the particle situated above the plane at distance q, with
velocity u.

2.4.1. Computation of a reference solution

To obtain a reference solution we have to solve (2.15) as accurately as possible. To do so, we first chose
ū = −1 and write

u(t) = α(t)ū.

Then, using the linearity of the lubrication force with respect to the velocity, (2.15) becomes

α(t)Flub(q(t), ū) + f(t) = 0. (2.16)

To compute the solution of (2.16), we choose the following time discretization∣∣∣∣∣∣∣∣
qn given,

αn+1 solution to αn+1Flub(qn, ū) + fn = 0,

un+1 = αn+1ū, qn+1 = qn + hun+1,

where h is the constant time-step. These computations can be achieved, provided we know the map q →
Flub(q, ū) for the given velocity ū = −1 and q ∈ [0, 1].

In order to compute this map, we begin with computing Flub(qk, ū) where (qk)k=1...M is a regular subdivision
of interval [0, 1]. This is done, for each qk, solving the Stokes problem in the fluid with the Dirichlet boundary
condition ū on the particle and then, computing the corresponding force Flub(qk, ū) exerted by the fluid on
the particle. The computations are carried out in tree-dimensions using an axisymmetric formulation and the
Finite-Element solver FreeFem++1. On the left side of Figure 7, we plot the numerical results obtained (circles).

1F. Hecht and O. Pironneau, http://www.freefem.org.
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Figure 7. Approximation of the lubrication force (left) and reference solution (right).

They agree with the asymptotic expansion (1.1) for small distances (solid line). Finally, the map q → Flub(q, ū)
is approximated on [0, 1] by a function of the following type

F approx
lub (q, ū) =

δ−1

q
+ δ0 + δ1q + δ2q

2 + δ3q
3,

where the (δi)i are determined using a least square approximation of the numerical results. The approximating
function is plotted on the left side of Figure 7 (dashed line).

The reference solution can then be computed using the suggested algorithm. The trajectory obtained is
plotted against time on the right side of Figure 7.

2.4.2. The fluid/particle solver

We now want to observe the influence of the method employed to deal with contacts in fluid/particle simu-
lations. To do so, we use the fluid/particle solver implemented with FreeFem++ and described in [20].

It consists in a method to simulate the motion of rigid particles in a Newtonian fluid. The rigid motion is
enforced by penalizing the strain tensor on the rigid domain. The physics behind this method is to consider
the rigid domain as a fluid with infinite viscosity. This leads to a generalized Stokes formulation on the whole
domain (fluid + rigid). This approach allows us to use cartesian meshes and consequently, it can easily be
implemented from Finite Element Navier-Stokes/Stokes solvers. In order to obtain three-dimensional results,
we implemented an axisymmetrical version of this algorithm with FreeFem++.

2.4.3. Numerical results

Because of the cartesian mesh and the time discretization, the fluid/particle solver described in the previous
subsection doesn’t take into account the near-field hydrodynamic interactions with accuracy. We study here its
coupling with two methods to deal with contacts: the inelastic contact model and the gluey contact model.

In Figure 8, we plot the solution given by the solver for the mesh size δx = r/10 (dashed line). We can
observe that the particle remains glued. Indeed, due to the space discretization, the characteristic function
representing the rigid particle ends up with touching the boundary of the domain and the Dirichlet boundary
condition prevents it from taking off. Consequently, it is necessary to deal with the problem of contact and
to prevent the characteristic function from intersecting the boundary of the domain. Two methods are tested:
the fluid/particle solver is coupled with an inelastic contact algorithm and with the gluey contact model. The
coupling is performed using the splitting strategy described in Remark 2.8. In each case, the constraint for
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Figure 8. Comparison of the numerical solutions for different contact models.
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Figure 9. Impact of η on the numerical solution for inelastic (left) and gluey (right) contact.

the distance is set to q ≥ η with η = δx. The numerical results are compared in Figure 8. We observe that, for
the inelastic model (solid line with crosses), the particle takes off as soon as it is pulled. To the contrary, using
the gluey contact model (solid line with circles), the particle remains glued and the trajectory finally joins up
with the reference one. This is a validation of the gluey particle model and it emphasizes the necessity to take
the lubrication force into account when dealing with contacts.

We observe in Figure 9 the behaviour of the two contact models with respect to the parameter η which is
the minimal distance allowed between the particle and the plane. We can see that the trajectories obtained for
different η (greater than δx) separates after unsticking time when using the inelastic contact model (left side
of the figure). This is due to the fact that, for this model, the particle unsticks as soon as it is pulled. To the
contrary, the gluey particle model is not so sensible to parameter η (right side of the figure).

