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Abstract. The powerful Hamilton-Jacobi theory is used for constructing regularizations and error
estimates for optimal design problems. The constructed Pontryagin method is a simple and gen-
eral method for optimal design and reconstruction: the first, analytical, step is to regularize the
Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differen-
tial equation, is computed with the Newton method. The method is efficient for designs where the
Hamiltonian function can be explicitly formulated and when the Jacobian is sparse, but becomes im-
practical otherwise (e.g. for non local control constraints). An error estimate for the difference between
exact and approximate objective functions is derived, depending only on the difference of the Hamil-
tonian and its finite dimensional regularization along the solution path and its L2 projection, i.e. not
on the difference of the exact and approximate solutions to the Hamiltonian systems.
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1. Introduction to optimal design

As the computational capacity increases it becomes possible to solve more demanding construction problems.
For instance, instead of only computing the deformation of a given construction, it is possible to computationally
design an optimal construction with minimal deformation for a given load. In a mathematical setting optimal
design is a particular inverse problem where the goal is to determine input functions in a partial differential
equation that meet the design criteria in an optimal way; for instance, to distribute a fixed amount of mate-
rial in space to construct a bridge with minimal deformation, for a given load, means to solve the elasticity
equations and determine a material configuration. The start of this computational work is presented in [30]
and has now become an activity with large international optimal design conferences and several books [1,4,30].
Inverse problems are often ill posed, e.g. small perturbations of data lead to large changes in the solution. To
computationally solve inverse problems therefore requires some regularization, cf. [1,4,19,30,36]. The standard
Tikhonov method [35] requires to choose a penalty, usually a norm and a parameter, with the purpose to reg-
ularize the computational method. Although there is good understanding how to choose the penalty for some
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problems, e.g. in tomography [29], with norms related to the required regularity of solutions and parameters
related to the error in data, there is no complete theory for how to regularize general nonlinear problems.

The objective of this work is to show how the powerful theory of viscosity solutions, for time dependent
optimal control problems in the dynamic programming setting, can be used as a theoretical tool to find a
regularization criterion and estimate its approximation error; based on this regularization we then construct
a simple and general computational method also for some highly nonlinear time independent optimal design
problems, extending the work [32] on time dependent problems. Our method [33] reduces to solve a Hamiltonian
system, where the Hamiltonian is a C2-regularized version of the original Hamiltonian. This Hamiltonian system
is a nonlinear partial differential equation, where the Newton method with a sparse Jacobian becomes efficient
and simple to use, e.g. in standard PDE software. The idea is to start by computing solutions to the Hamiltonian
system with a highly regularized Hamiltonian. When this is done a less regularized Hamiltonian is chosen, and
the previously computed solutions serve as a starting position for the Newton method with the new Hamiltonian.
This procedure of successively decreasing the regularization is repeated as far as possible. As it is sufficient to
use a one-parameter family of regularized Hamiltonians, it is only needed to tune this one parameter. In the
ideal situation, however, this parameter may successively be decreased to zero. Therefore only one parameter
needs to be set at the start of the first Newton iteration. This is an advantage compared to methods based on
regularizations using penalization of terms involving the control variable, and (sometimes many) differentials of
it; in such methods there are often several parameters.

A clear limitation of our method is the requirement to obtain an explicit formula for the regularized
Hamiltonian. The optimal design and reconstruction problems presented in this paper need local constraints
on the control and have explicit formulas. Non local constraints on the control or Lagrangians depending on
derivatives of the control typically do not admit explicit formulas, and then our method may become impractical;
in other words, we use an advantage of those particular problems having explicit formulas of the Hamiltonian.
When penalty terms with derivatives are present, these derivatives must be considered as control variables.
Another limitation is that the solution to the Hamiltonian system gives the primal and dual variables, but not
the control function directly. As will be shown in the examples considered in this paper, it is however often
possible to obtain an approximate control using the approximate primal and dual solutions.

We present a natural regularization to meet the (minimal) requirement that there is a regularized discrete
solution, which is accurately approximating the optimal objective function (but not necessary the optimal
control function). This regularization is derived from viscosity solutions theory for time dependent problems.
Future work may use better insight also on the more demanding task to be able to iteratively compute solutions
(instead of as above only approximate them) – e.g. in the time independent setting – to find further improved
regularizations.

We derive an error estimate for the difference between exact and approximate objective functions, depending
only on the difference of the Hamiltonian and its finite dimensional regularization along the solution path and
its L2 projection, i.e. not on the difference of the exact and approximate solutions to the Hamiltonian systems.
This error estimate is of the right form to be a good starting point for new studies on adaptive methods for
optimal control problems: the difference of the Hamiltonians yields an error density which measures errors both
from discretization and the regularization. Our experiments show that the estimate is relatively sharp.

One way to characterize so called symplectic time discretizations for Hamiltonian systems is that these ap-
proximations are exact solutions to another Hamiltonian system, cf. [23]. In this sense, our approximation in
space and regularization shares this symplectic property. An equivalent definition of symplectic time discretiza-
tion methods for Hamiltonian systems derived from optimal control problems is that the first variation of the
discrete value function agrees with the discretization of the Lagrange multiplier, see [33] where symplectic time
discretizations are analyzed for optimal control problems with the the similar use of viscosity solution theory
as here. This property that the first variation of the discrete value function agrees with the discretization of
the Lagrange multiplier only makes sense for time dependent problems, which is one reason our analysis starts
by extending the original time independent optimal control problem to an artificial time dependent dynamic
programming formulation.
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We study three different examples where the nonlinear PDEs are of different character: scalar concave
maximization, scalar non-concave maximization and an elliptic system for reconstruction. The homogenization
method is a theoretically powerful way to regularize some optimal design problems [1], based on a change of
control variables related to composite micro structure. This regularization changes the differential operator part
of the Lagrangian. Section 3.2 suggests a simple alternative regularization based on the material constraint part
of the Lagrangian: the constraint on material volume

∫
Ω σdx = C, which usually is included in the Lagrangian

by a term η
∫
Ω

σdx, is now instead represented by η′ ∫
Ω

σ−1dx which turns out to give the same regularized
Hamiltonian as the homogenization method for a scalar problem.

2. Symplectic Pontryagin approximations in optimal control

Consider a differential equation constrained minimization problem with solution ϕ in some Hilbert space V
on a domain Ω and control σ ∈ A := {σ : Ω → B}:

f(ϕ, σ) = 0 in distribution,

min
σ∈A

h(ϕ, σ),
(2.1)

and its approximation with solution ϕ̄ ∈ V̄ ⊂ V and control σ̄ ∈ Ā:

f̄(ϕ̄, σ̄) = 0

min
σ̄∈Ā

h̄(ϕ̄, σ̄). (2.2)

Example 2.1 (optimal conductor). Section 3.1 presents minimization of the power loss in an electric conductor,
by distributing a given amount of conducting material in a domain Ω ⊂ R

d, with a surface current q. Let η ∈ R

be a constant Lagrange multiplier, associated to the given amount of material, and find an optimal conduction
distribution σ : Ω → {σ−, σ+} =: B, where σ± > 0, such that

min
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ f(ϕ, σ) := div(σ∇ϕ)
∣∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
. (2.3)

Here ∂/∂n denotes the normal derivative, ds is the surface measure on ∂Ω and ϕ ∈ V := {v ∈ H1(Ω) :∫
Ω v dx = 0} is the electric potential.

The corresponding Lagrangians

L(λ, ϕ, σ) := 〈λ, f(ϕ, σ)〉 + h(ϕ, σ),

L̄(λ̄, ϕ̄, σ̄) := 〈λ̄, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄),

can be used to formulate the conditions

∂1L = f(ϕ∗, σ∗) = 0,

∂2L = 〈λ∗, ∂f(ϕ∗, σ∗)〉 + ∂h(ϕ∗, σ∗) = 0,

σ∗ ∈ argmin
σ∈A

{〈λ∗, f(ϕ∗, σ)〉 + h(ϕ∗, σ)}, (2.4)

inspired by the corresponding time dependent condition (2.10). Here, ∂1 =: ∂ and ∂2 are the Gateaux derivatives
with respect to the first and second arguments respectively, and 〈v, w〉 is the duality pairing on V , which reduces
to the L2(Ω) inner product if v, w ∈ L2(Ω).
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Optimal control problems are inverse problems. It is well known that inverse problems often are ill-posed;
therefore they need to be regularized. We will use a formulation of (2.4) based on the Hamiltonian to regularize
our optimal design problems. The Hamiltonians H : V × V → R and H̄ : V × V̄ → R defined as

H(λ, ϕ) := min
σ∈A

{〈λ, f(ϕ, σ)〉 + h(ϕ, σ)}
H̄(λ, ϕ̄) := min

σ̄∈Ā
{〈λ, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄)} (2.5)

eliminate the control variables in the local equilibrium conditions

∂1H(λ∗, ϕ∗) = 0

−∂2H(λ∗, ϕ∗) = 0, (2.6)

and similarly for (λ̄∗, ϕ̄∗)

∂1H̄(λ̄∗, ϕ̄∗) = 0

−∂2H̄(λ̄∗, ϕ̄∗) = 0.

