
ESAIM: M2AN 43 (2009) 33–52 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2008041 www.esaim-m2an.org

A FINITE ELEMENT DISCRETIZATION OF THE CONTACT
BETWEEN TWO MEMBRANES

Faker Ben Belgacem
1
, Christine Bernardi

2
, Adel Blouza

3

and Martin Vohraĺık
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Abstract. From the fundamental laws of elasticity, we write a model for the contact between two
membranes and we perform the analysis of the corresponding system of variational inequalities. We
propose a finite element discretization of this problem and prove its well-posedness. We also establish
a priori and a posteriori error estimates.
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1. Introduction

We are interested in the numerical simulation of the contact between two elastic membranes. We first write
the model for this problem which is based on the fundamental laws of elasticity. The contact is taken into
account according to the following principles:

(i) The two membranes cannot interpenetrate;
(ii) Where they are in contact, owing to Newton’s action-reaction law, each membrane has an equal action

on the other.
Starting from these ideas, we obtain a system made of a partial differential equation and an inequality,

which seems an acceptable model for the contact from a mechanical point of view. We thus state an equivalent
variational formulation which is of mixed type: The three unknowns are the position of each membrane and
the action of each membrane on the other one. This kind of system appears in a large number of problems
in elasticity, such as the obstacle or Signorini problems, see [5,13,18] among others. It also fits the abstract
framework proposed in [2]. Relying on the results of [5,18], we prove the well-posedness of our problem.

In view of the discretization, we note that the action is sought for in a space of distributions with a nonlocal
norm; this seems hardly compatible with a finite element discretization since the main advantages of such
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methods are their local approximation properties. Our idea is then to introduce a modified unknown by using
the Riesz isomorphism: Even if it has no obvious physical meaning, it is easy to deduce from it the action of the
membranes. We thus propose a standard finite element discretization of this new formulation constructed by
the Galerkin method with Lagrange finite elements. We prove that the discrete problem has a unique solution
and derive optimal a priori error estimates.

After the pioneering paper [1] by Ainsworth et al., a substantial work has been performed on the a posteriori
analysis of variational inequalities, see, e.g., [6,16,20] and the references therein. We follow the approach of
Hild and Nicaise [14] since they also consider a mixed problem coupling a variational equality and an inequality.
We introduce two families of error indicators: The first family concerns the residual of the variational equation
(see [19], Sect. 1.2, for the basic arguments leading to the introduction of this indicator); the second family deals
with the inequality and mainly represents the lack of positivity of the approximate action. We prove a posteriori
error estimates which are not fully optimal, however the same lack of optimality is already observed in [14] for
a similar problem. Moreover, since the upper bounds for the indicators are local, we think that they are an
efficient tool for mesh adaptivity.

An outline of the paper is as follows.
• In Section 2, we explain the main arguments for the derivation of the model.
• Section 3 is devoted to the analysis of the corresponding system.
• In Section 4, we propose and study a modified variational formulation of the same problem.
• In Section 5, we describe the discrete problem and check its well-posedness.
• A priori and a posteriori error estimates for this discretization are established in Sections 6 and 7,

respectively.
• Some conclusions are given in Section 8.

2. Derivation of the model

An elastic membrane is characterized by its displacement u with respect to its natural configuration which is
a two-dimensional domain ω. The equilibrium position of the membrane, under the action of a vertical force F ,
minimizes the potential energy functional

J : v �→ J(v) =
1
2

∫
ω

μ(x)|∇v(x)|2 dx −
∫

ω

F(x)v(x) dx,

where μ represents the tension of the membrane. Assuming moreover that it is fixed on its boundary, the
minimization problem reads: Find u in H1

0 (ω) such that

∀v ∈ H1
0 (ω), J(u) ≤ J(v), (2.1)

or equivalently {
−div (μgrad u) = F in ω,
u = 0 on ∂ω.

(2.2)

More details can be found in [7], Chapter I, Section 1.2, for instance.
Let us now consider two elastic membranes: The first one is fixed on ∂ω at the height g, where g is a

nonnegative function, and the second one is fixed at zero. The corresponding system of equations reads,
with obvious notation,{

−div (μ1 gradu1) = F1 in ω,
u1 = g on ∂ω,

{
−div (μ2 gradu2) = F2 in ω,
u2 = 0 on ∂ω.

(2.3)

We are interested in the case where the membranes interact. Therefore, if λ represents the action of the second
membrane on the first one (equivalently, −λ represents the action of the first membrane on the second one),
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we have

F1 = f1 + λ, F2 = f2 − λ, (2.4)

where the fi are external forces.
It follows from the definition of λ that

λ ≥ 0 in ω. (2.5)

Moreover, clearly the two membranes cannot interpenetrate: This yields the condition

u1 − u2 ≥ 0 in ω. (2.6)

Finally, we note that, where the membranes are not in contact, i.e., where u1 − u2 > 0, the interaction λ
vanishes. This leads to the equation

(u1 − u2)λ = 0 in ω. (2.7)

Remark 2.1. The previous equations constitute a mixed formulation of the mechanical problem with three
unknowns: the displacements u1 and u2, and the action-reaction λ, which can be considered as a Lagrange
multiplier. A simpler form of these equations consists in minimizing the functional

J : (v1, v2) �→ J (v1, v2) =
2∑

i=1

(
1
2

∫
ω

μi(x) |∇vi(x)|2 dx −
∫

ω

fi(x)vi(x) dx

)
,

on the convex set made by the pairs (v1, v2) such that v1 − v2 is nonnegative on ω. The links between these
two problems are brought to light in the next section.

Remark 2.2. It can be noted that, in the case without contact, i.e., u1 − u2 > 0, system (2.3) becomes

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div (μ1 gradu1) = f1 in ω,
−div (μ2 gradu2) = f2 in ω,
u1 = g on ∂ω,
u2 = 0 on ∂ω,

(2.8)

while in the case u1 = u2 = u of full contact (this implies g = 0), it becomes

{
−div

(
(μ1 + μ2)gradu

)
= f1 + f2 in ω,

u = 0 on ∂ω.
(2.9)

So inequalities (2.5) and (2.6) are really linked to the zone of contact between the membranes.

We are now interested in the analysis of the system (2.3) to (2.7). In what follows, only for simplicity, we
take the boundary condition g equal to zero and assume that the coefficients μi are positive constants.
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3. Analysis of the continuous problem

Let ω be a bounded open set in R
2, with a Lipschitz-continuous boundary. In view of the previous section,

we are led to consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ1 Δu1 − λ = f1 in ω,

−μ2 Δu2 + λ = f2 in ω,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in ω,

u1 = 0 on ∂ω,

u2 = 0 on ∂ω,

(3.1)

where the coefficients μ1 and μ2 are positive constants. The unknowns are the displacements u1 and u2 of the
two membranes, and the Lagrange multiplier λ.