To finish, we study the impact of the mesh size on the results. As already mentioned, δx can not be chosen
independently of η: we need δx ≤ η in order to avoid non-natural sticking due to the space discretization of
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Figure 10. Impact of δx on the numerical solution for the gluey contact model, in the case η = δx.
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Figure 11. Equivalent smooth sphere.

the characteristic function. In Figure 10, we plot the trajectories obtained in the case δx = η, for different δx.
As expected, when δx goes to zero, the numerical solution approaches the reference one.

2.5. Extension to rough solid surfaces

As described in the introduction, the lubrication force exerted on a rough sphere situated at distance d from
a plane shall be modelled by:

Flub,rough ∼ −6πμr2 u

d + ds
,

with ds < rs, rs being the size of the roughness. Comparing this formula with the asymptotic expansion in case
of a smooth sphere:

Flub ∼ −6πμr2 u

d
,

this force can be seen as the one that would be exerted on a smooth sphere situated at distance d + ds from the
same plane (see Fig. 11).
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Figure 12. Rough solids: notations (left) and gluey particle model (right).

Consequently, d can go to zero and the roughness of the sphere and the plane can collide. As soon as such a
collision occurs, there exists a solid/solid contact and the lubrication force does not act anymore on the solids.

We propose, in the following, a heuristic model for rough solid surfaces. Consider a rough sphere situated
above a rough plane. We denote the size of their roughness by r1,s and r2,s respectively (see the left side of
Fig. 12). The rough solids are modelled by equivalent shifted smooth ones. The shift is chosen to be equal
to the size of the roughness. The action of the lubrication force on these smooth solids is modelled using the
gluey contact model, which is slightly modified to take roughness into account. Indeed, as soon as the distance
between the equivalent solids is equal to r1,s + r2,s, the contact becomes a real solid/solid contact (tops of
roughness collide). During this contact, the distance is constant and equal to r1,s + r2,s and the lubrication
forces do not act anymore on the particle. To model such a behaviour, which is linked to the real distance and
not to the macroscopic one, it suffices to recall that γ is the limit of γμ = 6πμ ln(dμ) and can be seen as the
microscopic distance between the solids. The fact that the distance between the smooth solids can’t go below
r1,s + r2,s is expressed in the limit model by:

γ ≥ γmin = 6πμ ln(rs,1 + rs,2).

The trajectory computed for this model is plot on the right side of Figure 12, in the case γmin = −3. To
understand this behaviour, as in the smooth case, let’s consider a ball falling on a table coated with a viscous
fluid (see Rem. 2.4). As before, at time 1, q is set to zero and γ stores the impact velocity. From then, since
it is pushed, the particle gets closer to the plane and γ decreases. At time 1.5, γ reaches γmin, which means
that, due to roughness, the solids collide. Then, even if it is pushed, the real distance (and γ) remains constant.
From time 2, the particle is pulled and moves back from the fluid (γ increases) until it unsticks when γ is back
to zero. We can observe that the rough particle takes off before the smooth one.

Contrary to what has been said in Remark 2.5 for the smooth case, it is now important to know the value
of γ in order to truncate it. Therefore, it is essential to take the radius into account in its evolution and to use
equation (2.7) in the gluey particle model:

γ̇ = − 1
r2

λ.

In that case, the trajectory of the particle depends on r.

Remark 2.15. The smooth gluey particle model leaded to unphysical behaviours, independent of the initial
lubrication model, the viscosity and the radius (see Rems. 2.2 and 2.5). Taking into account roughness makes
it possible to come back to more physical behaviours. For example, the bigger is the viscosity, the lower is γmin

and consequently, the longer lasts the contact.
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Figure 13. Particles i and j: notations.

From an algorithmic point of view, this rough model can easily be taken into account in Algorithm 2.7 by
changing step (3) in

γn+1 = γn − h

r2
λn+1,

where r is the radius of the sphere and by adding the following (4b) step:

if γn+1 < γmin, γn+1 = γmin.