It turns out that for our optimal design problems it is easy to find an explicit expression for the Hamiltonian; for
some other constrained minimization problems the Hamiltonian can be too complicated to use computationally.
The Hamiltonian is in general only Lipschitz continuous even if f, g and h are smooth and we shall see that
in particular for optimal design the Hamiltonians indeed are not differentiable everywhere. We also see that
the stationary Hamiltonian system (2.6) becomes undefined where the Hamiltonian is not differentiable. At a
point where the Hamiltonian is not differentiable the optimal control depends discontinuously on (λ, ϕ). The
Hamiltonian form has the advantage that the Newton method can be used to iteratively solve the nonlinear
constrained optimization problem (2.1) when the Hamiltonian can be written using a simple formula so that
the Hessian of H is explicitly known, while Hessian information is in general not available for direct constrained
minimization based on the control variable σ. We want to understand how to regularize and to estimate errors
introduced by approximation and regularization of the optimal control problem. In particular we seek an
estimate of the error

E := min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} − min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0}.

The definition of λ∗, ϕ∗ and H imply

min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0} = H(λ∗, ϕ∗) (2.7)

min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} = H̄(λ̄∗, ϕ̄∗) (2.8)

which seems to require estimates of (ϕ̄∗ − ϕ∗, λ̄∗ − λ∗) to yield a bound on E. To obtain bounds on ϕ̄∗ − ϕ∗ is
in fact a harder problem than to estimate E. The situation is similar to minimization of a non strictly convex
function where convergence of the minimum value may hold without having convergence of the minimizing
points. In our case the error in the objective function can be small although the difference of the controls is
large, e.g. near a point where H is not differentiable.

We shall see that the corresponding time dependent optimal control problem is useful for understanding
regularizations and error estimates; in particular we use the time dependent formulation to derive bounds on E
depending only on the difference of the two Hamiltonians along the same path, i.e. depending on H(λ, ϕ̄) −
H̄(λ, ϕ̄), so that no estimate of ϕ∗ − ϕ̄∗ or λ∗ − λ̄∗ is needed. Let us now state and compare computational



SYMPLECTIC PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN 7

methods for time dependent optimal control problems. Consider two controlled differential equations

∂tϕt = f(ϕt, σt),

∂tϕ̄t = f̄(ϕ̄t, σ̄t),

with solutions ϕ : [0, T ] → V , and ϕ̄ : [0, T ] → V̄ , and given initial values ϕ0, ϕ̄0. Here, ∂t denotes the partial
derivative with respect to time and ϕt := ϕ(t), σt := σ(t). The objective is to minimize

min
σ∈B

{∫ T

0

h(ϕt, σt) dt + g(ϕT )
∣∣∣∣ ∂tϕt = f(ϕt, σt)

}
, B := {σ : [0, T ] → A},

min
σ̄∈B̄

{∫ T

0

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )
∣∣∣∣ ∂tϕ̄t = f̄(ϕ̄t, σ̄t)

}
, B̄ := {σ̄ : [0, T ] → Ā}. (2.9)

These optimal control problems can be solved either directly using constrained minimization or by dynamic
programming. The Lagrangian becomes

L :=
∫ T

0

〈λt, f(ϕt, σt) − ∂tϕt〉 + h(ϕt, σt) dt + g(ϕT )

and the constrained minimization method is based on the Pontryagin method

∂tϕt = f(ϕt, σt)

∂tλt = −〈λt, ∂f(ϕt, σt)〉 + ∂h(ϕt, σt)

σt ∈ argmin
σ∈A

{〈λt, f(ϕt, σ)〉 + h(ϕt, σ)}. (2.10)

This can be written as a Hamiltonian system

∂tϕt = ∂1H(λt, ϕt)

∂tλt = −∂2H(λt, ϕt)
(2.11)

with ϕ0 given, and λT = ∂g(ϕT ).
The alternative dynamic programming method is based on the value functions u : V × [0, T ] → R and

ū : V̄ × [0, T ] → R,

u(φ, τ) := inf
σ∈B

{∫ T

τ

h(ϕt, σt) dt + g(ϕT )
∣∣∣∣ ∂tϕt = f(ϕt, σt), ϕτ = φ ∈ V

}

ū(φ, τ) := inf
σ̄∈B̄

{∫ T

τ

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )
∣∣∣∣ ∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄τ = φ ∈ V̄

}
,

(2.12)

which solve the nonlinear Hamilton-Jacobi-Bellman equations

∂tu(φ, t) + H
(
∂u(φ, t), φ

)
= 0, u(·, T ) = g,

∂tū(φ, t) + H̄
(
∂ū(φ, t), φ

)
= 0, ū(·, T ) = ḡ, (2.13)

with Hamiltonians defined as in (2.5).
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The Hamilton-Jacobi formulation has two advantages and a severe disadvantage:

+ there is complete well posedness theory for Hamilton-Jacobi equations, based on viscosity solutions,
see [15], although, in general, the value function is not everywhere differentiable, corresponding in the
constrained optimization method to optimal backward paths ϕ∗ that collide and hence the Lagrange
multiplier λ∗ becomes ill defined in a standard sense;

+ the Hamilton-Jacobi formulation finds a global minimum, while constrained minimization focuses on
local minima;

– the drawback with dynamic programming is that the method is only computationally feasible for prob-
lems in low dimension, ϕ̄t ∈ R

n, while constrained minimization is computable also for high dimensional
problems where ϕ̄ is an approximation of a solution to a partial differential equation with n � 1.

Therefore the computational option is to use constrained minimization for problems in high dimension and
we will choose a discretization of the stationary Hamiltonian system (2.6) to solve optimal design problems.
However, we shall use the Hamilton-Jacobi equation in infinite dimension to understand regularizations and to
derive error estimates. The additional structure extending our optimal design problems to dynamic programming
problems is hence a useful theoretical tool. Note however that not all constrained optimal control problems
have such extensions. Note also that solving the Hamiltonian system (2.11) is the method of characteristics for
the Hamilton-Jacobi equation (2.13), with λt = ∂u(ϕt, t).

Example 2.2 (artificial time dependent optimal conductor). The time dependent extension of Example 2.1 is
to find an optimal time dependent conductivity σ : Ω × [0, T ] → {σ−, σ+} to minimize the power loss under
constraint of the parabolic equation

∂tϕ = div(σ∇ϕ),

where ϕ = ϕ(x, t). The Lagrangian takes the form

L(σ, λ, ϕ) :=
∫ T

0

∫
∂Ω

q(ϕ + λ) ds dt +
∫ T

0

∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

−∂tϕλ dx dt,

with λ = λ(x, t) and the Hamiltonian

H(λ, ϕ) = min
σ:Ω→{σ±}

{∫
Ω

σv dx +
∫

∂Ω

q(ϕ + λ) ds

}

=
∫

Ω

min
σ∈σ±

{σv}︸ ︷︷ ︸
h(v)

dx +
∫

∂Ω

q(ϕ + λ) ds,

where we have introduced the function h(v) = minσ∈σ±{σv}. The value function

u(φ, τ) = inf
σ

{∫ T

τ

∫
∂Ω

qϕ ds + η

∫
Ω

σ dx dt

∣∣∣∣ ∂tϕ = div(σ∇ϕ), ϕτ = φ

}

yields the infinite dimensional Hamilton-Jacobi equation

∂tu(φ, t) + H(∂u(φ, t), φ) = 0 t < T, u(·, T ) = 0,



SYMPLECTIC PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN 9

using the Gateaux derivative ∂u(φ, t) of the functional u(φ, t) in L2(Ω). The corresponding Hamiltonian system
is the parabolic system

∫
Ω

∂tϕw + h′(η −∇ϕ · ∇λ)∇ϕ · ∇w dx =
∫

∂Ω

qw ds, ϕ(·, 0) given,∫
Ω

−∂tλv + h′(η −∇ϕ · ∇λ)∇λ · ∇v dx =
∫

∂Ω

qv ds, λ(·, T ) = 0,

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω) :
∫
Ω v dx = 0}.

