
ESAIM: M2AN 43 (2009) 151–172 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an:2008045 www.esaim-m2an.org

EXPONENTIAL CONVERGENCE TO EQUILIBRIUM VIA LYAPOUNOV
FUNCTIONALS FOR REACTION-DIFFUSION EQUATIONS ARISING

FROM NON REVERSIBLE CHEMICAL KINETICS

Marzia Bisi1, Laurent Desvillettes2 and Giampiero Spiga1

Abstract. We show that the entropy method, that has been used successfully in order to prove
exponential convergence towards equilibrium with explicit constants in many contexts, among which
reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a
reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination,
for which no natural entropy is available.
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1. Introduction

1.1. Entropy methods

Entropy methods have recently been used in order to prove exponential convergence towards the equilibrium
with explicit constants in many situations (e.g. integral equations, cf. [20], fourth order equations, cf. [5],
nonlinear diffusion equations, cf. [6,7,12]). A nice survey of these methods may be found in the review paper [1].
In particular, reaction-diffusion equations in the context of reversible chemistry have been systematically studied
in [9–11].

We recall that the principle of this method is to find a Lyapounov functional E(f) and its dissipation D(f)
such that

∂tE(f) = −D(f) ≤ 0,

when f is a solution of the equation, and such that the following (sometimes called entropy/entropy dissipation)
functional inequality holds:

D(f) ≥ C (E(f) − E(feq)),
where feq is the unique minimum of E (once conservations have been taken into account). In this situation, it
is usually possible to prove that

‖f − feq‖ ≤ C1 e−C2 t,

Keywords and phrases. Entropy methods, Lyapounov functionals, reaction-diffusion equations.
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where C1 and C2 are explicit (note that a linearization usually leads to exponential decay, but with a constant
C1 which is not explicit).

For reaction-diffusion equations appearing in reversible chemistry, it is in general possible to take for E the
natural physical entropy of the problem (such an entropy exists because the equations can be obtained as the
limit of kinetic equations of Boltzmann type describing the microscopic processes, cf. [2]).

This paper is devoted to showing that in a typical example of irreversible chemistry in which only one
equilibrium appears, it is also possible to find a Lyapounov functional E which satisfies the requirements of the
entropy method. The model that we intend to study is related to a set of dissociation/recombination chemical
reactions.

1.2. A model of dissociation/recombination

We consider a diatomic gas with dissociation/recombination reactions, made up by atoms A with mass m1

and molecules A2 with mass m2 = 2 m1. The two species in the binary mixture are labeled by an index i = 1, 2.
Generally speaking, the reaction-diffusion system is expected in the form

∂tni − di Δxni = Qi(n1, n2), i = 1, 2, (1.1)

where ni denotes number density, di diffusion coefficient, and Qi the chemical source term. Since all chemical
encounters preserve the global mass of participating species (or, equivalently, preserve the total number of
atoms), any reasonable dissociation/recombination model must fulfil “a priori ” the consistency constraint

Q1(n1, n2) + 2Q2(n1, n2) = 0. (1.2)

If the mixture is embedded in a fixed background, to be labeled by an additional index i = 0, dissociation
reactions may occur by binary encounter of a molecule A2 with any of the possible collision partners (field
particle A0, single atom A1, or other molecule A2), whereas a recombination reaction is due solely to a binary
interaction of two atoms between themselves. In the first process, one molecule is lost and two atoms are gained
in the collision balance. In the second process, two atoms coalesce in one molecule, and the balance is just
reversed. Therefore, the simplest heuristic model one could think of in order to describe the reaction effects on
the whole evolution problem is represented by

Qh
2(n1, n2) = αr

11(n1)2 −
(
αd

20 n0 + αd
21 n1 + αd

22 n2

)
n2, (1.3)

where αr
11 and αd

2j (j = 0, 1, 2) are suitable averaged rate constants quantifying the probability of a recombi-
nation collision A1–A1 or of a dissociation collision A2–Aj, respectively. Of course, Qh

1 follows from (1.2), and
superscripts are used to denote the type of reaction. The constant background density n0 is given.

The same problem can be tackled at the kinetic level [18], in the frame of a recently developed literature (see
for instance [13]). According to a common kinetic model, the gas is described as a mixture of three species, with
an additional component, labeled by i = 3, representing unstable molecules A3 ≡ A∗

2 (with mass m3 = m2) and
playing the role of a transition state [21]. The mixture is then taken to diffuse in a much denser medium [3],
whose evolution is not affected by the collisions going on, assumed in local thermodynamical equilibrium, namely
with distribution function f0 = n0M0, where M0 stands for the normalized Maxwellian

M0 =
(

m0

2π T0

) 3
2

exp
(
− m0

2 T0
|v|2

)
(1.4)

and T0 is also constant. According to the model, both atoms A1 and stable molecules A2 may undergo elastic
collisions with other atoms, stable molecules and background particles. Moreover, atoms A1 may form a stable
molecule A2 passing through the transition state A∗

2, while, on the other hand, both stable and unstable diatomic
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molecules may dissociate into two atoms. More precisely, the recombination process occurs in two steps:

(R) A1 + A1 → A∗
2

(I) A∗
2 + P → A2 + P,

where P = A, A2, B, while dissociation occurs via two possible reactions:

(D1) A2 + P → 2 A1 + P
(D2) A∗

2 + P → 2 A1 + P.