We now intend to write a variational formulation of system (3.1). In order to do this, we consider the full
scale of Sobolev spaces Hs(ω), s ≥ 0, equipped with the usual norms (and semi-norms when s is a positive
integer). We also need the space H1

0 (ω) of functions in H1(ω) which vanish on ∂ω, and we denote by H−1(ω)
its dual space. Next, we introduce the convex subset

Λ =
{
v ∈ H1

0 (ω); v ≥ 0 a.e. in ω
}
, (3.2)

and finally the convex subset Λ∗ of distributions χ in H−1(ω) such that

∀v ∈ Λ, 〈χ, v〉 ≥ 0, (3.3)

where from now on 〈·, ·〉 stands for the duality pairing between H−1(ω) and H1
0 (ω).

So we consider the following variational problem, for any data (f1, f2) in H−1(ω) ×H−1(ω):
Find (u1, u2, λ) in H1

0 (ω) ×H1
0 (ω) × Λ∗ such that

∀(v1, v2) ∈ H1
0 (ω) ×H1

0 (ω),
2∑

i=1

μi

∫
ω

(gradui)(x) · (grad vi)(x) dx

− 〈λ, v1 − v2〉 =
2∑

i=1

〈fi, vi〉,

∀χ ∈ Λ∗, 〈χ− λ, u1 − u2〉 ≥ 0. (3.4)

We must now check the equivalence of this problem with system (3.1).

Proposition 3.1. Problems (3.1) and (3.4) are equivalent, in the sense that any triple (u1, u2, λ) in H1(ω) ×
H1(ω) ×H−1(ω) is a solution of (3.1) if and only if it is a solution of (3.4).

Proof. Since the fourth and fifth lines in (3.1) are obviously equivalent to the fact that u1 and u2 belong to
H1

0 (ω), we now verify the equivalence of the other lines.
(1) Let D(ω) be the space of infinitely differentiable functions with a compact support in ω. Multiplying the first
line of (3.1) by a function v1 in D(ω) and the second line by a function v2 in D(ω), summing these two equations
and integrating by parts yield that the first line of (3.4) is satisfied for all pairs (v1, v2) in D(ω)2. Thus, it follows
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from the density of D(ω) in H1
0 (ω) that this line is satisfied for all (v1, v2) in H1

0 (ω)2. Conversely, by letting
v1 run through D(ω) and taking v2 equal to zero, next by taking v1 equal to zero and letting v2 run through
D(ω), we observe that the first line of (3.4) implies the first two lines of (3.1) in the sense of distributions.
(2) Let (u1, u2, λ) satisfy the third line of (3.1). Thus, λ belongs to Λ∗ and it follows from the definition of Λ∗

that, for all χ in Λ∗,
〈χ− λ, u1 − u2〉 = 〈χ, u1 − u2〉 ≥ 0.

Conversely, if λ belongs to Λ∗ and (u1, u2, λ) satisfies the second line of (3.4), then λ is nonnegative. Moreover,
taking χ equal to the sum of λ and of the characteristic function χO of any measurable subset O of ω (this χO
obviously belongs to Λ∗) yields that ∫

O
(u1 − u2)(x) dx ≥ 0,

whence the nonnegativity of u1 − u2. Finally, taking χ equal to zero yields that

〈λ, u1 − u2〉 ≤ 0,

and combining this with the previous properties gives the equality (u1 − u2)λ = 0.
Setting u = (u1, u2) and v = (v1, v2), we consider the bilinear form defined by

a(u,v) =
2∑

i=1

μi

∫
ω

(gradui)(x) · (grad vi)(x) dx. (3.5)

Its continuity on H1(ω)2 ×H1(ω)2 is obvious and its ellipticity on H1
0 (ω)2 follows from a Poincaré–Friedrichs

inequality: There exists a constant α > 0 only depending on ω and on the μi such that

∀v ∈ H1
0 (ω)2, a(v,v) ≥ α ‖v‖2

H1(ω)2 . (3.6)

With the same notation, we also introduce the bilinear form

b(v, χ) = −〈χ, v1 − v2〉, (3.7)

which is continuous on H1
0 (ω)2×H−1(ω) owing to the definition of H−1(ω). The inf-sup condition that we now

state is also a direct consequence of the Riesz theorem. However we prefer to give the proof for completeness.

Lemma 3.2. There exists a constant β > 0 such that

∀χ ∈ H−1(ω), sup
v∈H1

0 (ω)2

b(v, χ)
‖v‖H1(ω)2

≥ β ‖χ‖H−1(ω). (3.8)

Proof. For any χ in H−1(ω), it follows from the Lax–Milgram lemma that the problem:
Find w in H1

0 (ω) such that

∀v ∈ H1
0 (ω),

∫
ω

(gradw)(x) · (grad v)(x) dx = 〈χ, v〉

has a unique solution. Moreover, owing to the definition of the norm of H−1(ω) as a dual norm, we have

‖χ‖H−1(ω) ≤ |w|H1(ω).
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On the other hand, taking v = (0, w) yields

b(v, χ) = |w|2H1(ω).

So the desired result follows from the two previous lines, combined with a Poincaré–Friedrichs inequality.

Problem (3.4) fits the abstract framework introduced in [18], so that its well-posedness can be derived
from [18], Theorem 2.3. The existence and uniqueness results also follow from [2], Theorem 2.4.2. However, we
prefer to give a direct proof of this result, in view of its analogue for the discrete problem. We begin by proving
an upper bound for the norm of the solution.

Lemma 3.3. Any solution (u1, u2, λ) of problem (3.4) satisfies

‖u1‖H1(ω) + ‖u2‖H1(ω) + ‖λ‖H−1(ω) ≤ c
(
‖f1‖H−1(ω) + ‖f2‖H−1(ω)

)
. (3.9)

Proof. We first observe from the second line of (3.4) that taking χ equal to 0 gives

〈λ, u1 − u2〉 ≤ 0.

Thus, taking v1 equal to u1 and v2 equal to u2 in the first line of (3.4), we derive thanks to Cauchy–Schwarz
inequalities

min{μ1, μ2}
(
|u1|H1(ω) + |u2|H1(ω)

)
≤

√
2

(
‖f1‖H−1(ω) + ‖f2‖H−1(ω)

)
.

On the other hand, applying the inf-sup condition (3.8) and using the first line of (3.4) to evaluate b(v, λ) yield

‖λ‖H−1(ω) ≤ c
(
|u1|H1(ω) + |u2|H1(ω) + ‖f1‖H−1(ω) + ‖f2‖H−1(ω)

)
.