2.1. Derivation of approximation error

We simplify by considering the case when ḡ = g. A similar approximation study is in [32]. Let us first derive
the approximation error, ū(ϕ̄0, 0)− u(ϕ0, 0) =: Ẽ, of the value functions (2.12) given solutions σ, σ̄ and ϕ, ϕ̄ to
the time dependent optimal control problems (2.9)

Ẽ :=
∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T ) −
(∫ T

0

h(ϕt, σt) dt + g(ϕT )
)

=
∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ0, 0)

=
∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ̄0, 0) + u(ϕ̄0, 0) − u(ϕ0, 0).
(2.14)

To simplify the analysis choose the initial data for the exact path to coincide with the initial data for the
approximate path, i.e. ϕ0 = ϕ̄0. Also assume that u is Gateaux differentiable; the general case with only sub
differentiable u is in Section 2.2. Then the right hand side simplifies to

∫ T

0

du(ϕ̄t, t) +
∫ T

0

h̄(ϕ̄, σ̄) dt =
∫ T

0

∂tu(ϕ̄t, t) + 〈∂u(ϕ̄t, t), f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, σ̄t) dt

≥
∫ T

0

−H
(
∂u(ϕ̄t, t), ϕ̄t

)︸ ︷︷ ︸
= ∂tu(ϕ̄t,t)

+H̄
(
∂u(ϕ̄t, t), ϕ̄t

)
dt, (2.15)

where the inequality follows from the definition (2.5) of H̄ . Note that the Pontryagin principle

〈∂ū(ϕ̄t, t), f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, σ̄t) = H̄
(
∂ū(ϕ̄t, t), ϕ̄t

)
is not applicable here since we have ∂u instead of ∂ū. The more general case with ḡ �= g yields the additional
error term

(g − ḡ)(ϕ̄T )

to the right hand side in (2.15).
Similarly, exchange the role of the exact value function along the approximate path, (u, ϕ̄), with the approx-

imate value function along the exact path, (ū, ϕ), to obtain an upper bound on Ẽ. This requires a new step; to
give meaning to ū along the exact path ϕt. For this purpose we introduce the projection P : V → V̄ . We have,
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using ϕ̄0 = ϕ0 = Pϕ0,

−Ẽ =
∫ T

0

h(ϕt, σt) dt + g(ϕT ) −
(∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T )
)

=
∫ T

0

h(ϕt, σt) dt + g(ϕT ) + ū(PϕT , T )− g(PϕT ) − ū(ϕ̄0, 0)

=
∫ T

0

h(ϕt, σt) dt + ū(PϕT , T )− ū(Pϕ0, 0) + g(ϕT ) − g(PϕT ).
(2.16)

The first three terms in the right hand side become∫ T

0

dū(Pϕt, t) +
∫ T

0

h(ϕt, σt) dt =
∫ T

0

∂tū(Pϕt, t) + 〈∂ū(Pϕt, t), Pf(ϕt, σt)〉 + h(ϕt, σt) dt

=
∫ T

0

∂tū(Pϕt, t) + 〈P∂ū(Pϕt, t), f(ϕt, σt)〉 + h(ϕt, σt) dt

≥
∫ T

0

∂tū(Pϕt, t) + H
(
∂ū(Pϕt, t), ϕt

)
dt

=
∫ T

0

−H̄
(
∂ū(Pϕt, t), Pϕt

)
+ H

(
∂ū(Pϕt, t), ϕt

)
dt. (2.17)

Combining (2.16) and (2.17) we now have

Ẽ ≤
∫ T

0

H̄
(
∂ū(Pϕt, t), Pϕt

) − H
(
∂ū(Pϕt, t), ϕt

)
dt − g(ϕT ) + g(PϕT )

=
∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt

+
∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

) − H
(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT ). (2.18)

Assume now that h, g and H are Lipschitz continuous in V , with respect to the variable ϕ. Then the projection
error terms in the right hand side of (2.18) are

ẼP :=
∣∣∣∣
∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

) − H
(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT )

∣∣∣∣
= sup

t∈[0,T ]

‖Pϕt − ϕt‖V O(T ).

Combine (2.15) and (2.18) to obtain∫ T

0

(
H̄ − H

)(
∂u(ϕ̄t, t), ϕ̄t

)
dt ≤ Ẽ ≤

∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt + ẼP . (2.19)

Remark 2.3 (no minimizers). If there are no minimizers to (2.9), then for every ε > 0, we can choose controls
σ, σ̄ with corresponding states ϕ, ϕ̄ such that

Elhs − ε ≤ Ẽ ≤ Erhs + ε

with Elhs, Erhs being the left and right hand sides of (2.19).
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To estimate the error in the case of time independent optimal control problems with solutions ϕ and ϕ̄, we
assume that the time dependent control problems with initial data ϕ0 = ϕ̄0 for some given ϕ̄0 ∈ V̄ (close to
some approximation of ϕ̄) asymptotically have the same solutions as the time independent versions, i.e.

lim
T→∞

inf
σ∈A

{
1
T

∫ T

0

h(ϕt, σt) dt

∣∣∣∣ ∂tϕt = f(ϕt, σt), ϕ0 = ϕ̄0

}
= inf

σ∈B
{h(ϕ, σ) | f(ϕ, σ) = 0}

lim
T→∞

inf
σ̄∈Ā

{
1
T

∫ T

0

h̄(ϕ̄t, σ̄t) dt

∣∣∣∣ ∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄0 = ϕ0

}
= inf

σ̄∈B̄
{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0}, (2.20)

which implies:

Theorem 2.4. Assume that (2.20) holds, and that g is a bounded function. Then the error E satisfies

E = lim
T→∞

Ẽ

T
,

where Ẽ, given in (2.14), (2.16) and Section 2.2, only depends on the difference between the Hamiltonians H
and H̄ along a solution path and on the projection error ‖ϕt − Pϕt‖V , but not on the error between the paths
(ϕ − ϕ̄, λ − λ̄).

2.2. Non differentiable solution to Hamilton-Jacobi equations

Solutions to Hamilton-Jacobi equations are in general not differentiable. Let us extend the derivation (2.15),
(2.17) to a case when u is not differentiable. The theory of viscosity solutions to Hamilton-Jacobi equations gives
well posedness for solutions, which are continuous but not necessarily differentiable, cf. [2,3,20]. This theory
is now rather complete in the finite dimensional setting, cf. [16]. Let us therefore consider a case when V and
V̄ are two finite element spaces, with V̄ ⊂ V so that the corresponding Hamilton-Jacobi equations are defined
on finite dimensional spaces. By theory in e.g. [10], which covers finite dimensional optimal control systems, it
follows that the value functions, u and ū, in all problems treated in this report, are semiconcave on, respectively,
V × [0, T ] and V̄ × [0, T ]. One of the requirements for semiconcavity in [10] is that the flux (here f(ϕ, σ)) and
its spatial derivative (∂ϕf(ϕ, σ)) must both be Lipschitz in the state variable, ϕ, with a constant independent
of σ. This can be verified for the fluxes in the present problems using a discrete H2 norm which is equivalent to
the Euclidean norm since the spaces are finite dimensional. The other requirements for semiconcavity are easily
verified. Therefore the error estimate (2.19) extends to the general case when u, ū are viscosity solutions that
are not differentiable functions as follows. If u is a non differentiable semiconcave solution to a Hamilton-Jacobi
equation the definition of viscosity solution reduces to

q + H(p, ϕ) ≥ 0 for all (p, q) ∈ D+u(ϕ, t)

u(·, T ) = g, (2.21)

where D+u(x) := {z ∈ V × R : u(y + x) − u(x) − 〈z, y〉 ≤ o(‖y‖)} is the super differential of u at the point
x = (ϕ, t). This means that in (2.15) we can for each t choose a point (p, q) ∈ D+u(ϕ̄t, t) so that

∫ T

0

du(ϕ̄t, t) +
∫ T

0

h̄(ϕ̄t, t) dt =
∫ T

0

q + 〈p, f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, t) dt,

and by the definition (2.8) of H̄ we have

∫ T

0

q + 〈p, f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, t) dt ≥
∫ T

0

(
q + H̄(p, ϕ̄t)

)
dt.
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Finally, by (2.21), ∫ T

0

(
q + H̄(p, ϕ̄t)

)
dt ≥

∫ T

0

(−H + H̄
)
(p, ϕ̄t) dt.

The analogous formulation holds for ū. Consequently (2.19) holds for some (p, q) ∈ D+u(ϕ̄t, t) replacing
(∂u(ϕ̄t, t), ∂tu(ϕ̄t, t)) and some (p̄, q̄) ∈ D+ū(Pϕt, t) replacing (∂ū(Pϕt, t), ∂tū(Pϕt, t)).

The present analysis is, however, in principle valid even when we let V be an infinite dimensional Hilbert
space, although existence and semiconcavity of solutions is not derived in full generality. For instance parabolic
problems with fluxes f where the terms including second order derivatives depend on the control (as here) seem
to not have been studied. In [8,9] the case of semilinear control problems is treated. This theory is used in [32]
to perform analysis similar to the one in this section when V is infinite dimensional. For theory involving more
nonlinearly operators, see e.g. [34].