3. Multi-particle case

3.1. Modelling

We generalize the gluey particle model (2.1)–(2.5) to the multi-particle case. We consider a system of
N spherical particles in three-dimensions. xi stands for the position of the center of particle i in R

3 and fi ∈ R
3

for the external force exerted on it. Let x ∈ R
3N be defined by x = (. . . ,xi, . . .) and f ∈ R

3N by f = (. . . , fi, . . .).
We denote by Dij the signed distance between particles i and j, and eij by eij(x) = (xj − xi)/‖xj − xi‖ (see
Fig. 13). We define M as the mass matrix of dimension 3N × 3N , M = diag(. . . , mi, mi, mi, . . .). Vector
Gij ∈ R

3N is the gradient of distance Dij with respect to the positions of the particles:

Gij(x) = ∇xDij(x) = (. . . , 0, −eij(x), 0, . . . , 0, eij(x), 0, . . . , 0)t.
i j

In that context, there are N(N − 1)/2 pair of particles and we denote by γ = (. . . , γij , . . .) ∈ R
N(N−1)/2 the

associated sticking variables: γij is strictly negative if particles i and j are glued. Then, using the fact that
dDij(x)

dt
= Gij(x) · ẋ, we define the following space of admissible velocities:

Cx,γ(t) =

{
V ∈ R

3N s.t.

∣∣∣∣∣
Gij(x) ·V = 0 if γij(t−) < 0

Gij(x) ·V ≥ 0 if γij(t−) = 0, Dij(t) = 0

}
.

To finish with notations, we denote by λ = (. . . , λij , . . .) ∈ R
N(N−1)/2 the vector made of the Lagrange

multipliers associated to these N(N − 1)/2 constraints.
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The multi-particle model is the natural counterpart of the particle/plane one:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ (W 1,∞(I))3N , ẋ ∈ (BV (I))3N , γ ∈ (BV (I))N(N−1)/2, λ ∈ (M(I))N(N−1)/2,

ẋ(t+) = PCx,γ (t)ẋ(t−),

M ẍ = M f +
∑
i<j

λijGij(x),

supp(λij) ⊂ {t, Dij(t) = 0} for all i, j,

γ̇ = −λ,

Dij ≥ 0, γij ≤ 0 for all i, j,

x(0) = x0 st. Dij(0) > 0 for all i, j, ẋ(0) = u0, γ(0) = 0RN(N−1)/2.

(3.1)

Remark 3.1. The Lagrange multiplier λij , associated to the constraint between particles i and j, is activated
(non zero) only if these particles are in contact. The additional force due to this contact is equal to λijGij(x).
From the expression of Gij(x), we get that this force only concerns the particles involved in the contact: it is
equal to −λijeij(x) on particle i and λijeij(x) on particle j.

Remark 3.2 (roughness and radius). As for the particle/plane case (see Sect. 2.5), roughness can be taken
into account by imposing a threshold on γ:

6πμ ln(ri,s + rj,s) ≤ γij for all i, j,

where rl,s is the size of roughness of particle l. As noticed in the particle/plane case, it is now important to take
the radius of the particles into account in the evolution of γ. To do so, in the same way as in the particle/plane
case, we come back to the way the gluey particle model has been built and take into account all the constants
involved in the first order asymptotic development of the lubrication force exerted between two particles (1.3).
We obtain the following evolution equation for γ:

γ̇ = −Rλ,

where R is the diagonal matrix of dimension N(N − 1)/2 with coefficients Rij,ij = (ri + rj)2/(r2
i r

2
j ).

3.2. Algorithm

Let h be the time step. We denote by Vn = (. . . ,Vn
i , . . .) ∈ R

3N the approximated velocities of the particles
at time tn = nh. Let xn, γn and λn be the respective approximations of x, γ and λ at time tn.

The discretization of the continuous constraints Cx,γ(tn) is inspired by [24] and corresponds to a first order
approximation of the constraints:

K(xn, γn) =

{
V ∈ R

3N s.t.

∣∣∣∣∣
Dij(xn) + hGij(xn) ·V ≥ 0 if γn

ij = 0

Dij(xn) + hGij(xn) ·V = 0 if γn
ij < 0

}
.

Using this discrete space of admissible velocities, the time discretization of (3.1) is now a direct adaptation
of Algorithm 2.7 to the multi-particle case.

Algorithm 3.3 (multi-particle). For all n ≥ 0, let xn, Vn, γn and λn be given. We define fn =
1
h

∫ tn+1

tn

f(s)ds.

(1) Computation of the a priori velocity, without taking the lubrication force into account

Vn+1/2 = Vn + hfn.
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(2) Projection of the a priori velocity on the set of admissible velocities,

Vn+1 ∈ K(xn, γn),
1
2

∣∣∣Vn+1 − Vn+1/2
∣∣∣2
M

= min
V∈K(xn,γn)

1
2

∣∣∣V − Vn+1/2
∣∣∣2
M

.

From this projection step, we obtain λn+1.

(3) Updating of γ,
γn+1 = γn − hλn+1,

if γn+1
ij > 0, γn+1

ij = 0.