It must be stressed that all above interactions, modelling the chemical reactions at the kinetic level, have to
be understood as irreversible processes. Chemical operators are given in terms of total microscopic collision
frequencies νk

ij (constant for Maxwellian molecules), where the superscript k may take the values s, r, i, d,
corresponding to elastic scattering, recombination R, inelastic scattering I, dissociations D1, D2, respectively,
and of suitable transition probabilities, accounting for the correct exchange rates for mass, momentum, and
various forms of energy [14]. Then, kinetic integrodifferential equations have been scaled in terms of the typical
relaxation times, a small parameter defining the dominant process(es) has been introduced, and the formal
asymptotic limit when this parameter vanishes has been consistently investigated [3]. This leads to the derivation
of hydrodynamic limiting equations, whose nature varies considerably according to the relative importance of
the various processes and to the corresponding pertinent scaling, but which are typically of reaction-diffusion
type as long as the scattering with the background plays an important role. Some non-exhaustive examples
were given in [3] itself, and also in [4]. However, we shall deal here with one of the asymptotic limits which
seems more realistic in practice [3], and leads to (1.1), (1.2) with specialization

Q2(n1, n2) =
νi
30n0 + νi

31n1 + νi
32n2

νt
30n0 + νt

31n1 + νt
32n2

νr
11 (n1)2 −

(
νd
20n0 + νd

21n1 + νd
22n2

)
n2 (1.5)

with νt
3j = νi

3j + νd
3j , j = 0, 1, 2. This rather simple expression was derived under the simplifying assumption of

Maxwell-type interactions, in which reactive collision frequencies are constant. However, with respect to (1.3),
this expression shows a more complicated and realistic dependence on the participating species densities (a ra-
tional function rather than a quadratic polynomial), with rates well defined in terms of microscopic parameters.
The same is true for the (positive) diffusion coefficients, which take the form

d1 =
m1 + m0

2 m1 m0

T0

ν̄s
10 n0

, d2 =
2 m1 + m0

4 m1 m0

T0

ν̄s
20 n0

, (1.6)

where the constants ν̄s
j0 are suitable angle averaged scattering collision frequencies [3]. The fraction in (1.5)

accounts for the important physical fact that recombination occurs via a transition state, and it is remarkable
that the microscopic parameters of this metastable species, νi

3j and νd
3j , do influence the evolution of the two

stable species, though the third species is not present at the hydrodynamic level (its density has collapsed to zero
in the asymptotic limit). This is a so-called ghost-effect, not unfrequent in fluid dynamics [19], namely a trace in
the evolution of something that does not exist. This is due in our case to the clearance of an indeterminate form,
coming from the simultaneous vanishing of the species density and of its relaxation times. It can be noticed that
the simple heuristic model (1.3) may be considered as a special case of the more physical model (1.5) under the
simplifying assumption νd

3j = 0, j = 0, 1, 2, with all rate constants αk
ij provided exactly by the corresponding

microscopic collision frequencies νk
ij . Another special case of the same type as (1.3) is achieved by assuming

instead νi
3j = η νt

3j , j = 0, 1, 2, with 0 < η < 1; in this case the rate constant for recombination αr
11 would be

given by the microscopic recombination collision frequency νr
11 reduced by the factor η.
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1.3. Exponential convergence towards equilibrium

The main goal of this paper is to show that the solution of system (1.1)–(1.2)–(1.5), together with the
Neumann boundary conditions

n̂(x) · ∇xni = 0, x ∈ ∂Ω, (1.7)
(where n̂(x) is the outward normal unit vector to the spatial domain Ω at point x) and the nonnegative initial
conditions

ni(0,x) = n0
i (x) ≥ 0, (1.8)

converges exponentially fast with explicit constants towards the unique equilibrium of the system. Since total
number of atoms is preserved, we have that

∀t ≥ 0,

∫
Ω

(
n1(t,x) + 2 n2(t,x)

)
dx =

∫
Ω

(
n0

1(x) + 2 n0
2(x)

)
dx = n̄0,

or, equivalently, setting n̄i(t) =
∫

Ω

ni(t,x) dx,

∀t ≥ 0, n̄1(t) + 2 n̄2(t) = n̄0. (1.9)

We are able to prove the following theorem:

Theorem 1.1. Let Ω be a bounded regular (C2) open set of R
N , let n0

i > 0 (i = 1, 2) be initial data in C2(Ω̄)
compatible with Neumann boundary conditions. Finally, let νi