2.3. Derivation of regularization error

In the examples treated in this report the Hamiltonian, H , is nondifferentiable, as the function h is nondif-
ferentiable. Therefore it can not be expected that using the Hamiltonian system (2.11), even in the discretized
case, would give an optimal path which could be used to determine the value of ū. For this reason we will
consider solutions to the regularized Hamiltonian system

∂tϕ̄t = ∂1H̄δ(λ̄t, ϕ̄t),

∂tλ̄t = −∂2H̄δ(λ̄t, ϕ̄t),
(2.22)

where H̄ ≡ H̄δ is a smooth regularization of H , which is also concave in the λ̄ variable, for δ > 0 and H̄0 = H .
To find an optimal control problem corresponding to (2.22), we may relate to the Hamiltonian, H̄δ, the Legendre
transform in the λ̄ variable:

L(ϕ̄, l̄) ≡ sup
λ̄∈V̄

{ − 〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)
}
. (2.23)

The function L is a running cost for the following variational problem:

ūδ(φ, t0) = inf

{∫ T

t0

L(ϕ̄t, ∂tϕ̄t)dt + g(ϕ̄T )
∣∣ ϕ̄t0 = φ

}
, (2.24)

where the infimum is taken over all absolutely continuous functions ϕ : [t0, T ] → V̄ . This can be formulated as
the optimal control problem

inf
σ̄∈L1([t0,T ];V̄ )

{∫ T

t0

L(ϕ̄t, σ̄)dt + g(ϕ̄T )
∣∣ ∂tϕ̄ = σ̄, ϕ̄t0 = φ

}
, (2.25)

and its associated Hamiltonian system is (2.22), since the Legendre transform of L gives

H̄δ(λ̄, ϕ̄) = − sup
σ̄∈V̄

{ − 〈λ̄, σ̄〉 − L(ϕ̄, σ̄)
}

= inf
σ̄∈V̄

{〈λ̄, σ̄〉 + L(ϕ̄, σ̄)
}
. (2.26)

Note that the equivalent problem with time reversed, s = T − t, corresponds to

inf

{∫ T

t0

L̃(ϕ̄s, ∂sϕ̄s)ds + g(ϕ̄0)
∣∣ ϕ̄T = φ

}
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where
L̃(ϕ̄, l̄) := sup

λ̄∈V̄

{〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)
}

= L(ϕ̄,−l̄)

is the usual Legendre transformation of the convex function −H̄δ(·, ϕ̄).
The problems described in Sections 3.1 and 3.3 have concave Hamiltonians which are not coercive, which

implies that their corresponding running costs, L, takes the value +∞ for some arguments. Such running costs
are treated in [14], where it is shown that the problem (2.24), with the aforementioned running cost, has a
minimizer φ̄ : [t0, T ] → V̄ . Furthermore, such a minimizer solves the Hamiltonian system (2.22) together with
a function λ̄, granting existence of a solution to this Hamiltonian system.

The value function ūδ is a viscosity solution to the Hamilton-Jacobi equation

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0, ūδ(·, T ) = ḡ(·).

This result can easily be obtained from Theorem 6.4.5 in [10]. This theorem treats only running costs, L, with
finite values, but the proof is basically unchanged by allowing the running costs of interest here. The error
estimate of Theorem 2.4 is applicable both to estimate u − ūδ, with approximation of both V and H , and to
ū0− ūδ, with approximation only of H . We may alternatively estimate the difference between ū and ūδ by using
known results of the Hamilton-Jacobi equations

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0,

∂tū0(φ, t) + H̄0(∂ū0(φ, t), φ) = 0,

and the fact that ū0(·, T ) = ūδ(·, T ) = ḡ(·); the comparison principle for viscosity solutions gives that

||ū − ūδ||C(V̄ ×[0,T ]) ≤ T ||H̄0 − H̄δ||C(V̄ ×V̄ ),

see [33].
The value of ūδ for a case with constant solutions φ̄∗ and λ̄∗ to (2.22) is approximately T · L(φ̄∗, 0) when T

is large (so that we can neglect ḡ(φ̄T )). The definition of L gives that

L(φ̄∗, 0) = H̄δ(λ̂, φ̄∗), (2.27)

where λ̂ is the maximizer of H̄δ(·, φ̄∗). As the Hamiltonian system for constant solutions is

∂1H̄δ = ∂2H̄δ = 0, (2.28)

and H̄δ is concave in the λ argument we have that λ̂ = λ̄∗. Hence the candidate for a value approximating (2.8)
is H̄δ(λ̄∗, φ̄∗), where φ̄∗ and λ̄∗ are solutions to (2.28).

2.4. Smoothed Hamiltonian as Tikhonov regularization

Tikhonov regularization in optimal control consists of penalization functions containing the control variable,
and sometimes derivatives of it. The Legendre transform makes it possible to relate the regularized Hamiltonian
with such penalization functions. At every point (λ̄, ϕ̄) where the derivative ∂1H̄ exists, there is an element
σ̄ ∈ Ā such that ∂1H̄(λ̄, ϕ̄) = f̄(ϕ̄, σ̄), see [7,21]. We now make the following assumption:

∂1H̄δ(λ̄, ϕ̄) ∈ co f̄(ϕ̄, Ā) for all (λ̄, ϕ̄) ∈ V̄ × V̄ , (2.29)

where co denotes the convex hull. This assumption holds for all regularizations we will consider in this paper.
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It also holds for regularizations by convolution

H̄δ(λ̄, ϕ̄) =
∫

V̄

H̄(λ̄ − ȳ, ϕ̄)η(ȳ)dȳ,

where η is a mollifier with support in the closed ball with radius δ centered at the origin.
By the definition of L in (2.23), it follows that L(ϕ̄, l̄) = +∞, if

l̄ /∈ {
∂1H̄δ(λ̄, ϕ̄) | λ̄ ∈ V̄

}
, (2.30)

where the big bar denotes set closure. Since the sets f̄(ϕ̄, Ā) are supposed to be closed, the assumption in (2.29)
implies that {

∂1H̄δ(λ̄, ϕ̄) | λ̄ ∈ V̄
} ⊂ co f̄(ϕ̄, Ā).

The infimum in (2.26) may therefore be reduced to an infimum over the set co f̄(ϕ̄, Ā). Furthermore, the
function L(ϕ̄, ·) is lower semicontinuous, see [31], and therefore the infimum is attained:

H̄δ(λ̄, ϕ̄) = min
{〈λ̄, l̄〉 + L(ϕ̄, l̄) | l̄ ∈ co f̄(ϕ̄, Ā)

}
. (2.31)

In order to see the relation with ordinary Tikhonov regularization, let us now assume that the sets f̄(ϕ̄, Ā) are
convex. Then the regularized Hamiltonian satisfies

H̄δ(λ̄, ϕ̄) = min
σ̄∈Ā

{〈λ̄, f̄(ϕ̄, σ̄)〉 + h̄δ(ϕ̄, σ̄)
}
,

where
h̄δ(ϕ̄, σ̄) = L

(
ϕ̄, f̄(ϕ̄, σ̄)

)
.

Comparing with the expression for the Hamiltonian without regularization, H̄ , in (2.5), we see that the difference
h̄δ(ϕ̄, σ̄)− h̄(ϕ̄, σ̄) is a penalization function of Tikhonov-type for the optimal control problem. Relation (2.31)
is inspired by such a comparison for an example in [11].

3. Three different conduction designs

In the following sections we will study numerical approximation of three optimal control problems related
to optimal design, using the Hamiltonian system (2.11) with a regularized Hamiltonian. By optimal design we
mean that we seek to optimize some physical property, such as energy loss, by distributing a discrete valued
control, such as an electric conductor, on a fixed domain. The problems considered are: to optimally design
an electric conductor, to design an elastic domain and to reconstruct the interior of an object from measured
electrical surface currents.

All three problems produce non-smooth controls due to lack of regularity in the Hamiltonian, which for the
success of a discrete Pontryagin Principle needs to be regularized. However, in the time-independent setting,
even a smooth Hamiltonian may result in an ill-posed minimization problem in the sense that one cannot find
a minimizer as the limit of a minimizing sequence. The existence of such a minimizer essentially depends on
the weak lower semicontinuity of the Hamiltonian, which in the standard theory of variational calculus is a
necessary condition closely connected to quasi-convexity [18].

Ill-posed problems related to optimal design, as the one described in Section 3.2, has been studied extensively
in the context of relaxation by quasi-convexification and homogenization in [1,22,24,26–28].