So (3.9) follows from the two previous estimates combined with the Poincaré–Friedrichs inequality.

To go further, we introduce the new convex set

K =
{
(v1, v2) ∈ H1

0 (ω) ×H1
0 (ω); v1 − v2 ≥ 0 a.e. in ω

}
(3.10)

and we consider the reduced problem:
Find (u1, u2) in K such that

∀(v1, v2) ∈ K,
2∑

i=1

μi

∫
ω

(grad ui)(x) ·
(
grad (vi − ui)

)
(x) dx ≥

2∑
i=1

〈fi, vi − ui〉. (3.11)

The reason for this is stated in the next lemma.

Lemma 3.4. For any solution (u1, u2, λ) of problem (3.4), the pair (u1, u2) is a solution of problem (3.11).

Proof. Let (u1, u2, λ) be a solution of problem (3.4). Owing to Proposition 3.1, it satisfies the third line of (3.1),
so that (u1, u2) belongs to K. On the other hand, for any (v1, v2) in K, it follows from the definitions of Λ∗ and
K that

−〈λ, v1 − v2〉 ≤ 0.
The second line of (3.4) with χ = 0 also yields that

〈λ, u1 − u2〉 ≤ 0.

Replacing each vi by vi − ui in the first line of (3.4) and inserting these last two inequalities yields (3.11).

We are now in a position to state the main result of this section.
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Theorem 3.5. For any data (f1, f2) in H−1(ω) ×H−1(ω), problem (3.4) has a unique solution (u1, u2, λ) in
H1

0 (ω) ×H1
0 (ω) × Λ∗. Moreover, this solution satisfies estimate (3.9).

Proof. Since estimate (3.9) is established in Lemma 3.3, we prove successively the existence and the uniqueness
of the solution.
(1) Owing to the ellipticity property (3.6), the existence of a solution (u1, u2) of problem (3.11) is a direct
consequence of the Lions–Stampacchia theorem [15], see [13], Theorem 3.1, for instance. We set

L(v) = a(u,v) −
2∑

i=1

〈fi, vi〉, (3.12)

and observe from (3.11) by taking v equal to 0, next to 2u, that

L(u) = 0. (3.13)

On the other hand, the kernel V of the form b(·, ·) is characterized by

V =
{
(v1, v2) ∈ H1

0 (ω) ×H1
0 (ω); v1 − v2 = 0 a.e. in ω

}
. (3.14)

Let v = (v1, v2) be any pair in V . Thus, it is readily checked that both v and −v belong to K. It follows
from (3.11) and (3.13) that L(v) is nonnegative and from (3.11) with v replaced by −v and (3.13) that L(v)
is nonpositive. So, L vanishes on V . Therefore, thanks to the inf-sup condition (3.8), there exists (see [11],
Chap. I, Lem. 4.1, for instance) a λ in H−1(ω) such that

∀v ∈ H1
0 (ω)2, b(v, λ) = L(v).

So, the triple (u1, u2, λ) satisfies the first line of (3.4), and λ belongs to Λ∗ owing to problem (3.11). It also
follows from the definition of Λ∗ and (3.13) that

∀χ ∈ Λ∗, 〈χ− λ, u1 − u2〉 = 〈χ, u1 − u2〉 ≥ 0,

which is the second line of (3.4). So, we have established the existence result.
(2) Let (u1, u2, λ) and (ũ1, ũ2, λ̃) be two solutions of problem (3.4). Then, both (u1, u2) and (ũ1, ũ2) are solutions
of (3.11). Combining the Lions–Stampacchia theorem with (3.6) yields that u1 = ũ1 and u2 = ũ2. We then
derive from the first line of (3.4) that

∀(v1, v2) ∈ H1
0 (ω) ×H1

0 (ω), 〈λ, v1 − v2〉 = 〈λ̃, v1 − v2〉,

whence λ = λ̃. This leads to the uniqueness result.

We conclude this section with a regularity result. The arguments are the same as in [4] but simpler, so that
we prefer to give a direct proof.

Proposition 3.6. For any data (f1, f2) in L2(ω) × L2(ω), the solution (u1, u2, λ) of problem (3.4) belongs to
Hs+1(ω) ×Hs+1(ω) × L2(ω), with

(i) s = 1
2 in the general case;

(ii) s = 1 when ω is convex or of class C 1,1;
(iii) s < π

α when ω is a polygon with its largest angle equal to α.
Moreover, for any open set ω∗ such that ω∗ ⊂ ω, the restriction of the solution (u1, u2, λ) of problem (3.4) to
ω∗ belongs to H2(ω∗) ×H2(ω∗) × L2(ω∗).
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Proof. For any ε > 0 and for i = 1, 2, the problem:
Find uεi in H1

0 (ω) such that

uεi − εΔuεi = ui (3.15)

has a unique solution. Moreover, it follows from the maximum principle and the fact that (u1, u2) belongs to
K that uε1 ≥ uε2, so that (uε1, uε2) also belongs to K. Thus, when taking vi equal to uεi in problem (3.11), we
observe that

2∑
i=1

μi

∫
ω

(grad ui)(x) ·
(
grad (ui − uεi)

)
(x) dx ≤

2∑
i=1

〈fi, ui − uεi〉,

or equivalently

2∑
i=1

μi

(
|ui − uεi|2H1(ω) +

∫
ω

(grad uεi)(x) ·
(
grad (ui − uεi)

)
(x) dx

)
≤

2∑
i=1

〈fi, ui − uεi〉.

It thus follows from the variational formulation of problem (3.15) that

ε−1
2∑

i=1

μi ‖ui − uεi‖L2(ω) ≤ c

2∑
i=1

‖fi‖L2(ω).

So, the uεi tend to ui strongly in L2(ω) when ε tends to zero. On the other hand, it follows from the previous
estimate that

2∑
i=1

μi ‖Δuεi‖L2(ω) ≤ c

2∑
i=1

‖fi‖L2(ω).

Therefore, there exists a subsequence of the uεi such that Δuεi converges weakly in L2(ω). Since its limit is
necessarily Δui, each Δui belongs to L2(ω). We conclude in two steps:
(1) Since each ui belongs to H1

0 (ω) and is such that Δui belongs to L2(ω), we derive from [12], Theorem 3.2.1.2,
and [12], Section 4.3, for instance that ui belongs to Hs+1(ω) for the values of s indicated in the proposition
and also to H2(ω∗).
(2) Finally, λ = −μ1 Δu1 − f1 belongs to L2(ω).