(4) Updating of x,
xn+1 = xn + hVn+1.

Remark 3.4. In the same way as in Section 2.5 and Remark 2.8 for the particle/plane case, this algorithm can
be extended to rough solids and coupled with fluid/particle solvers using a splitting strategy.

Remark 3.5 (obstacles). Suppose there exists N0 fixed obstacles (walls of a box containing the particles for
example). It is straightforward to add the NN0 new constraints in K(xn, γn). Now, suppose these obstacles
are moving with a prescribed velocity. We denote by yn+1 the (known) vector giving their position at time
tn+1. The space of admissible velocities becomes:

K(xn,yn+1, γn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∈ R
3N s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pairs (i, j) particle/particle:

Dij(xn) + hGij(xn) ·V ≥ 0 if γn
ij = 0

Dij(xn) + hGij(xn) ·V = 0 if γn
ij < 0

Pairs (i, k) particle/obstacle:

Dik(xn,yn+1) + hGik(xn,yn+1) · V ≥ 0 if γn
ik = 0

Dik(xn,yn+1) + hGik(xn,yn+1) · V = 0 if γn
ik < 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

3.3. Finding neighbours

The most time consuming step in Algorithm 3.3 is the projection step (2). It is performed using a Uzawa
algorithm which imposes to run matrix/vector products involving the contacts. However, in order to simulate
large collections of particles, it is essential to avoid loops over the N(N − 1)/2 possible contacts. To do so, we
notice that it is not necessary to take into account all contacts at each time-step. Indeed, two particles i and
j far enough to each other at time tn won’t stick at time tn+1 and consequently, the corresponding constraint
won’t be activated (i.e. λn+1

ij = 0). We denote by Dneigh the distance above which we consider that two particles
are not likely to touch next time-step. Then, the set of pairs of particles one has to consider at time tn is:

Cneigh(xn) =
{
(i, j) ∈ [1, N ]2, i < j and Dij(xn) ≤ Dneigh

}
.

If the pair (i, j) is in the set Cneigh(xn), we say that particles i and j are neighbours. Two particles that are
not neighbours at time tn won’t stick at time tn+1 and consequently, one can restrict the set of constraints at
time tn to:

Kneigh(xn, γn) =

⎧⎪⎪⎨
⎪⎪⎩

V ∈ R
3N s.t., ∀(i, j) ∈ Cneigh(xn),∣∣∣∣∣

Dij(xn) + hGij(xn) · V ≥ 0 if γn
ij ≥ 0

Dij(xn) + hGij(xn) · V = 0 if γn
ij < 0

⎫⎪⎪⎬
⎪⎪⎭.
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lν

(l + 1)ν

kν (k + 1)ν

particle i

Figure 14. Algorithm to find neighbours: neighbouring boxes and distances actually computed.

Remark 3.6. This idea not to take into account particles far away from each other is generally used when
considering particles interacting through near field interaction forces, decreasing with the distance. In that
case, it consists in considering that the force is negligible above a certain distance and consequently, it is an
approximation of the model. In our case, no approximation is made. Indeed, if Dneigh has been chosen sufficiently
large, we know that the pairs of particles that are not belonging to Cneigh(xn) won’t undergo contact at time
tn+1 and consequently, won’t interact. For example, we can choose a time step in order to limit the displacement
of the particles to twice their radius and then set the value of Dneigh to a few radiuses.

Note that this set of neighbouring particles can be used to add any short range interaction force in the
simulation. For example, using the gluey particle model, two particles can interact through the lubrication
force only if they undergo contact. We can chose to model the lubrication force by its asymptotic expansion
when two particles are sufficiently close (i.e. in the set of neighbours). Then, we can deal with contacts due to
the time discretization by using the gluey contact model.

To construct Cneigh(xn) avoiding the computation of the N(N − 1)/2 distances, we choose a bucket sorting
type algorithm. It consists in dividing the computational domain into boxes of size ν > Dneigh and to compute
distances only for pairs of particles belonging to neighbouring boxes (see Fig. 14). Note that, because of step (3),
it is not sufficient to erase at each time-step the former set of neighbours and to create the new one: one has to
transfer the value of γn

ij if particles i and j are in contact during these two successive time steps.