In Section 3.3, we study the now classical problem of impedance tomography, reviewed in [5]. Since there
seems to be no algorithm to directly compute the quasi-convexification of a general problem we will here show
that a simple regularization, which in Sections 3.1 and 3.2 much resembles a Tikhonov regularization, can
produce good approximations in the value functions, with the advantage that, by the Pontryagin approach, the
Newton method with a sparse Hessian can be used.
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3.1. Concave maximization

A concave problem of electric conduction is to distribute a given amount of conducting material in a domain
Ω ⊂ R

d in order to minimize the power production for a surface current q, satisfying
∫

∂Ω q ds = 0: let C be the
given amount of material and find an optimal conduction distribution σ : Ω → {σ−, σ+}, where σ± > 0, such
that

min
σ

{∫
∂Ω

qϕ ds

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q,

∫
Ω

σ dx = C

}
. (3.1)

Here ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω and ϕ ∈ V ≡ {v ∈ H1(Ω) :∫
Ω v dx = 0} is the electric potential. Note that (3.1) implies that the power loss satisfies

∫
∂Ω

qϕ ds = −
∫

Ω

div(σ∇ϕ)ϕ dx +
∫

∂Ω

σ
∂ϕ

∂n
ϕ ds =

∫
Ω

σ|∇ϕ|2 dx.

For simplicity, let η > 0 be a constant, associated to the given amount of material, and replace (3.1) with
the easier problem to find an optimal conduction distribution such that

min
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
. (3.2)

Observe, that although there exists a corresponding multiplier η for each volume constraint C, the converse
may not be true.

The Lagrangian takes the form ∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

dx +
∫

∂Ω

q(ϕ + λ) ds

and the Hamiltonian becomes

H(λ, ϕ) = min
σ

{∫
Ω

σv dx +
∫

∂Ω

q(ϕ + λ) ds

}
=

∫
Ω

min
σ

{σv}︸ ︷︷ ︸
h(v)

dx +
∫

∂Ω

q(ϕ + λ) ds (3.3)

with the concave regularization

H̄δ(λ, ϕ) =
∫

Ω

hδ(η −∇ϕ · ∇λ) dx +
∫

∂Ω

q(ϕ + λ) ds, (3.4)

depending on a smooth approximation, hδ ∈ C2(R), for δ > 0, of the Lipschitz continuous and monotonically
increasing function h (with discontinuous derivative h′ at the origin, see Fig. 1). Note that h0 = h. In this case
the regularization H̄δ is therefore similar to a Tikhonov regularization with penalty δ

∫
Ω σ2dx, see Figure 2.

Note that σ need not to be restricted to discrete values in (3.2), since σ : Ω → [σ−, σ+] will lead to the same
Hamiltonian.

By symmetry in the stationary Hamiltonian system (2.6), the primal and dual variables are equal, λ = ϕ,
and the Hamiltonian system for the electric potential reduces to finite element discretizations of the nonlinear
elliptic partial differential equation

div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 0 in Ω, h′δ

∂ϕ

∂n

∣∣∣
∂Ω

= q, (3.5)
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h

hδ

v

h, hδ

Figure 1. The function h and its regularization hδ with respect to v.

Tikhonov h′δ

v

σ

Figure 2. A Tikhonov type penalty δ
∫
Ω

σ2dx compared to the approximation h′δ.

which can be formulated as the concave maximization problem: ϕ̄ ∈ V̄ is the unique maximizer of

H̄δ(ϕ̄) =
∫

Ω

hδ(η − |∇ϕ̄|2) dx + 2
∫

∂Ω

qϕ̄ ds, (3.6)

where H̄δ(ϕ̄) means H̄δ(ϕ̄, ϕ̄) and V̄ ⊂ V denotes a finite element subspace, while ϕ ∈ V is the unique
maximizer of

H(ϕ) =
∫

Ω

h0(η − |∇ϕ|2) dx + 2
∫

∂Ω

qϕ ds, (3.7)

where H(ϕ) means H(ϕ, ϕ).
An advantage with the Pontryagin approach (3.5) is that the Hessian D2H̄δ can be determined explicitly and

is sparse, so that the Newton method can be used for iterative solution of (3.5). In fact, the Newton method
works well to solve the finite element version of (3.5) by successively decreasing δ, see Section 4.1.

Since σ can be determined explicitly by the Pontryagin method an alternative approach would be to solve (3.5)
according to the scheme

σi+1 = h′δ(η − |∇ϕ̄i|2) (3.8)
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where ϕ̄i solves

div
(
σi∇ϕ̄i(x)

)
= 0, x ∈ Ω, σi

∂ϕ̄i

∂n

∣∣∣
∂Ω

= q, (3.9)

given an initial guess σ0. This type of scheme, which essentially is the Jacobi method, is highly unstable with
respect to the initial guess since information from the Hessian is lost. In Section 3.2, we will however use this
method, with δ = 0, as a post-processing method to eliminate areas of intermediate density generated by the
Newton method. These iterations are allowed as long as the value of the Hamiltonian stays relatively unchanged.
As pointed out in [22] convergence to a global maximum of (3.6) by iterating in σ ≡ h′0 and ϕ separately, can
not be guaranteed since it can be compared to minimizing f(x, y) = |x − y| + 1

2 |x + y| by iterating in x and y
separately; such iterations would terminate at x = y although f is convex.

3.2. Non-concave maximization

Consider the conduction problem (3.2) where the objective now is changed to maximize the power production

max
σ

{ ∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
.

A problem with the same qualitative property of nonconcave maximization is to maximize the torsional rigidity
of the cross section Ω of an infinitely long elastic bar

max
σ

{∫
Ω

ϕ dx + η

∫
Ω

σ dx

∣∣∣∣ − div(σ∇ϕ) = 1 in Ω, ϕ
∣∣
∂Ω

= 0
}

, (3.10)

with shear moduli σ−1, see [1,22,24].
The maximization problem (3.10) has the Lagrangian∫

Ω

(λ + ϕ) dx +
∫

Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

dx

and the Hamiltonian
H(λ, ϕ) =

∫
Ω

(λ + ϕ) dx +
∫

Ω

max
σ

{σv}︸ ︷︷ ︸
h(v)

dx

which, as in Section 3.1, is regularized by H̄δ with the C2-approximation hδ of the Lipschitz continuous func-
tion h. Similarly to (3.6) we have ϕ = λ by symmetry and from the Hamiltonian system we arrive at finite
element discretizations of the nonlinear elliptic partial differential equation

− div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 1 in Ω, ϕ

∣∣
∂Ω

= 0, (3.11)

which is the Euler-Lagrange equation of the problem to find an extremal point ϕ ∈ H1
0(Ω) of

H̄δ(ϕ) =
∫

Ω

2ϕ dx +
∫

Ω

hδ(η − |∇ϕ|2) dx. (3.12)

In contrast to (3.6), the existence of an extremal point can not be guaranteed for (3.12) since it lacks weak
lower or upper semicontinuity as δ becomes small.

Note that existence of minimizers to general functionals

F (ϕ) =
∫

Ω

f(x, ϕ(x),∇ϕ(x)) dx, (3.13)
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hc

h

hδ

|∇ϕ|

h, hδ, hc

Figure 3. The function h, its regularization hδ and its concavification hc with respect to |∇ϕ|,
for the non-concave case.

where Ω ⊂ R
d is a bounded open set, ϕ : Ω → R

n, can be guaranteed if F fulfills appropriate growth conditions
(coercivity) and is weakly lower semi-continuous on H1

0(Ω). Weak lower semi-continuity is generally hard to
verify, but for the scalar case n = 1, or d = 1, F is weakly lower semicontinuous if and only if f(x, ϕ, ·) is
convex [18]. For the vector case convexity is a sufficient but far from necessary condition and can be replaced by
quasi-convexity which is both a necessary and sufficient condition, but almost as hard to verify as weak lower
semi-continuity.

To achieve, in this case, a weakly upper semicontinuous functional one can replace the function hδ, for δ = 0,
in (3.12) with its concavification

hc =

⎧⎪⎨
⎪⎩

σ+(η − |∇ϕ|2), |∇ϕ|2 < η σ−
σ+

,

η(σ+ + σ−) − 2√ησ+σ−|∇ϕ|, η σ−
σ+

≤ |∇ϕ|2 ≤ η σ+
σ−

,

σ−(η − |∇ϕ|2), |∇ϕ|2 > η σ+
σ− ,

(3.14)

as in [22,24], see Figure 3. This gives a concave functional in (3.12) which not only has a maximizer but achieves
the same supremum as the Hamiltonian H0, and has maximizers which are exactly the weak limits of maximizing
sequences for H0. If d > 1 and n > 1, maximizers with equivalent properties are given by quasi-concavification,
see [18].

Numerical experiments using a finite element discretization of (3.11) shows that, although existence of so-
lutions cannot be guaranteed for small δ, the Pontryagin approach generates approximations close to the true
concavified solutions in the sense that the error in the value functions is small, see Section 4.2. Of course, the
sensitivity of the controls with respect to the value function may still be large.