3j, νd
3j, νd

2j (j = 0, 1, 2), νr
11, d1, d2 be strictly

positive constants.
Then, there exists a unique strong (C2(R+ × Ω̄)) solution n1, n2 to system (1.1)–(1.2)–(1.5) with boundary

conditions (1.7) and initial data n0
i (i = 1, 2). This solution is bounded from above and from below:

k1 ≤ n1(t,x) ≤ K1, k2 ≤ n2(t,x) ≤ K2,

where k1, k2, K1 and K2 are strictly positive constants depending only on corresponding bounds for initial data,
and moreover it satisfies

2∑
i=1

‖ni(t, ·) − n∗
i ‖2

L2(Ω) ≤ C1 e−C2 t,

where C1 and C2 are explicitly computable. Here n∗
i is the unique positive (independent of x) solution of

Qi(n∗
1, n

∗
2) = 0, i = 1, 2,

satisfying the conservation (1.9).

As announced in Section 1.1, the method of proof will consist in finding a suitable Lyapounov functional
E(n1, n2) and its dissipation D(n1, n2) such that

∂tE(n1, n2) = −D(n1, n2) ≤ 0,

when n1, n2 is a solution of system (1.1)–(1.2)–(1.5), and such that

D(n1, n2) ≥ C
(
E(n1, n2) − E(n∗

1, n
∗
2)

)
, (1.10)

for any n1, n2 (functions of x only) satisfying the same a priori assumptions as those of system (1.1)–(1.2)–(1.5),
i.e. conservation of mass, minimum and maximum principle. A suitable scaling of the space variable x allows
us to carry out the proof under the assumption |Ω| = 1, without loss of generality.
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In Section 2, we begin by treating a particular case in which the computations are quite simple and make
the method easily understandable. In that section, we do not prove in detail the existence and uniqueness of
the solution of the system, for the sake of conciseness.

Then, in Section 3, we treat the general case. Section 3.1 is devoted to a first study of the reaction terms Qi.
Then, in Section 3.2 we present the minimum/maximum principle and existence/uniqueness of solutions to
system (1.1)–(1.2)–(1.5). Finally, Section 3.3 is devoted to the establishment of estimate (1.10), which enables
to recover the result of exponential convergence with explicit rates.

Remark 1.2. The theorem in the present version will be proved in Section 3. The assumption on strict positivity
for the collision frequencies νk

ij can be easily weakened, and several of them can be allowed to vanish, making
proofs easier, as shown indeed by the simpler case dealt with preliminarily in Section 2. From a mathematical
point of view, an interesting question consists in asking if it is really necessary that both diffusivities are strictly
positive. We shall show in Remark 3.8 that if one of them vanishes, the results remain true (though with
different constants).

Remark 1.3. Concerning computability of the constants in the decay estimate, explicit formulas are too
involved to be given in the text of the theorem. However, they can be estimated in terms of the initial
distributions n0

i (specifically, of their upper and lower bounds), of the domain Ω (specifically, of its Poincaré
constant), in addition to the physical parameters νi

3j , νd
3j , νd

2j (j = 0, 1, 2), νr
11, and the diffusivity constants

(more precisely, a lower bound of one of them) d1, d2. The explicit formulas can be put together anyhow by
following the various steps of the proofs and the relevant estimates, which are all given in full detail.

2. Particular case

For readers’ convenience, we introduce at first a self-contained particular case, in which the main steps of
our procedure may be summarized without tedious technical complications. The generalization to the collision
contributions (1.5) will be presented in next section.

If we assume νd
3j = 0, j = 0, 1, 2, and νd

20 = 0 in (1.5), system (1.1) takes the form

⎧⎪⎨
⎪⎩

∂tn1 − d1 Δxn1 = − 2 νr
11 (n1)2 + 2

(
νd
21n1 + νd

22n2

)
n2,

∂tn2 − d2 Δxn2 = νr
11 (n1)2 −

(
νd
21n1 + νd

22n2

)
n2,

(2.1)

so that, after a suitable rescaling, we have to deal with the dimensionless equations

⎧⎨
⎩

∂tn1 − d1 Δxn1 = − 2 (n1)2 + 4 αn1 n2 + 2 β (n2)2 := Qs
1(n1, n2),

∂tn2 − d2 Δxn2 = (n1)2 − 2 α n1 n2 − β (n2)2 := Qs
2(n1, n2),

(2.2)

where

α =
νd
21

2 νr
11

> 0, β =
νd
22

νr
11

> 0.

2.1. Study of the reaction terms

Collision equilibria for the set (2.2) are given by the nonnegative solutions of the equation Qs
i (n1, n2) = 0.