Remark 3.7. Assume now that the μi, i = 1 or 2, are bounded functions satisfying for some positive constants
μ� and μ�

for a.e. x in ω, μ� ≤ μi(x) ≤ μ�. (3.16)

Thus, replacing the form a(·, ·) defined in (3.5) by

a(u,v) =
2∑

i=1

∫
ω

μi(x) (grad ui)(x) · (grad vi)(x) dx, (3.17)

and using the same arguments as previously yield that Proposition 3.1 and Theorem 3.5 still hold in this case.
The regularity results seem however weaker than those stated in Proposition 3.6.

Remark 3.8. Let us have a look at the more realistic case where the boundary condition on u1 is replaced by

u1 = g on ∂ω, (3.18)
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where g is a nonnegative function in H
1
2 (∂ω). Using the harmonic lifting g of g (which is nonnegative on ω)

and setting u∗1 = u1 − g, we observe that (u∗1, u2, λ) is now a solution in H1
0 (ω) ×H1

0 (ω) × Λ∗ of the problem

∀(v1, v2) ∈ H1
0 (ω) ×H1

0 (ω),

μ1

∫
ω

(grad u∗1)(x) · (grad v1)(x) dx + μ2

∫
ω

(grad u2)(x) · (grad v2)(x) dx

− 〈λ, v1 − v2〉 =
2∑

i=1

〈fi, vi〉,

∀χ ∈ Λ∗, 〈χ− λ, u∗1 − u2〉 ≥ −〈χ− λ, g〉.

Even if this system still fits the abstract framework of [5], the definition of Λ∗ must be modified in order to give
a sense to the right-hand side of the last line. So, the study of this problem requires a new formulation where
the unknown λ is sought for in L2(ω) and is under our consideration.

4. Another variational formulation

Problem (3.4) does not seem appropriate for a finite element discretization: Indeed, the unknown λ is sought
for in the space H−1(ω) and the norm of this space is not local in the sense that it cannot be written as the
sum of local norms, which seems in contradiction with the local approximation properties of the finite element
spaces. So the idea of this section is to give up the physical unknown λ and replace it by a nonphysical one
which now belongs to H1

0 (ω).
This approach relies on the use of the Riesz operator R which, with any distribution χ in H−1(ω), associates

the solution ϕ in H1(ω) of the problem {
−Δϕ = χ in ω,
ϕ = 0 on ∂ω.

(4.1)

Indeed, this operator is an isomorphism from H−1(ω) onto H1
0 (ω) and even an isometry when H1

0 (ω) is equipped
with the norm | · |H1(ω).

Let us introduce the new cone

Λ̃∗ =
{
ϕ ∈ H1

0 (ω); ∀v ∈ Λ,
∫

ω

(gradϕ)(x) · (grad v)(x) dx ≥ 0
}
. (4.2)

It can be checked that Λ̃∗ is imbedded in Λ but simple one-dimensional counter-examples prove that the converse
imbedding is false. For any data (f1, f2) in H−1(ω) ×H−1(ω), we now consider the problem:

Find (u1, u2, σ) in H1
0 (ω) ×H1

0 (ω) × Λ̃∗ such that

∀(v1, v2) ∈ H1
0 (ω) ×H1

0 (ω),
2∑

i=1

μi

∫
ω

(grad ui)(x) · (grad vi)(x) dx

−
∫

ω

(grad σ)(x) ·
(
grad (v1 − v2)

)
(x) dx =

2∑
i=1

〈fi, vi〉,

∀ϕ ∈ Λ̃∗,

∫
ω

(
grad (ϕ− σ)

)
(x) ·

(
grad (u1 − u2)

)
(x)dx ≥ 0. (4.3)

The equivalence of problems (3.4) and (4.3) follows from the definition of the operator R.
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Proposition 4.1. Problems (3.4) and (4.3) are equivalent, in the sense that:
(i) If a triple (u1, u2, λ) is a solution of (3.4), the triple (u1, u2,Rλ) is a solution of problem (4.3);
(ii) If a triple (u1, u2, σ) is a solution of (4.3), the triple (u1, u2,−Δσ) is a solution of problem (3.4).

Problem (4.3) again fits the frameworks of [2,18]. Moreover, the bilinear form defined by

b̃(v, ϕ) = −
∫

ω

(gradϕ)(x) ·
(
grad (v1 − v2)

)
(x) dx, (4.4)

still satisfies the inf-sup condition (which is easily derived by taking v equal to (0, ϕ))

∀ϕ ∈ H1
0 (ω), sup

v∈H1
0 (ω)2

b̃(v, ϕ)
|v|H1(ω)2

≥ |ϕ|H1(ω). (4.5)

But, in any case, the well-posedness of problem (4.3) is a direct consequence of Theorem 3.5 and Proposition 4.1.

Theorem 4.2. For any data (f1, f2) in H−1(ω) ×H−1(ω), problem (4.3) has a unique solution (u1, u2, σ) in
H1

0 (ω) ×H1
0 (ω) × Λ̃∗. Moreover, this solution satisfies the estimate

‖u1‖H1(ω) + ‖u2‖H1(ω) + ‖σ‖H1(ω) ≤ c
(
‖f1‖H−1(ω) + ‖f2‖H−1(ω)

)
. (4.6)

Analogous regularity properties as stated in Proposition 3.6 still hold for problem (4.3); their proof only
requires a further application of [12], Theorem 3.2.1.2 and [12], Section 4.3.

Proposition 4.3. For any data (f1, f2) in L2(ω) × L2(ω), the solution (u1, u2, σ) of problem (4.3) belongs to
Hs+1(ω) ×Hs+1(ω) ×Hs+1(ω), with

(i) s = 1
2 in the general case;

(ii) s = 1 when ω is convex or of class C 1,1;
(iii) s < π

α when ω is a polygon with its largest angle equal to α.
Moreover, for any open set ω∗ such that ω∗ ⊂ ω, the restriction of the solution (u1, u2, λ) of problem (3.4) to
ω∗ belongs to H2(ω∗) ×H2(ω∗) ×H2(ω∗).

The next lemma is aimed to check the consistency of the new formulation and deals with the set K introduced
in (3.10) (see [5], Sect. 2, for the consequences of this result).