An alternative to the above concavification (3.14) is to simply replace the original maximization problem
in (3.10) by

max
σ

{∫
Ω

ϕ dx − γ

∫
Ω

1
σ

dx

∣∣∣∣ − div(σ∇ϕ) = 1 in Ω, ϕ
∣∣
∂Ω

= 0
}

, (3.15)

with a given multiplier γ ≥ 0 and σ : Ω → {σ−, σ+}. This formulation only differs in the choice of the given
constant γ, associated to the amount of material.

From the new Hamiltonian

H(ϕ) =
∫

Ω

2ϕ dx +
∫

Ω

max
σ

{
− γ

σ
− σ|∇ϕ|2

}
︸ ︷︷ ︸

h

dx. (3.16)
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x

y

φ

θ

1 − θ

σ−

σ+

Figure 4. Laminate.

We then see that, allowing intermediate controls σ : Ω → [σ−, σ+], the explicit maximization in σ gives the
concave function

h =

⎧⎪⎪⎨
⎪⎪⎩

− γ
σ+

− σ+|∇ϕ|2, |∇ϕ| <
√

γ

σ+
,

−2
√

γ|∇ϕ|,
√

γ

σ+
< |∇ϕ| <

√
γ

σ− ,

− γ
σ−

− σ−|∇ϕ|2,
√

γ

σ+
< |∇ϕ|,

and we thus have the concave maximization problem: to find the unique maximizer ϕ ∈ H1
0(Ω) to (3.16). In

fact, the formulation (3.15) is related to relaxation by the homogenization method [1]. Instead of just expanding
the set of admissible controls for the original problem (3.10) to σ : Ω → [σ−, σ+], we look at the problem

max
θ,φ

{∫
Ω

ϕ dx − η

∫
Ω

θ dx

∣∣∣∣ − div
(
σ∗(θ, φ)∇ϕ

)
= 1 in Ω, ϕ

∣∣
∂Ω

= 0
}

, (3.17)

with θ : Ω → [0, 1], φ : Ω → [0, π] and the rank-1 laminate tensor

σ∗ =
(

cosφ sin φ
− sinφ cosφ

)(
λ+

θ 0
0 λ−

θ

)(
cosφ − sinφ
sin φ cosφ

)
,

with

λ−
θ =

(
θ

σ−
+

1 − θ

σ+

)−1

, λ+
θ = θσ− + (1 − θ)σ+.

The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls σ−I and σ+I in proportions
θ and 1 − θ and direction φ, see Figure 4. We have thus enlarged the set of admissible controls by introducing
two new parameters θ, φ describing a laminated material, where the effective conductivities in the principal
directions of the material is λ+

θ and λ−
θ . It is easy to see that (λ+

θ )−1 and (λ−
θ )−1 corresponds to the total

resistances for resistors connected in parallel and in series, respectively.
Using symmetry, ϕ = λ, the Hamiltonian derived from (3.17) is

H(ϕ) =
∫

Ω

2ϕ dx +
∫

Ω

max
θ,φ

{
− ηθ − (

σ∗(θ, φ)∇ϕ
) · ∇ϕ

}
dx. (3.18)
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Rewriting the maximization in (3.18) as

max
θ,φ

{
− ηθ − (

diag(λ+
θ , λ−

θ )qφ

) · qφ

}
(3.19)

where qφ is the rotation of ∇ϕ, it is evident that since λ−
θ ≤ λ+

θ , aligning qφ in the λ−
θ -direction or equivalently

aligning the material perpendicular to ∇ϕ, maximizes (3.19) with respect to φ. The maximization over φ thus
gives

H(ϕ) =
∫

Ω

2ϕ dx +
∫

Ω

max
σ

{
− ησ+σ−

σ+ − σ−

(
1
σ
− 1

σ+

)
− σ|∇ϕ|2

}
dx, (3.20)

with the change of variables σ = λ−
θ . Defining γ = ησ+σ−(σ+ − σ−)−1, (3.16) and (3.20) have the same

minimizer ϕ.

3.3. Interior reconstruction

In the previous sections we discussed problems with symmetry, i.e. ϕ = ±λ, for which convexification is a
straightforward and simple approach. Although symmetry is present in many optimization problems connected
to minimization of energy, there are other important problems, such as inverse problems related to reconstruction
from measurements, where both ϕ and λ need to be determined. Even the simplest reconstruction problems
are known to be highly ill-posed [19].

We will here focus on the problem to reconstruct the interior of an object from measured electrical surface
currents, i.e. electric impedance tomography [5]: let σ∗ : Ω → {σ−, σ+} denote a real valued unknown con-
ductivity distribution, with σ± > 0, in a given domain Ω ⊂ R

d. Using given surface currents qi, i = 1, . . . , N
on ∂Ω, satisfying

∫
∂Ω qi ds = 0, and the resulting measured surface potentials ϕ∗

i on ∂Ω, the goal in this inverse
problem is to find the optimal conductivity distribution σ : Ω → {σ−, σ+} such that

min
σ

{ N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 ds

∣∣∣∣ div(σ∇ϕi) = 0 in Ω, σ
∂ϕi

∂n

∣∣∣
∂Ω

= qi

}
, (3.21)

with ϕi ∈ V ≡ {v ∈ H1(Ω) :
∫
Ω

v dx = 0}. Note, that we have here chosen the simpler case with measurements
on the whole boundary; in reality often only a discrete number of contacts are allowed.

The Lagrangian becomes

N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +
∫

Ω

σ

N∑
i=1

−∇ϕi · ∇λi︸ ︷︷ ︸
v

dx

and the Hamiltonian

H(λ1, . . . , λN , ϕ1, . . . , ϕN ) =
N∑

i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +
∫

Ω

min
σ

{σv}︸ ︷︷ ︸
h(v)

dx.

As in previous sections the Hamiltonian needs to be regularized such that

H̄δ(λ1, . . . , λN , ϕ1, . . . , ϕN ) =
N∑

i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +
∫

Ω

hδ(v) dx, (3.22)
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which generates the coupled non-linear elliptic partial differential equations

div
(

h′δ
( N∑

k=1

−∇ϕk · ∇λk

)
∇ϕi

)
= 0, in Ω, h′δ

∂ϕi

∂n

∣∣∣
∂Ω

= qi

div
(

h′δ
( N∑

k=1

−∇ϕk · ∇λk

)
∇λi

)
= 0, in Ω, h′δ

∂λi

∂n

∣∣∣
∂Ω

= 2(ϕi − ϕ∗
i ) (3.23)

for i = 1, . . . , N . Even though the lack of symmetry prohibits any simplification, this system is only locally
coupled, and finite element discretizations can be solved by the Newton method with a sparse Hessian, see
Section 4.3.

It is clear that the minimization problem (3.21) attains its minimum for σ = σ∗ and ϕi = ϕ∗
i , but it

has not necessarily a unique solution. To determine uniqueness of solutions would require knowledge of the
Neumann-Dirichlet map

Λσ : σ
∂ϕi

∂n

∣∣∣
∂Ω

→ ϕ
∣∣
∂Ω

associating boundary voltages with currents at the boundary for a fixed σ. Perfect knowledge of the map Λσ

can in general only be gained by measuring the resulting potentials for all possible input currents. However, if
σ ∈ {σ−, σ+} inside or outside a possibly multiple-connected domain D ⊂ Ω, it is possible to uniquely determine
σ with only partial knowledge of Λσ, i.e. by using only a finite number of experiments, see [5] for references.

If the reconstruction problem (3.21) has a unique solution it is still ill-posed in the sense that the slightest
disturbance in measurements ϕi or having a true conductivity which allows intermediate values σ∗ ∈ [σ−, σ+]
would destroy all results on existence and uniqueness of solutions. This is also the case for a discrete number
of contacts or for measurements on only parts of the boundary.

Alternative formulations of the impedance tomography problem related to relaxation of functionals as in
Section 3.2 is found in [25,37]. In the latter the reconstruction problem is formulated as

min
σ,ϕi,Ji

{
I :=

N∑
i=1

∫
Ω

∣∣σ 1
2∇ϕi + σ− 1

2 Ji

∣∣2 dx

∣∣∣∣
div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗

i

}
.