It can be trivially checked that

Qs
2(n1, n2) =

(
n1 − γ n2

)(
n1 + δ n2

)
, (2.3)

where
γ = α +

√
α2 + β > 0, δ = −α +

√
α2 + β > 0, (2.4)
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hence the physical equilibrium states are characterized by n1 = γ n2. Taking into account the conservation
property (1.9), since the initial data are known we get that the unique global (homogeneous in space) equilibrium
is determined by the positive constants

n∗
1 =

γ

2 + γ
n̄0, n∗

2 =
1

2 + γ
n̄0. (2.5)

Notice that Qs
2 ≥ 0 ⇔ n1 ≥ γ n2, and conversely for Qs

1.
This suggests that a suitable entropy could be given by

E(n1, n2) =
∫

Ω

(
1
4

(n1)2 +
γ

2
(n2)2

)
dx, (2.6)

since, in space homogeneous conditions,

∂tE(n1, n2) = −
∫

Ω

(
n1 − γ n2

)2(
n1 + δ n2

)
dx ≤ 0,

with ∂tE = 0 only at the local equilibrium n1 = γ n2.

2.2. Minimum principle

We now turn to a result of “minimum principle” type for equation (2.2).

Proposition 2.1. Let d1, d2 > 0, α, β > 0, and Ω be a bounded regular (C2) open set of R
N . Let (n1(t,x), n2(t,x))

be a strong solution (that is, in C2(R+ × Ω̄)) to system (2.2) with Neumann boundary conditions (1.7) and with
initial conditions such that

n1(0,x) = n0
1(x) > c1 > 0, n2(0,x) = n0

2(x) > c2 > 0. (2.7)

This solution (n1(t,x), n2(t,x)) is strictly positive for (t,x) ∈ [0,∞) × Ω, and satisfies the following lower
bounds:

n1(t,x) ≥ k1, n2(t,x) ≥ k2, (2.8)

where
k1 = min

{
c1, γ c2

}
, k2 = γ−1 k1, (2.9)

with γ given by (2.4).

Proof of Proposition 2.1. The proof shall be carried out following the same lines as in reference [15]. For any
ε > 0, let us consider the functions

nε
1(t,x) = n1(t,x) eε t, nε

2(t,x) = n2(t,x) eε t, (2.10)

and let us prove that
nε

1(t,x) > k1, nε
2(t,x) > k2. (2.11)

From equations (2.2), it follows that the evolution of nε
1, nε

2 is governed by the system

⎧⎪⎪⎨
⎪⎪⎩

∂tn
ε
1 − d1 Δxnε

1 =
[
− 2 (nε

1)
2 + 4 α nε

1 nε
2 + 2 β (nε

2)
2
]
e− ε t + ε nε

1,

∂tn
ε
2 − d2 Δxnε

2 =
[
(nε

1)
2 − 2 α nε

1 nε
2 − β (nε

2)
2
]
e− ε t + ε nε

2.

(2.12)
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Suppose that the inequalities (2.11) do not hold for all (t,x) ∈ [0,∞) × Ω, and define the set Bε as

Bε =
{
τ > 0 : nε

1(t,x) > k1, nε
2(t,x) > k2, ∀ (t,x) ∈ [0, τ) × Ω

}
· (2.13)

If we denote t̃ = sup Bε, there must exist x̃ ∈ Ω̄ such that at least one of the following equalities holds:

nε
1(t̃, x̃) = k1 or nε

2(t̃, x̃) = k2.

Case 1. nε
1(t̃, x̃) = k1.

By definitions of t̃ and x̃, we have nε
1(t̃, x̃) ≤ nε

1(t̃,x) ∀x ∈ Ω, namely the function nε
1(t̃,x) takes minimum

for x = x̃. So, if x̃ ∈ Ω, then d1 Δxnε
1(t̃, x̃) ≥ 0. If x̃ ∈ ∂Ω, we can claim again that d1 Δxnε

1(t̃, x̃) ≥ 0; in fact,
if it were d1 Δxnε

1(t̃, x̃) < 0 with nε
1(t̃, x̃) minimum, it would follow (see references [15,17]) ∇xnε

1(t̃, x̃) · n̂ < 0,
that would contradict Neumann boundary conditions (1.7).

Moreover, by evaluating the chemical contributions in the first line of (2.12) at (t̃, x̃), we get

− 2 (nε
1)

2(t̃, x̃) + 4 αnε
1(t̃, x̃)nε

2(t̃, x̃) + 2 β (nε
2)

2(t̃, x̃) = − 2 k2
1 + 4 α k1 nε

2(t̃, x̃) + 2 β (nε
2)

2(t̃, x̃)
≥ − 2 k2

1 + 4 α k1 k2 + 2 β k2
2 = 0

(the inequality holds since nε
2(t̃, x̃) ≥ k2, and the last line vanishes bearing in mind that k1 =

(
α+

√
α2 + β

)
k2).

Consequently, the equation (2.12) for nε
1 implies that ∂tn

ε
1(t̃, x̃) ≥ ε nε

1(t̃, x̃) > 0, hence nε
1(t, x̃) < nε

1(t̃, x̃) = k1

for some t < t̃, contradicting the definition of t̃.

Case 2. nε
2(t̃, x̃) = k2.

In this case, we have nε
2(t̃, x̃) ≤ nε

2(t̃,x) ∀x ∈ Ω, namely nε
2(t̃,x) takes its minimum for x = x̃. Therefore we

get, as above, d2 Δxnε
2(t̃, x̃) ≥ 0.