Lemma 4.4. The cone K defined in (3.10) coincides with the set

K∗ =
{
v = (v1, v2) ∈ H1

0 (ω) ×H1
0 (ω); ∀ϕ ∈ Λ̃∗, b̃(v, ϕ) ≤ 0

}
. (4.7)

Proof. It follows from the definitions (4.2) of Λ̃∗ and (4.4) of b̃(·, ·) that K is contained in K∗. Conversely, let
v = (v1, v2) be any element of K∗. Using the same arguments as in the proof of Proposition 3.1, i.e., letting ϕ in
the definition of K∗ run through the R(χO), where χO is the characteristic function of a measurable subset O
of ω, yields that, for any such subset, ∫

O
(v1 − v2)(x) dx ≥ 0,

Thus v belongs to K.
To conclude, we note that the action of λ on a membrane with displacement v can easily be recovered from

the formula

∀v ∈ H1
0 (ω), 〈λ, v〉 =

∫
ω

(grad σ)(x) · (grad v)(x) dx. (4.8)
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5. The discrete problem

Let (Th)h be a regular family of triangulations of ω (by triangles), in the usual sense that:
• For each h, ω is the union of all elements of Th;
• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge of both of them;
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle is smaller than a
constant independent of h.
As standard, h denotes the maximum of the diameters hK , K ∈ Th. In what follows, c, c′, . . ., stand for generic
constants which may vary from line to line but are always independent of h.

The basic discrete space is chosen as

Xh =
{
vh ∈ H1

0 (ω); ∀K ∈ Th, vh|K ∈ P1(K)
}
, (5.1)

where P1(K) denotes the space of restrictions to K of affine functions, i.e., of polynomials with two variables
and total degree ≤ 1. Thus, in analogy with the previous sections, we introduce the discrete cones

Λh =
{
vh ∈ Xh; vh ≥ 0 in ω

}
, (5.2)

and
Λ̃∗

h =
{
ϕh ∈ Xh; ∀vh ∈ Λh,

∫
ω

(gradϕh)(x) · (grad vh)(x) dx ≥ 0
}
. (5.3)

The discrete problem is now easily derived from problem (4.3) by the Galerkin method. It reads:
Find (u1h, u2h, σh) in Xh × Xh × Λ̃∗

h such that

∀(v1h, v2h) ∈ Xh × Xh,

2∑
i=1

μi

∫
ω

(grad uih)(x) · (grad vih)(x) dx

−
∫

ω

(grad σh)(x) ·
(
grad (v1h − v2h)

)
(x) dx =

2∑
i=1

〈fi, vih〉,

∀ϕh ∈ Λ̃∗
h,

∫
ω

(
grad (ϕh − σh)

)
(x) ·

(
grad (u1h − u2h)

)
(x) dx ≥ 0. (5.4)

The analysis of this problem relies on the properties of the forms a(·, ·) and b̃(·, ·). Indeed, the ellipticity
property (3.6) is still valid on Xh. We now check the inf-sup condition on b̃(·, ·), which relies on exactly the
same arguments as for the continuous problem, see (4.5).

Lemma 5.1. The following inf-sup condition holds

∀ϕh ∈ Xh, sup
vh∈X

2
h

b̃(vh, ϕh)
|vh|H1(ω)2

≥ |ϕh|H1(ω). (5.5)

Proof. When taking vh = (0, ϕh), we have

b̃(vh, ϕh) = |ϕh|2H1(ω) and |vh|H1(ω)2 = |ϕh|H1(ω),

which gives the desired condition.

Moreover, the kernel Vh of the form b̃(·, ·), i.e.,

Vh =
{
vh = (v1h, v2h) ∈ Xh × Xh; ∀ϕh ∈ Xh, b̃(vh, ϕh) = 0

}
(5.6)
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obviously satisfies

Vh =
{
vh = (v1h, v2h) ∈ Xh × Xh; v1h − v2h = 0 in ω

}
= V ∩

(
Xh × Xh

)
. (5.7)

Thus, the next statement is derived either from the same arguments as in Section 3 or by applying [18],
Theorem 2.6 (see also [5], Thm. 2.1, or [13], Thm. 4.4).

Theorem 5.2. For any data (f1, f2) in H−1(ω) ×H−1(ω), problem (5.4) has a unique solution (u1h, u2h, σh)
in Xh × Xh × Λ̃∗

h. Moreover, this solution satisfies

‖u1h‖H1(ω) + ‖u2h‖H1(ω) + ‖σh‖H1(ω) ≤ c
(
‖f1‖H−1(ω) + ‖f2‖H−1(ω)

)
. (5.8)

Let K∗
h denote the cone

K∗
h =

{
vh = (v1h, v2h) ∈ Xh × Xh; ∀ϕh ∈ Λ̃∗

h, b̃(vh, ϕh) ≤ 0
}
. (5.9)

Then, for any solution (u1h, u2h, σh) of problem (5.4), the pair (u1h, u2h) is the solution in K∗
h of the problem

∀(v1h, v2h) ∈ K∗
h,

2∑
i=1

μi

∫
ω

(grad uih)(x) ·
(
grad (vih − uih)

)
(x) dx ≥

2∑
i=1

〈fi, vih − uih〉. (5.10)

The consistency of our approach relies on the following discrete analogue of Lemma 4.4.

Lemma 5.3. The cone K∗
h defined in (5.9) coincides with the set

Kh =
{
(v1h, v2h) ∈ Xh × Xh; v1h − v2h ≥ 0 in ω

}
. (5.11)

Proof. It follows from the definition (5.3) of Λ̃∗
h that Kh is contained in K∗

h. On the other hand, the following
identity can be found in [10], Chapitre III, Section 5, for instance:

Λh =
{
vh ∈ Xh; ∀ϕh ∈ Λ̃∗

h,

∫
ω

(gradϕh)(x) · (grad vh)(x) dx ≥ 0
}
.

Thus, if vh belongs to K∗
h, v1h − v2h belongs to Λh, so that vh belongs to Kh.

To conclude, let us set: λh = −Δσh in the sense of distributions. In analogy with Section 4, see (4.8), the
action of λh on a membrane with displacement v can easily be recovered from the formula

∀v ∈ H1
0 (ω), 〈λh, v〉 =

∫
ω

(gradσh)(x) · (grad v)(x) dx. (5.12)

When denoting by Eh the set of edges of triangles of Th which are not contained in ∂ω, this formula can
equivalently be written as

∀v ∈ H1
0 (ω), 〈λh, v〉 =

∑
e∈Eh

∫
e

[∂nσh]e(τ) v(τ) dτ, (5.13)

where [·]e stands for the jump through e with the appropriate sign. So, this action is easy to evaluate.