Here the need for regularization to guarantee existence of solutions comes from the lack of lower semicontinuity
of the functional I. This formulation also allows an explicit expression for σ since expanding the squares gives

min
σ>0,ϕ,J

{
σ

N∑
i=1

∫
Ω

∣∣∇ϕi

∣∣2 dx + σ−1
N∑

i=1

∫
Ω

∣∣Ji

∣∣2 dx

∣∣∣∣
div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗

i

}

from the constraint div(J) = 0, which allows pointwise minimization in σ, as in our case, such that

σ =
( N∑

i=1

|Ji|
) 1

2
( N∑

i=1

|∇ϕi|
)− 1

2

.
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4. Numerical examples

4.1. Electric conduction

In all numerical tests for the electric conduction problem (3.2) we let Ω be the unit square, sometimes with
holes cut out, and apply currents on contacts at the boundary. We also let V̄ ⊂ V ≡ {v ∈ H1(Ω) :

∫
Ω

v dx = 0}
be the linear finite element subspace with Ω partitioned into a quasi uniform mesh with triangles of maximum
diameter hmax = 0.01. The bounds on the conductivity are σ− = 10−3 and σ+ = 1, and the regularized
function hδ is chosen to be a hyperbola with asymptotes coinciding with h and with a closest distance δ from
the origin, see Figure 1.

For solving the non-linear partial differential equation (3.5), or equivalently maximizing (3.6), we use the
Newton method ϕ̄new = ϕ̄old + φ, where the update φ =

∑N
i=1 φivi comes from solving the system

N∑
j=1

D2
vi,vj

H̄δ(ϕ̄old)φj = −DviH̄δ(ϕ̄old), i = 1, . . . , N, (4.1)

with the sparse positive definite Hessian

D2
vi,vj

H̄δ(ϕ̄) = − 2
∫

Ω

h′δ(η − |∇ϕ̄|2)∇vi · ∇vj dx

+ 4
∫

Ω

h′′δ (η − |∇ϕ̄|2)(∇ϕ̄ · ∇vj)(∇ϕ̄ · ∇vi) dx,

and

DviH̄δ(ϕ̄) = −2
∫

Ω

h′δ(η − |∇ϕ̄|2)∇ϕ̄ · ∇vi dx + 2
∫

∂Ω

qvi ds.

Here vi ∈ V̄ denotes the nodal Lagrange element basis functions of V̄ , with vi(xj) = δij and xj denoting the
corners of the triangles and δij the Kronecker delta.

To decrease the regularization δ we use the following scheme, with the idea to decrease δ to αδ, 0 < α < 1,
if the Newton method converged and increase δ to the average of δ and the last successful regularization if the
iterations did not converge:

(1) Choose an initial stepsize αold = 0.5 and an initial regularization δold.
(2) If the Newton method for δold converged choose

δnew = αoldδold, αnew = αold

otherwise let

δnew =
1
2
δold(1 +

1
αold

), αnew =
2αold

αold + 1
·

(3) Set δold=δnew, αold=αnew and go to (2).

Results for different regularizations can be seen in Figure 5. Figure 6 shows solutions for different multipliers η,
corresponding to different volume constraints. Solutions for other geometries and boundary conditions are
presented in Figure 7. The Newton method works well but requires some additional iteration steps for smaller
regularizations or finer grids since the Hessian becomes ill-conditioned. It is possible that other methods using or
approximating Hessian information, such as quasi-Newton methods, may be used. However, from our experience
we conclude that good approximation of the Hessian is vital for convergence. Some experiments using the non-
linear multigrid method with a modification preventing large course-level corrections close to the jump in hδ

has also showed good results.
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δ = 6.25 · 10−1 δ = 7.11 · 10−2
δ = 2.50 · 10−3

Figure 5. Electric conduction: contour plots of h′δ for different regularizations and with η =
0.5. The contours are equally spaced in the range [σ−, σ+], with σ+ at the contacts. Current
enters the top contacts (q = −1) and leaves on the bottom contact (q = 2). All contacts are of
width 0.1. The regularization was initialized to δ = 10 and the pictures show the result after 5,
10 and 30 reductions of δ. For each value of δ no more than 5 Newton steps was necessary to
reach a residual error of 10−6 in the maximum norm. For two values of δ the Newton method
fails to converge, leading to a change in the update parameter α.

δ = 1.7 · 10−4
δ = 6.4 · 10−3

Figure 6. Electric conduction: contour plots of h′δ for different values of η. Left: data as in
Figure 5 but with η = 0.1. Right: data as in Figure 5 but with η = 1.5. The left example
has reached δ ≈ 10−4 in 23 reductions of δ starting with δ = 10, while the right example was
stopped after 30 reductions of δ.

To verify the error estimates in Section 2.1 we see that for given solutions ϕ ∈ V to (3.7) and ϕ̄ ∈ V̄ to (3.6)
the error in the value functions is by (2.24)–(2.27)

E = H̄δ(ϕ̄, ϕ̄) − H(ϕ, ϕ). (4.2)

Section 2.1 and Theorem 2.4 estimate such errors in terms of the L2 projection error |Pϕ−ϕ| and the difference
between the Hamiltonians H and H̄ along the same path. Now we apply this using the Hamiltonian H̄δ defined
in (3.4). The Legendre transform can be used as in Section 2.3 to obtain from H̄δ a flux f̄ and a running cost h̄
defined on V̄ . By (2.5) this defines a Hamiltonian H̄ : V × V̄ → R, which is used in the analysis in Section 2.1.
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δ = 2.5 · 10−3 δ = 1.1 · 10−3

Figure 7. Electric conduction: contour plots of h′δ for different geometries and boundary
currents q. Left: data as in Figure 5 but with two holes cut out. Right: data as in Figure 5
but with four contacts of width 0.1 and currents q = −1 and q = −2 on the top contacts and
q = 1.5 on the bottom contacts.

Definition (2.5) and the fact that H̄ and H̄δ coincide on V̄ × V̄ show that

H̄(λ, ϕ̄) = H̄(Pλ, ϕ̄) = H̄δ(Pλ, ϕ̄). (4.3)

We expect λ = ∂u and λ̄ = ∂ū in (2.15) and (2.17). Replacing ∂u by λ and ∂ū by λ̄ would give an upper and a
lower bound

Ê+ := H̄δ(λ̄, Pϕ) − H(λ̄, ϕ), Ê− := (H̄δ − H)(λ, ϕ̄),

of the error. The symmetry λ = ϕ, λ̄ = ϕ̄ and (4.3) imply Ê+ = Ê− = Ê, where

Ê := H̄δ(ϕ̄, Pϕ) − H(ϕ̄, ϕ)

=
∫

Ω

hδ(η −∇ϕ̄ · ∇Pϕ︸ ︷︷ ︸
v̄

) − h(η −∇ϕ̄ · ∇ϕ︸ ︷︷ ︸
v

) dx +
∫

∂Ω

q(Pϕ − ϕ) ds, (4.4)

and from (4.4) we get the error bound

|Ê| =
∣∣∣∣
∫

Ω

hδ(v̄) − h(v) dx +
∫

∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
=

∣∣∣∣
∫

Ω

hδ(v̄) − hδ(v) + hδ(v) − h(v) dx +
∫

∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
≤ C0δ +

∣∣∣∣
∫

Ω

hδ(v̄) − hδ(v) dx +
∫

∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
= C0δ +

∣∣∣∣
∫

Ω

∫ 1

0

h′δ
(
tv̄ + (1 − t)v

)
(v̄ − v) dt dx +

∫
∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
≤ C0δ +

∫
Ω

σ+

∣∣∣∇ϕ̄ · ∇(ϕ − Pϕ)
∣∣∣ dx +

∣∣∣∣
∫

∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣︸ ︷︷ ︸
E3

, (4.5)
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Figure 8. Electric conduction: error estimates for different meshes. Both ϕ̄ and ϕ are solutions
to the regularized problem with δ ≈ 10−5. The solution ϕ is computed on a mesh with
hmax = 0.015 and the mesh for ϕ̄ is varying.

which can be estimated by

|Ê| ≤ C0δ + C1hmax‖ϕ̄‖W 1,∞(Ω)‖ϕ‖W 2,1(Ω) + C2hmax‖q‖L∞(∂Ω)‖ϕ‖W 2,1(Ω)︸ ︷︷ ︸
E4

. (4.6)

This estimate follows from stability of the L2 projection onto V , cf. [17], combined with a standard interpolation
error estimate [6]. The regularized function hδ in (4.5) is chosen such that C0 ≈ 0.05 independently of δ.