3.4. Object oriented programming method

To build this code, we chose to use the object oriented programming method for mathematical problems
CsiMoon [17]. As a consequence, both numerical methods and models can be easily changed. For example,
new methods can be chosen and added to the code in order to perform the projection step and to construct
the set of neighbours. This programming method also allows us to take into account various models of external
environment (dry environment, fluid, obstacles of different shapes...), of interparticular interactions (cohesion
force...) and of contacts (inelastic, gluey model, aggregation...). This leads to a modular C++ code SCoPI2,
allowing Simulations of Collections of Interacting Particles. This code has already been used to simulate gluey
particles, crowd motion, wet particles and red-cells (as an assembly of rigid particles).

2http://www.math.u-psud.fr/˜lefebvre/SCoPI.htm.
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t =0 t =432 t =504 t =600

t =768 t =888 t =1008 t =1344

Figure 15. Gluey billiard: configurations and trajectories at different time steps.

4. Numerical simulations

We present in this section numerical simulations of collections of gluey particles. For visualization reasons,
we only propose here two-dimensional simulations: even though the code is intrinsically three-dimensional, the
motion of the particles is restricted to a vertical plane. These simulations demonstrate that the algorithm enables
to take great numbers of gluey particles into account. This, together with Section 2.4, shows that coupling the
gluey particle algorithm with fluid/particle solvers will make it possible to simulate dense fluid/particle flows,
taking the lubrication force into account with accuracy.

4.1. Gluey billiard

We consider two spherical smooth particles with radius r = 0.02 moving on a plane. Their initial positions
are (0, 0) and (−0.25,−0.25). The particle situated at the origin is supposed to be immobile at the beginning
and the second one is thrown on it with initial velocity equal to 0.2∗(0.25, (0.25−r)). The time step is h = 0.5r.
The configurations obtained with Algorithm 3.3 are given in Figure 15 at different time steps. At impact time,
the particles stick together and they remain stuck until the centrifugal force balances the impact velocity.

4.2. Gluey lotto: influence of roughness

The aim of this simulation is to observe the influence of roughness on the behaviour of multi-particle systems
governed by the gluey particle model. We consider a two-dimensional “gluey lotto” made of 160 particles in a
squared rotating mixer operator. The side length of the box is 0.5 and the radiuses of the particles are taken
between 0.007 and 0.015. All particles have the same mass m = 1 and the gravity constant g is taken equal to
10. The 80 particles initially situated in the left compartment of the box are black and the 80 other ones are
white. We represent side by side in Figure 16 the configurations obtained at different time steps for γmin = 0
on the left (inelastic contacts), γmin = −1 in the middle (gluey rough particles) and γmin = −∞ on the right
(gluey smooth particles). In case of smooth particles, the heaps of particles take off from the wall when they
are at the top of the box: as suggested by the particle/plane model, they take off only when the gravity has
balanced the forces it has itself exerted to push the particles on the bottom wall. In the rough case, they take
off earlier.
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t =0 t =0 t =0

t =980 t =980 t =980

t =1980 t =1980 t =1980

t =2980 t =2980 t =2980

t =3980 t =3980 t =3980

t =4980 t =4980 t =4980

Figure 16. Gluey lotto: configurations at different time-steps for γmin = 0 on the left (inelastic
contacts), γmin = −1 in the middle (gluey rough particles) and γmin = −∞ on the right (gluey
smooth particles).
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Figure 17. Snapshot of two-dimensional simulations, 3000 particles: dry (left) and viscous
(right) simulations at time-step n = 14 226.

4.3. Sedimentation of 3000 gluey particles

We consider 3000 gluey particles sedimenting under gravity with radiuses between 0.015 and 0.025. They
are initially situated above a funnel (random sample of positions) with velocity equal to zero. All the particles
have the same mass m = 2 and the gravity g is taken equal to 10. Below the funnel, a wheel rotates around its
axis with angular velocity ω = −2 and throws the particles on a leaning fixed plane situated below it. Then,
the particles slip along the plane and finally fall in a container. Some spherical obstacles of radius r = 0.1 are
fixed on the plane to slow the particles movement. A threshold is imposed on γ (γ ≥ −10) to model roughness.
The code also allows us to model dry granular flow involving inelastic contacts. In Figure 17 we compare the
configurations obtained at the same time-step for simulations using the inelastic contact model and the previous
gluey one.

Finally, we plot in Figure 18 the values of γ for a given configuration of the gluey simulation (zoom on the
wheel). For each contact, a tube is plotted between the two involved particles and, the larger is γij (i.e. the
more the particles are glued), the darker is the grey. We can see the network of the forces leading to a packed
configuration in the funnel. The particles are smoothly unsticking from each other when leaving the wheel.
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Figure 18. Snapshot of a two-dimensional gluey simulation, 3000 particles: configuration and
values of γ at time-step n = 14 226.
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