As concerns the first term on the right hand side of the second line of (2.12), we obtain

(nε
1)

2(t̃, x̃) − 2 αnε
1(t̃, x̃)nε

2(t̃, x̃) − β (nε
2)

2(t̃, x̃) = (nε
1(t̃, x̃) − γ k2) (nε

1(t̃, x̃) + δ k2)
≥ (k1 − γ k2) (nε

1(t̃, x̃) + δ k2) = 0.

It follows ∂tn
ε
2(t̃, x̃) ≥ ε nε

2(t̃, x̃) > 0, which leads to a contradiction as in Case 1.

Consequently, the set Bε is unbounded, hence nε
1(t,x) > k1 and nε

2(t,x) > k2 for all x ∈ Ω and for all
t ≥ 0. This means that n1(t,x) > k1 e− ε t and n2(t,x) > k2 e− ε t, thus, passing to the limit ε → 0, we have
n1(t,x) ≥ k1 and n2(t,x) ≥ k2. �

2.3. Convergence to equilibrium

In this subsection we shall derive an explicit rate of convergence towards the equilibrium state (n∗
1, n

∗
2) given

in (2.5). Precisely, we shall prove:

Theorem 2.2. Let d1, d2 > 0, α, β > 0 and Ω be a bounded regular (C2) open set of R
N . Let (n1(t,x), n2(t,x))

be a strong solution (that is, in C2(R+ × Ω̄)) to system (2.2) with Neumann boundary conditions (1.7) and
with initial conditions (2.7). Then, this solution satisfies the following property of exponential decay towards
equilibrium with explicit constants:

1
4
‖n1 − n∗

1‖2
2 +

γ

2
‖n2 − n∗

2‖2
2 ≤

(
E(n0

1, n
0
2) − E(n∗

1, n
∗
2)

)
e−C t, (2.14)

with

C = min
{

min
{
1,

2 + γ

6

} d1

2 P (Ω)
, min

{1
2
,
2 + γ

6 γ

} d2

P (Ω)
,

2 + γ

6
d3

}
, (2.15)
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where P (Ω) is the Poincaré constant of Ω, and d3 = k1 + δ k2 = 2
√

α2 + β k2 is the lower bound for n1 + δ n2

(remember that γ and δ are defined by (2.4), and that E is defined by (2.6)).

The proof of this theorem is based on the following functional inequality:

Lemma 2.3 (entropy dissipation). Let n1 := n1(x) and n2 := n2(x) be two nonnegative functions of L1(Ω)
such that ∫

Ω

(n1(x) + 2 n2(x)) dx = n̄0, and ∀x ∈ Ω, n1(x) + δ n2(x) ≥ d3.

Then, the entropy dissipation

D(n1, n2) =
d1

2

∫
Ω

|∇xn1|2dx + d2 γ

∫
Ω

|∇xn2|2dx

+
∫

Ω

(n1 − γ n2)
(
(n1)2 − 2 αn1 n2 − β (n2)2

)
dx

(2.16)

fulfils the inequality

D(n1, n2) ≥ C
[
E(n1, n2) − E(n∗

1, n
∗
2)

]
, (2.17)

where the constant C is defined in (2.15).

Proof of Lemma 2.3. For convenience, the proof will be divided into five steps.

Step 1. A direct computation shows that the relative entropy with respect to the equilibrium state (n∗
1, n

∗
2) is

related to the L2-distance from the equilibrium itself:

E(n1, n2) − E(n∗
1, n

∗
2) =

1
4
‖n1 − n∗

1‖2
2 +

γ

2
‖n2 − n∗

2‖2
2. (2.18)

This ensures that the entropy E(n1, n2) takes its minimum for (n1, n2) = (n∗
1, n

∗
2).

Step 2. By resorting to Poincaré inequality, we have∫
Ω

|∇xni|2dx ≥ 1
P (Ω)

‖ni − n̄i‖2
2 where n̄i =

∫
Ω

ni dx.

In addition, as concerns the last integral in (2.16) we note that

(n1 − γ n2)
(
(n1)2 − 2 αn1 n2 − β (n2)2

)
= (n1 − γ n2)2(n1 + δ n2) ≥ d3(n1 − γ n2)2.