To numerically verify the different estimates (4.2), (4.4), (4.5) and (4.6), we let ϕ̄ ∈ V̄ and ϕ ∈ V be finite
element solutions to (3.6) and (3.7) with Hamiltonians H̄δ and H = H̄δ0 where δ0 ≈ 0. Estimate (4.2) then
becomes

E1 := H̄δ(ϕ̄, ϕ̄) − Hδ0(ϕ, ϕ) =
∫

Ω

hδ(η − |∇ϕ̄|2) − hδ0(η − |∇ϕ|2) dx + 2
∫

∂Ω

q(ϕ̄ − ϕ) ds, (4.7)

and (4.4) becomes

E2 := H̄δ(ϕ̄, Pϕ) − Hδ0(ϕ̄, ϕ) =
∫

Ω

hδ(η −∇ϕ̄ · ∇Pϕ) − hδ0(η −∇ϕ̄ · ∇ϕ) dx +
∫

∂Ω

q(Pϕ − ϕ) ds. (4.8)

Figure 8 shows the approximation error by comparing the different estimates E1, E2, E3 and E4 when ϕ is
computed on a finite element mesh considerably finer than the one for ϕ̄, and δ = δ0 ≈ 0. We see that E2

and E3 are accurate approximations of the true error E1 ≈ E, while E4 overestimates the error although it has
the correct rate. Note that the interpolation constants satisfy C1 ≈ C2 ≈ 1. In Figure 9 the regularization
error is shown by using the same mesh to compute ϕ and ϕ̄ for different regularizations δ and a fixed δ0 ≈ 0.
We see that E2 again is an accurate approximation of E1 while E4 overestimates the error although it has
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Figure 9. Electric conduction: error estimates for different regularizations. Both ϕ̄ and ϕ are
solutions to regularized problems with hmax = 0.015. The regularization for ϕ is δ0 ≈ 10−3

and the regularization for ϕ̄ is varying. E3 disappears and E4 remains constant since no
approximation error is present in this case.

the correct rate; it does not vary with δ. Note that E3 is not presented in Figure 9 since it has the order of
machine precision. We conclude that the approximation of the error estimate (4.4) in Theorem 2.4 is accurate.

4.2. Elastic domain

For the problem of maximizing the torsional rigidity of an elastic bar (3.10), we let the cross section Ω of the
bar be the unit square. The inverse shear moduli and the multiplier is, as in [1], chosen to be σ− = 1, σ+ = 2
and η = 0.0165, respectively. We also let V̄ be the linear finite element subspace of V ≡ H1

0(Ω) with maximum
triangle diameter hmax = 0.01 and choose a regularization as in Section 4.1.

The maximization problem (3.10) has a Hamiltonian (3.12) which for small regularizations lacks upper
semicontinuity, and thus there may not exist any solutions to the corresponding non linear partial differential
equation (3.11). We solve (3.11) using the Newton method and a simple scheme to reduce the regularization, as
in the previous section. As expected, the Newton method works well for sufficiently large regularizations, but
does not converge for small regularizations, see Figure 10.

In Section 3.2 we concavify the unregularized Hamiltonian, which not only guarantees existence of at least
one solution, but also gives a maximum that coincides with the supremum of the unregularized Hamiltonian.
Figure 10 compares the result from solving the regularized problem (3.11) with the solution of the concavified
problem. The regularized problem was solved by successively reducing the regularization 30 times, starting with
δ = 2.

In Figure 11 we see how the value of the regularized Hamiltonian approaches the value of the concavified
Hamiltonian as the regularization decreases. We can also see that the Newton iterations fail when δ becomes
too small.

Since the goal is to find an optimal design with a discrete control σ ∈ {σ−, σ+} a few additional elementwise
iterations with the Discrete Pontryagin method in (3.8)–(3.9) is done for postprocessing. These iterations are
allowed as long as the value function does not increase substantially. In general, the discrete iterations does
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Figure 10. Elastic domain. Left: contour plot of h′c for the concavified solution with η =
0.0165. The value of the Hamiltonian is 0.0555. Middle: contour plot of h′δ with δ = 0.08 and
η = 0.0165. The value of the Hamiltonian is 0.0570. Right: five discrete iterations with (3.8)–
(3.9) using initial data from the middle figure. The value of the Hamiltonian has converged to
0.0554.
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Figure 11. Elastic domain: plot of the regularized and concavified Hamiltonians for the so-
lutions in Figure 10 with respect to regularization. Only regularizations for which the Newton
method has converged are plotted. The regularized Hamiltonian approaches the concavified
Hamiltonian as δ → 0, and the relative error for the smallest regularization, δ = 0.08, is 2.7%.

not converge and we may need to control the amount of material allowed to change in each iteration; for the
non-concave problem this appears however not necessary. The right plot in Figure 10 shows the solutions after
a few discrete iterations with initial data from the middle figure.

The Discrete Pontryagin method much resembles the method in [12], which uses topological shape derivatives
and starts from a domain with σ = σ+ and successively replaces volume fractions with σ−. This method is
appealing since it is simple and gives interesting designs, but it may not converge to the true optimal design if
it is possible to remove too much material, which never can be added again.

Finally, in Figure 12, we show the results from solving the concavified and regularized problem with a different
multiplier η = 0.025.

4.3. Impedance tomography

When solving the impedance tomography problem (3.21) one major issue affecting the reconstruction of the
interior conductivity is the choice of input currents q1, . . . , qN . Consider applying a surface current q on two
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Figure 12. Elastic domain. Left: contour plot of h′c for the concavified solution with η = 0.025.
The value of the Hamiltonian is 0.0695. Middle: contour plot of h′δ with δ = 0.1 and η = 0.025.
The value of the Hamiltonian is 0.0715. Right: five discrete iterations with (3.8)–(3.9) using
initial data from the middle figure. The value of the Hamiltonian has converged to 0.0695, with
a relative error of 0.9%.

different conductivity distributions σ and σ∗ and measuring the resulting potentials ϕ = Λσq and ϕ∗ = Λσ∗q.
Due to the nonlinearity of the inverse map Λσ → σ, the different conductivities σ and σ∗ may produce similar
surface potentials ϕ and ϕ∗ when subjected to a certain input current q, thus causing redundancy in the coupled
equations (3.23). To prevent this we choose, following [13], the input current q to be optimal in the sense that
it best distinguishes one conductivity distribution from another, i.e.

max
q

{
‖Λσq − Λσ∗q‖L2(∂Ω)

∣∣∣ ‖q‖L2(∂Ω) = 1,

∫
∂Ω

q ds = 0
}
, (4.9)

which from self-adjointness of the Neumann-to-Dirichlet map Λσ is maximized by the eigenfunction correspond-
ing to the largest eigenvalue of Λσ−Λσ∗ . For multiple experiments we choose q1, . . . , qN to be the eigenfunctions
corresponding to the N largest eigenvalues.

In the numerical experiments we have calculated the input currents using σ = 1.5 and a true conductivity
profile with σ∗ = 1 inside the region marked by a dashed line in Figure 14, and σ∗ = 2 outside. Note, that to
calculate an optimal discretized boundary current q iteratively, e.g. by the power method, only measurements
from the corresponding boundary potentials Λσq and Λσ∗q are needed in each iteration. In Figure 13 the
currents corresponding to the eigenfunctions of the four largest eigenvalues are shown. The boundary currents
and potentials were calculated using a maximum element diameter of hmax = 0.01.

The results from solving the coupled non-linear partial differential equations (3.23) using piecewise linear
elements with hmax = 0.03 can be seen in Figures 14 and 15. Here, the regularization parameter δ must not
be too small since different grids are used for measurements and solutions in Figure 14, and 10% white noise is
added to the measurements in Figure 15. This means that the discrete solution ϕ is disturbed componentwise
by independent standard normal distributed stochastic variables ξi according to ϕ(xi)(1 + 0.1ξi), with nodal
points xi.

How to choose a good value of the regularization parameter, δ, in a real problem may be difficult, at least
a separate problem. Here we test how our regularization works by choosing the best possible regularization
parameter value, using the “unknown” solution σ∗ to find the parameter value, but nothing else. In the
calculations we thus start with an initial regularization δ = 1, reduce δ at most 30 times and stop if δ ≤ 10−4

or if there is no decrease in the L2(Ω)-norm of h′δ − σ∗.
From Figure 14 it is evident that increasing the number of experiments has a significant effect on the

reconstruction. The impedance tomography problem seems here to behave as the concave problem in Section 4.1.
However in our experience there are cases, such as large differences between σ∗− and σ∗

+ ,where (3.23) is harder
to solve. In Figure 16 the approximation h′0 of the conductivity σ∗ is shown.
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Figure 13. Boundary currents used for the impedance tomography problem plotted as a
function of the angle variable in polar coordinates starting at the lower left corner of Ω.
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Figure 14. Impedance tomography: plots of h′δ for different number of experiments with
hmax = 0.03. The measured data was generated from solving the forward problem with hmax =
0.01 using the conductivity profile marked with a dashed line in the upper left figure. The true
conductivity is σ∗ = 1 inside and σ∗ = 2 outside the marked region.
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Figure 15. Impedance tomography: plots of h′δ for different number of experiments. Data as
in Figure 14 but with 10% noise added to the measurements.
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Figure 16. Impedance tomography: plots of h′0 after one discrete iteration (N = 4). Left:
initial data taken from the lower right plot in Figure 14. Right: initial data taken from the
lower right plot in Figure 15.
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& Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, USA (1997). With appendices by M. Falcone and

P. Soravia.
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