6. A PRIORI error estimates

Proving a priori error estimates between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh) of
problem (5.4) relies on similar arguments as in [5], Theorem 2.2, or [18], Lemma 2.7, but is simpler since the
first line in (4.3) is an equation. We begin with a lemma.
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Lemma 6.1. Assume that the data (f1, f2) belong to L2(ω) × L2(ω). Then, the following error estimate holds
between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh) of problem (5.4):

‖u1 − u1h‖H1(ω) + ‖u2 − u2h‖H1(ω) ≤ c inf
(v1h,v2h)∈K∗

h

(
‖u1 − v1h‖H1(ω) + ‖u2 − v2h‖H1(ω)

+
√
κ(f1, f2)

(
‖u1 − v1h‖L2(ω) + ‖u2 − v2h‖L2(ω)

) 1
2
)

+ c′ inf
χh∈Λ̃∗

h

(
‖σ − χh‖H1(ω) +

√
κ(f1, f2) ‖σ − χh‖

1
2
L2(ω)

)
, (6.1)

where the constant κ(f1, f2) is given by

κ(f1, f2) = ‖f1‖L2(ω) + ‖f2‖L2(ω). (6.2)

Proof. Starting from (5.10), we have for any (v1h, v2h) in K∗
h

−
2∑

i=1

μi

∫
ω

(grad uih)(x) ·
(
grad (vih − uih)

)
(x) dx ≤ −

2∑
i=1

〈fi, vih − uih〉.

Thus, inserting the first line of (4.3) in this inequality (with each vi equal to vih − uih) and adding on both
sides the appropriate integrals, we obtain

2∑
i=1

μi

∫
ω

(
grad (vih − uih)

)
(x) ·

(
grad (vih − uih)

)
(x) dx

≤
2∑

i=1

μi

∫
ω

(
grad (vih − ui)

)
(x) ·

(
grad (vih − uih)

)
(x) dx − b̃(vh − uh, σ). (6.3)

To evaluate the last term we observe that, for any χh in Λ̃∗
h,

−b̃(vh − uh, σ) = −b̃(vh − uh, σ − χh) − b̃(vh − uh, χh),

whence, by using the fact that (u1h, u2h) belongs to the cone K∗
h introduced in (5.9),

−b̃(vh − uh, σ) ≤ −b̃(vh − uh, σ − χh) − b̃(vh, χh).

This in turn leads to

−b̃(vh − uh, σ) ≤ −b̃(vh − uh, σ − χh) + b̃(vh, σ − χh) − b̃(vh, σ).

It follows from the second line of problem (4.3) by taking successively ϕ equal to zero, next ϕ equal to 2σ, that
b̃(u, σ) = 0. Thus, we derive

−b̃(vh − uh, σ) ≤ −b̃(vh − uh, σ − χh) + b̃(vh, σ − χh) + b̃(u − vh, σ),

whence finally

− b̃(vh − uh, σ) ≤ −b̃(vh − uh, σ − χh) − b̃(u − vh, σ − χh) + b̃(u, σ − χh) + b̃(u − vh, σ). (6.4)
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To bound the last two terms in this inequality, we observe, by integration by parts, that

|b̃(u, σ − χh)| ≤
(
‖Δu1‖L2(ω) + ‖Δu2‖L2(ω)

)
‖σ − χh‖L2(ω),

|b̃(u − vh, σ)| ≤
(
‖u1 − v1h‖L2(ω) + ‖u2 − v2h‖L2(ω)

)
‖Δσ‖L2(ω). (6.5)

Proposition 3.6 and problem (3.1) also yield that

‖Δσ‖L2(ω) + ‖Δu1‖L2(ω) + ‖Δu2‖L2(ω) ≤ c κ(f1, f2). (6.6)

The desired result follows from (6.3) to (6.6) combined with a triangle inequality.

The next lemma requires the orthogonal projection operator Πh from H1
0 (ω) onto Xh: For any ϕ in H1

0 (ω),
Πhϕ belongs to Xh and satisfies

∀ψh ∈ Xh,

∫
ω

(
grad (ϕ− Πhϕ)

)
(x) · (gradψh)(x) dx = 0. (6.7)

Lemma 6.2. Assume that the domain ω is convex. For any function χ in Λ̃∗ ∩ Hs+1(ω), 0 ≤ s ≤ 1, the
function Πhχ belongs to Λ̃∗

h and satisfies

‖χ− Πhχ‖H1(ω) ≤ c hs ‖χ‖Hs+1(ω), ‖χ− Πhχ‖L2(ω) ≤ c hs+1 ‖χ‖Hs+1(ω). (6.8)

Proof. We have, for any vh in Λh,∫
ω

(gradΠhχ)(x) · (grad vh)(x) dx =
∫

ω

(gradχ)(x) · (grad vh)(x) dx.

Since Λh is contained in Λ, this yields∫
ω

(grad Πhχ)(x) · (grad vh)(x) dx ≥ 0,

so that Πhχ belongs to Λ̃∗
h. The approximation error estimates (6.8) can be derived from [3], Théorème IX.2.3

and Corollaire IX.2.4, for instance and an interpolation argument.

The next lemma requires the Lagrange interpolation operator Ih at all vertices of elements K of Th which
are inside ω with values in Xh.

Lemma 6.3. For any function v = (v1, v2) in K ∩Hs+1(ω)2, 0 < s ≤ 1, the function Ihv belongs to K∗
h and

satisfies
‖v − Ihv‖H1(ω)2 ≤ c hs ‖v‖Hs+1(ω)2 , ‖v − Ihv‖L2(ω)2 ≤ c hs+1 ‖v‖Hs+1(ω)2 . (6.9)

Proof. Owing to the definitions (3.10) of K and (5.2) of Λh, since Ih(v1 − v2) is affine on each K in Th and
nonnegative at each vertex of K, then Ih(v1 − v2) belongs to Λh. Thus, Lemma 5.3 implies that the pair
(Ihv1, Ihv2) belongs to the cone K∗

h introduced in (5.9). Its approximation properties (6.9) are established
in [8], Theorem 17.1, or [3], Théorèmes IX.1.5 and IX.1.6, for instance.

By inserting the results of Lemmas 6.2 and 6.3 in (6.1) and using the regularity results of Proposition 4.3,
we obtain the first error estimate.

Theorem 6.4. Assume that the domain ω is convex and that the data (f1, f2) belong to L2(ω)×L2(ω). Then,
the following a priori error estimate holds between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh)
of problem (5.4)

‖u1 − u1h‖H1(ω) + ‖u2 − u2h‖H1(ω) ≤ c h κ(f1, f2), (6.10)
where the constant κ(f1, f2) is introduced in (6.2).
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Estimate (6.10) is fully optimal, since the discretization that we propose is of order 1. But, as standard
for variational inequalities (see for instance [8], Thm. 23.1), it would not be optimal if higher discretizations,
relying on piecewise polynomial functions with degree ≥ 2, were considered.