Hence, the following estimate holds for the entropy dissipation:

D(n1, n2) ≥ d1

2 P (Ω)
‖n1 − n̄1‖2

2 +
d2 γ

P (Ω)
‖n2 − n̄2‖2

2 + d3‖n1 − γ n2‖2
2. (2.19)

Step 3. Owing to estimate (2.19) and to the first step, in order to prove Lemma 2.3 it suffices to show that

I :=
∫

Ω

[
d1

2 P (Ω)
|n1 − n̄1|2 +

d2 γ

P (Ω)
|n2 − n̄2|2 + d3|n1 − γ n2|2

]
dx

≥ C
∫

Ω

[
1
4
|n1 − n∗

1|2 +
γ

2
|n2 − n∗

2|2
]

dx. (2.20)
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Step 4. Using the inequality

|ni − n∗
i |2 ≤ 2

[
|ni − n̄i|2 + |n̄i − n∗

i |2
]
,

we see that in order to get estimate (2.20), it is enough to prove that

I ≥ C
∫

Ω

[
1
2
|n1 − n̄1|2 + γ |n2 − n̄2|2 +

1
2
|n̄1 − n∗

1|2 + γ |n̄2 − n∗
2|2

]
dx. (2.21)

Since it obviously holds
1
2

I ≥ C1

∫
Ω

[
1
2
|n1 − n̄1|2 + γ |n2 − n̄2|2

]
dx,

with

C1 = min
{

d1

2 P (Ω)
,

d2

2 P (Ω)

}
, (2.22)

it remains to prove that
1
2

I ≥ C2

[
1
2
|n̄1 − n∗

1|2 + γ |n̄2 − n∗
2|2

]
, (2.23)

and to take C = min{C1, C2}.

Step 5. Since

|n̄1 − γ n̄2|2 ≤ 3
[
|n̄1 − n1|2 + |n1 − γ n2|2 + γ2 |n2 − n̄2|2

]
,

we have
1
3

min
{

d1

2 P (Ω)
,

d2

γ P (Ω)
, d3

}
|n̄1 − γ n̄2|2 ≤ I,

therefore in order to prove (2.23) it suffices to show that

|n̄1 − γ n̄2|2 ≥ 6

min
{

d1
2 P (Ω) ,

d2
γ P (Ω) , d3

} C2

[
1
2
|n̄1 − n∗

1|2 + γ |n̄2 − n∗
2|2

]
. (2.24)

At this point, bearing in mind the expressions of (n∗
1, n

∗
2) given in (2.5), together with the fact that n∗

1 + 2 n∗
2 =

n̄1 + 2 n̄2 = n̄0, we get

n̄2 − n∗
2 = − 1

2
(n̄1 − n∗

1) and n̄1 − γ n̄2 =
2 + γ

2
(n̄1 − n∗

1),

so that (2.24) becomes

|n̄1 − n∗
1|2 ≥ 6

2 + γ

1

min
{

d1
2 P (Ω) ,

d2
γ P (Ω) , d3

} C2 |n̄1 − n∗
1|2,

that is true once we put

C2 =
2 + γ

6
min

{
d1

2 P (Ω)
,

d2

γ P (Ω)
, d3

}
· (2.25)

Taking C = min{C1, C2} concludes the proof of Lemma 2.3. �
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We are now in condition to conclude the

Proof of Theorem 2.2. Let’s evaluate the entropy dissipation along the solution of system (2.2):

− ∂tE(n1, n2) = −
∫

Ω

(n1

2
∂tn1 + γ n2 ∂tn2

)
dx.

Taking into account that for Neumann boundary conditions∫
Ω

ni Δxni dx = −
∫

Ω

|∇xni|2dx,

we have
− ∂tE(n1, n2) = D(n1, n2). (2.26)

Owing to Lemma 2.3, we end up with

∂t

[
E(n1, n2) − E(n∗

1, n
∗
2)

]
≤ −C

[
E(n1, n2) − E(n∗

1, n
∗
2)

]
,

thus, by Gronwall’s inequality,

E(n1, n2) − E(n∗
1, n

∗
2) ≤

(
E(n0

1, n
0
2) − E(n∗

1, n
∗
2)

)
e−C t.

Finally, the first step of Lemma 2.3 provides the sought estimate (2.14). �

Remark 2.4. The same procedure could be applied to whatever bi-species reaction-diffusion system in which
chemical reaction contributions take the form

Q2 = C (n1 − γ n2)W(n1, n2),

with C and γ positive constants and W(n1, n2) (smooth) function satisfying the estimate

W(n1, n2) ≥ An1 + B n2

(where A and B are positive constants).

3. Mathematical study in the general case

In this section, we prove Theorem 1.1. In next subsection, we begin by giving a few results about the reaction
terms Qi.

3.1. Study of the reaction terms

System (1.1)–(1.2)–(1.5) writes

∂tni − di Δxni = Qi(n1, n2) i = 1, 2, (3.1)

where the collision contributions may be rearranged as

Q1 = − 2Q2, Q2 =
1

νt
30n0 + νt

31n1 + νt
32n2

F(n1, n2), (3.2)
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with
F(n1, n2) = νr

11 (n1)2
(
νi
30n0 + νi

31n1 + νi
32n2

)
−n2

(
νd
20n0 + νd

21n1 + νd
22n2

)(
νt
30n0 + νt

31n1 + νt
32n2

)
.

(3.3)

This function is homogeneous (of third order) in the variables n1, n2, n0, and it can be seen as a cubic function
of the variable n1:

F(n1, n2) = A(n1)3 + B(n1)2 − C n1 − D,

where
A = νr

11 νi
31 > 0,

B =
(
νr
11 νi

32 − νt
31 νd

21

)
n2 + νr

11 νi
30 n0,

C =
(
νd
22 νt

31 + νt
32 νd

21

)
(n2)2 +

(
νd
21 νt

30 + νt
31 νd

20

)
n2 n0 > 0,

D = νd
22 νt

32(n2)3 +
(
νd
20 νt

32 + νd
22 νt

30

)
(n2)2n0 + νd

20 νt
30 n2(n0)2 > 0.

So, using the sign of A, B, D, it can be checked that there exists only one admissible (i.e. strictly positive)
root n1 = G(n2, n0) of F(n1, n2) = 0, with G homogeneous of order 1 in the variables n2, n0, and that

∂F
∂n1

(G(n2, n0), n2) > 0.

Therefore, the collision contributions may be rewritten as Q1 = − 2Q2 and

Q2 =
1

νt
30n0 + νt

31n1 + νt
32n2

[
n1 − G(n2, n0)

]
P(n1, n2, n0), (3.4)

where P(n1, n2, n0) is an homogeneous function of order 2 that is strictly positive (for n1 > 0, n2 > 0, n0 > 0).

Lemma 3.1. With the notations above, ∂G
∂n2

(n2) > 0 for each n2 > 0 (we skip here the dependence of G on the
background fixed density n0 to keep reasonable notations).

Proof of Lemma 3.1. Differentiating the equality

F(G(n2), n2) = 0, (3.5)

we get

∂G
∂n2

(n2) = −
∂F
∂n2

(G(n2), n2)

∂F
∂n1

(G(n2), n2)
· (3.6)

By resorting to (3.5), identity (3.6) is equivalent to

∂G
∂n2

(n2) = −
∂F
∂n2

(G(n2), n2) − 1
n2

F(G(n2), n2)

∂F
∂n1

(G(n2), n2) − 2
G(n2)

F(G(n2), n2)
=: − N

D · (3.7)

The numerator of this fraction turns out to be

N = − 2 νd
22 νt

32(n2)2 − νr
11 νi

31

G3(n2)
n2

− (
νd
22 νt

31 + νt
32 νd

21

)G(n2)n2

− (
νd
20 νt

32 + νd
22 νt

30

)
n0 n2 − νr

11 νi
30 n0

G2(n2)
n2

< 0.

(3.8)
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As concerns the denominator of fraction (3.7), we obtain analogously

D = νr
11 νi

31 G2(n2) + 2 νd
22 νt

32

(n2)3

G(n2)
+

(
νd
22 νt

31 + νt
32 νd

21

)
(n2)2

+
(
νd
21 νt

30 + νd
20 νt

31

)
n0 n2 + 2

(
νd
20 νt

32 + νd
22 νt

30

)
n0

(n2)2

G(n2)
+ 2 νd

20 νt
30(n0)2

n2

G(n2)
> 0.

(3.9)

By inserting results (3.8) and (3.9) into equality (3.7), we get

∂G
∂n2

(n2) > 0. (3.10)

�

Lemma 3.2. If n1 and n2 are bounded from above and from below (that is,

k1 ≤ n1 ≤ K1, k2 ≤ n2 ≤ K2, (3.11)

with k1, k2, K1, K2 > 0), then there exist positive constants g, G, g̃, G̃, p, P such that

g ≤ G(n2, n0) ≤ G, (3.12)

g̃ ≤ ∂G
∂n2

(n2, n0) ≤ G̃, (3.13)

p ≤ P(n1, n2, n0) ≤ P. (3.14)

Proof of (3.12) of Lemma 3.2. Since k2 ≤ n2 ≤ K2 and G is increasing with respect to n2 (we have proved that
∂G
∂n2

(n2, n0) > 0), we immediately get

g = G(k2, n0) ≤ G(n2, n0) ≤ G(K2, n0) = G. �

Proof of (3.13) of Lemma 3.2. Since n2 and G(n2, n0) are bounded from above and from below, we can obtain

lower and upper bounds for expressions (3.8) and (3.9), thus, coming back to equality (3.7), also for
∂G
∂n2

(n2, n0).