Remark 6.5. When ω is not convex, standard arguments and Proposition 4.3 yield estimate (6.10), with h
replaced by hs for all s < π

α , where α denotes the largest angle internal to ω. Moreover, estimate (6.10) still
holds when the mesh is exponentially refined near the re-entrant corners, as first suggested in [17].

To go further, we now estimate the distance between σ and σh. The following result, which can also be found
in [5], Theorem 2.3, is easily derived by subtracting the first line of (5.4) from the first line in (4.3) (with v = vh

in X
2
h) and using the inf-sup condition (5.5).

Lemma 6.6. The following error estimate holds between the solutions (u1, u2, σ) of problem (4.3) and
(u1h, u2h, σh) of problem (5.4):

‖σ − σh‖H1(ω) ≤ c
(
‖u1 − u1h‖H1(ω) + ‖u2 − u2h‖H1(ω) + inf

χh∈Xh

‖σ − χh‖H1(ω)

)
. (6.11)

This yields the final result.

Corollary 6.7. Assume that the domain ω is convex and that the data (f1, f2) belong to L2(ω)×L2(ω). Then,
the following a priori error estimate holds between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh)
of problem (5.4)

‖σ − σh‖H1(ω) ≤ c h κ(f1, f2), (6.12)
where the constant κ(f1, f2) is introduced in (6.2).

A more physical version of Corollary 6.7 concerns the error between the action λ and the discrete action λh.
Indeed, we easily derive from (4.8) and (5.12) that, if the assumptions of Corollary 6.7 hold,

‖λ− λh‖H−1(ω) ≤ c h κ(f1, f2). (6.13)

This can equivalently be stated as follows: For any membrane with displacement v in H1
0 (ω),∣∣〈λ, v〉 − 〈λh, v〉

∣∣
‖v‖H1(ω)

≤ c h κ(f1, f2). (6.14)

7. A POSTERIORI error estimates

In order to define the error indicators, we need some further notation. We recall from Section 5 that Eh is
the set of edges of elements of Th which are not contained in ∂Ω.

• For each K in Th, EK is the set of edges of K which belong to Eh.
• For each e in Eh, we denote by he the length of e and by [·]e the jump through e: More precisely, if n

is a unit normal vector to e directed from a triangle K to another triangle K ′, for any smooth enough
vector field w, [w · n]e denotes the quantity (w|K′ − w|K) · n.

• For any smooth enough function v on an edge e, the function v+ is the positive part of v, defined as
max{v, 0}.

We introduce an approximation (f1h, f2h) of the data (f1, f2), which is constant on each element K of Th.
Following the ideas in [14], Section 4, we define two types of error indicators: For any triangle K in Th and
any e in Eh,

• ηK is the standard residual-type indicator for elliptic equations

ηK = hK (measK)
1
2

(∣∣f1h|K
∣∣ +

∣∣f2h|K
∣∣)

+
∑

e∈EK

he

(
| [∂n(μ1 u1h − σh)]e| + | [∂n(μ2 u2h + σh)]e|

)
; (7.1)
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• ηe comes from the lack of positivity of λh = −Δσh (in a weak sense)

ηe =
(
he [∂nσh]+e

) 1
2 . (7.2)

All these indicators are easy to compute once the discrete solution is known, since they only involve constant
quantities.

Let us write the residual equation associated with the first line of problem (4.3). It reads, for any v in H1
0 (Ω)2

and vh in X
2
h,

2∑
i=1

μi

∫
ω

(
grad (ui − uih)

)
(x) · (grad vi)(x) dx + b̃(v, σ − σh)

=
2∑

i=1

(
〈fi − fih, vi − vih〉 + 〈Ri, vi − vih〉

)
, (7.3)

where the residuals Ri are given after integration by parts on each K by

〈Ri, vi〉 =
∑

K∈Th

( ∫
K

fih(x)vi(x) dx −
∫

∂K

(∂n(μi uih + (−1)iσh)(τ)vi(τ) dτ
)
. (7.4)

Next, we introduce a Clément-type regularization operator Ch with values in Xh, which satisfies, for each K
in Th and each e in Eh and for any function v in H1

0 (ω) (see [9] and [3], Thm. IX.3.7 and Cor. IX.3.9, for
instance)

‖v − Chv‖L2(K) ≤ c hK ‖v‖H1(ΔK), ‖v − Chv‖L2(e) ≤ c′ h
1
2
e ‖v‖H1(Δe), (7.5)

where ΔK and Δe stand for the union of the elements of Th that intersect K and e, respectively. Thus, when
taking vih equal to Chvi, it is readily checked that

2∑
i=1

(
〈fi − fih, vi − vih〉 + 〈Ri, vi − vih〉

)
≤ c

( ∑
K∈Th

(
h2

K

2∑
i=1

‖fi − fih‖2
L2(K) + (ηK)2

)) 1
2 ‖v‖H1(ω)2 .

A further argument is needed to evaluate the quantity b̃(u − uh, σ − σh).

Lemma 7.1. The following estimate holds

− b̃(u − uh, σ − σh) ≤ κ(f1, f2)
∑
e∈Eh

η2
e , (7.6)

where the constant κ(f1, f2) is introduced in (6.2).

Proof. We have
−b̃(u − uh, σ − σh) = −b̃(u, σ) + b̃(u, σh) + b̃(uh, σ) − b̃(uh, σh).

It follows from the second line of (4.3) by taking ϕ successively equal to 0 and 2σ that b̃(u, σ) = 0. Exactly the
same arguments applied to the second line of (5.4) yield that b̃(uh, σh) = 0. On the other hand, it follows from
Lemma 5.3 that u1h − u2h belongs to Λ and σ belongs to Λ̃∗; b̃(uh, σ) is thus nonpositive. So we derive

− b̃(u − uh, σ − σh) ≤ b̃(u, σh). (7.7)

To evaluate this last term, we observe by integration by parts that

b̃(u, σh) =
∑
e∈Eh

∫
e

[∂nσh]e (u1 − u2)(τ) dτ,
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whence
b̃(u, σh) ≤

∑
e∈Eh

[∂nσh]+e

∫
e

(u1 − u2)(τ) dτ. (7.8)

On the other hand, Proposition 4.3 combined with the Sobolev imbedding of Hs+1(ω), s > 0, into the space of
continuous functions on ω yields that

sup
x∈ω

|(u1 − u2)(x)| ≤ κ(f1, f2). (7.9)

We obtain the desired estimate by combining (7.7) to (7.9).

The a posteriori error estimate for the error is now easily derived by taking v equal to u − uh in (7.3) and
using (7.5) and (7.6).

Theorem 7.2. Assume that the data (f1, f2) belong to L2(ω) × L2(ω). Then, the following a posteriori error
estimate holds between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh) of problem (5.4)

‖u1 − u1h‖H1(ω) + ‖u2 − u2h‖H1(ω)

≤ c
( ∑

K∈Th

(
h2

K

2∑
i=1

‖fi − fih‖2
L2(K) + (ηK)2

)) 1
2

+
√
κ(f1, f2)

( ∑
e∈Eh

(ηe)2
) 1

2
, (7.10)

where the constant κ(f1, f2) is introduced in (6.2).

On the other hand, applying the inf-sup condition (4.5) in (7.3) yields

|σ − σh|H1(ω) ≤
2∑

i=1

μi |ui − uih|H1(ω)

+ sup
v∈H1

0 (ω)2

∑2
i=1

(
〈fi − fih, vi − Chvi〉 + 〈Ri, vi − Chvi〉

)
|v|H1(ω)2

· (7.11)

So, the estimate for ‖σ − σh‖H1(ω) is easily derived from (7.6) and Theorem 7.2.

Corollary 7.3. Assume that the data (f1, f2) belong to L2(ω) × L2(ω). Then, the following a posteriori error
estimate holds between the solutions (u1, u2, σ) of problem (4.3) and (u1h, u2h, σh) of problem (5.4)

‖σ − σh‖H1(ω) ≤ c
( ∑

K∈Th

(
h2

K

2∑
i=1

‖fi − fih‖2
L2(K) + (ηK)2

)) 1
2

+ c′
√
κ(f1, f2)

( ∑
e∈Eh

(ηe)2
) 1

2
, (7.12)

where the constant κ(f1, f2) is introduced in (6.2).

We now intend to prove an upper bound for each indicator ηK and ηe. As standard, the bound for ηK follows
from appropriate choices of v in (7.3) and inverse inequalities (see [19], Sect. 3.1). So we only give an abridged
proof of the next statement.

Theorem 7.4. The following bound holds for each indicator ηK , K ∈ Th, defined in (7.1)

ηK ≤ c
(
‖u1 − u1h‖H1(ωK) + ‖u2 − u2h‖H1(ωK) + ‖σ − σh‖H1(ωK)

+ hK ‖f1 − f1h‖L2(ωK) + hK ‖f2 − f2h‖L2(ωK)

)
, (7.13)

where ωK denotes the union of elements of Th that share at least an edge with K.
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Proof. We bound successively the four terms in ηK .
(1) We set

viK =

{
fih ψK on K,
0 on ω\K,

where ψK denotes the bubble function on K (equal to the product of the barycentric coordinates associated
with the vertices of K). Thus, taking v = (v1K , 0) and vh = 0 in (7.3) gives

‖f1h ψ
1
2
K‖2

L2(K) ≤
(
μ1|u1 − u1h|H1(ωK) + |σ − σh|H1(ωK))|v1K |H1(K)

+ ‖f1 − f1h‖L2(K)‖v1K‖L2(K). (7.14)

Thus, the bound for the first term is derived from appropriate inverse inequalities [19], Lemma 3.3, when
multiplying this inequality by hK .

(2) When taking v = (0, v2K), the same arguments lead to the bound for the second term.

(3) For each edge e in EK , denoting by K ′ the other triangle that contains e, we now set

vie =

{
le,κ

(
[∂n(μi uih + (−1)iσh)]e ψe

)
on κ ∈ {K,K ′},

0 on ω\(K ∪K ′),

where ψe denotes the bubble function on e and le,κ is a lifting operator from functions on e vanishing at the
endpoints of e into functions on κ vanishing on ∂κ\e constructed from a fixed lifting operator on the reference
triangle. Taking now v = (v1e, 0) and vh = 0 in (7.3) and using standard arguments and the bound for the first
term in ηK yield the desired estimate for the third term.

(4) The same arguments with now v = (0, v2e) leads to the estimate for the fourth term.

Theorem 7.5. Assume that the data (f1, f2) belong to L2(ω) × L2(ω). The following bound holds for each
indicator ηe, e ∈ Eh, defined in (7.2), when not zero,

ηe ≤ c ‖σ − σh‖
1
2
H1(ωe), (7.15)

where ωe denotes the union of the two elements of Th that share e.

Proof. When ηe is not zero, using once more an inverse inequality, we have

η2
e =

∫
e

[∂nσh]+e dτ ≤ c

∫
e

[∂nσh]e ψe(τ) dτ ≤ −c
∫

e

[∂n(σ − σh)]e(τ)ψe(τ) dτ.

Thus, denoting by K and K ′ the two triangles that share e, we obtain (here, nκ denotes the unit outward
normal vector to κ)

η2
e ≤ c

∑
κ∈{K,K′}

∫
∂κ

∂nκ(σ − σh)(τ)ψe(τ) dτ

≤ c
∑

κ∈{K,K′}

(∫
κ

(Δσ)(x)ψe(x) dx +
∫

κ

(
grad (σ − σh)

)
(x) ·

(
gradψe

)
(x) dx

)
. (7.16)
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Since Δσ is ≤ 0, we conclude by using Cauchy–Schwarz inequalities and noting that

‖ψe‖L2(κ) ≤ c he, |ψe|H1(κ) ≤ c,

both inequalities being easily derived by switching to the reference triangle.
Estimates (7.10) and (7.12) are optimal. Estimate (7.13) is also optimal but estimate (7.15) is not because

of the power 1/2 on the norm ‖σ − σh‖H1(ωe). However the same lack of optimality already appears in [14],
Section 4, for a similar problem, see also [6], Remark 4.7. Nevertheless, since these last estimates are fully local,
it can be thought that the ηK and ηe provide a good representation of the local error and hence are an efficient
tool for mesh adaptivity.

8. Conclusions

For the discretization that we propose, the a priori error estimates are fully optimal and the a posteriori
error estimates seem the best as possible for variational inequalities. So, we think that this method leads to an
efficient discretization of the contact problem.

In any case, another discretization of this model is under our consideration, where the initial unknown λ is
directly discretized via a finite volume scheme, which can be equivalently reduced to a Galerkin approximation
of problem (3.11). In particular, it seems that we can here obtain optimal a posteriori error estimates. We
intend to perform an analysis of this approach in a forthcoming paper and also to make numerical experiments
in order to compare the two methods.

The model that we have studied in this paper is a first draft for the contact between several thin structures
such as plates or shells. Indeed, in this last situation, the Laplace equations are replaced by more complex
second order equations where the coefficients depend on the geometry of the structures. However, the equations
modeling the contact rely on the same principles as for membranes. So, we think that a similar discretization
could be appropriate for handling these new models.
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