More precisely, cN < −N < CN where

cN = 2 νd
22 νt

32(k2)2 + νr
11 νi

31

G3(k2)
K2

+
(
νd
22 νt

31 + νt
32 νd

21

)G(k2) k2

+
(
νd
20 νt

32 + νd
22 νt

30

)
n0 k2 + νr

11 νi
30 n0

G2(k2)
K2

,

CN = 2 νd
22 νt

32(K2)2 + νr
11 νi

31

G3(K2)
k2

+
(
νd
22 νt

31 + νt
32 νd

21

)G(K2)K2

+
(
νd
20 νt

32 + νd
22 νt

30

)
n0 K2 + νr

11 νi
30 n0

G2(K2)
k2

,
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and cD < D < CD where

cD = νr
11 νi

31 G2(k2) + 2 νd
22 νt

32

(k2)3

G(K2)
+

(
νd
22 νt

31 + νt
32 νd

21

)
(k2)2

+
(
νd
21 νt

30 + νd
20 νt

31

)
n0 k2 + 2

(
νd
20 νt

32 + νd
22 νt

30

)
n0

(k2)2

G(K2)
+ 2 νd

20 νt
30(n0)2

k2

G(K2)
,

CD = νr
11 νi

31 G2(K2) + 2 νd
22 νt

32

(K2)3

G(k2)
+

(
νd
22 νt

31 + νt
32 νd

21

)
(K2)2

+
(
νd
21 νt

30 + νd
20 νt

31

)
n0 K2 + 2

(
νd
20 νt

32 + νd
22 νt

30

)
n0

(K2)2

G(k2)
+ 2 νd

20 νt
30(n0)2

K2

G(k2)
,

so that

g̃ =
cN

CD
, G̃ =

CN

cD
· �

Proof of (3.14) of Lemma 3.2. Let us recall that

[
n1 − G(n2, n0)

]
P(n1, n2, n0) = F(n1, n2, n0)

given in (3.5), hence P may be written in the form

P(n1, n2, n0) = Λ(n1)2 + Υ(n2, n0)n1 + Θ(n2, n0), (3.15)

with Υ homogeneous of order 1 and Θ homogeneous of order 2. Let us compare the following “polynomial
function”

[
n1 − G(n2, n0)

]
P(n1, n2, n0) = Λ(n1)3 +

[
Υ(n2, n0) − ΛG(n2, n0)

]
(n1)2

+
[
Θ(n2, n0) − Υ(n2, n0)G(n2, n0)

]
n1 − Θ(n2, n0)G(n2, n0)

with the function F(n1, n2, n0) (see (3.5)). Looking at the coefficient of (n1)3, we immediately get Λ = νr
11 νi

31.
Then, by considering the terms of order 0 in n1, we have

Θ(n2, n0)G(n2, n0) = νd
22 νt

32 (n2)3 +
(
νd
20 νt

32 + νd
22 νt

30

)
(n2)2 n0 + νd

20 νt
30 n2 (n0)2,

so there exist positive constants θ1, θ2 such that θ1 ≤ Θ(n2, n0) ≤ θ2; precisely

θ1 =
1

G(K2, n0)

[
νd
22 νt

32 (k2)3 +
(
νd
20 νt

32 + νd
22 νt

30

)
(k2)2 n0 + νd

20 νt
30 k2 (n0)2

]
,

θ2 =
1

G(k2, n0)

[
νd
22 νt

32 (K2)3 +
(
νd
20 νt

32 + νd
22 νt

30

)
(K2)2 n0 + νd

20 νt
30 K2 (n0)2

]
.

Finally, by comparing the coefficients of n1, we get

Υ(n2, n0)G(n2, n0) = Θ(n2, n0) +
(
νd
22 νt

31 + νt
32 νd

21

)
(n2)2 +

(
νd
21 νt

30 + νd
20 νt

31

)
n2 n0,
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thus there exist positive constants y1, y2 such that y1 ≤ Υ(n2, n0) ≤ y2:

y1 =
1

G(K2, n0)

[
θ1 +

(
νd
22 νt

31 + νt
32 νd

21

)
(k2)2 +

(
νd
21 νt

30 + νd
20 νt

31

)
k2 n0

]
,

y2 =
1

G(k2, n0)

[
θ2 +

(
νd
22 νt

31 + νt
32 νd

21

)
(K2)2 +

(
νd
21 νt

30 + νd
20 νt

31

)K2 n0

]
.

By inserting these results, together with the bounds of n1, into (3.15), we get the sought lower and upper
bounds for P(n1, n2, n0):

p = Λ(k1)2 + y1 k1 + θ1, P = Λ(K1)2 + y2 K1 + θ2. �

3.2. Existence and uniqueness of a strong solution

Proposition 3.3. Let d1, d2 > 0 and Ω be a bounded regular (C2) open set of R
N . We consider initial data

in C2(Ω̄), compatible with Neumann boundary conditions, and satisfying the bounds (for some strictly positive
constants c1, c2, C1 and C2):

0 < c1 < n1(0,x) < C1, 0 < c2 < n2(0,x) < C2. (3.16)

Then, for each T > 0, there exists a unique (strong) solution n1(t,x), n2(t,x) in C2([0, T ]× Ω̄) to system (3.1)–
(1.7) such that, for (t,x) ∈ [0, T ]× Ω,

k1 ≤ n1(t,x) ≤ K1, k2 ≤ n2(t,x) ≤ K2, (3.17)

where
k1 = min

{
c1,G(c2, n0)

}
, k2 = G−1(k1, n0) = min

{
G−1(c1, n0), c2

}
, (3.18)

K1 = max
{
C1,G(C2, n0)

}
, K2 = G−1(K2, n0) = max

{
G−1(C1, n0), C2

}
· (3.19)

Remark 3.4. Given a fixed positive value n0, we have proved that the function n2 �→ G(n2, n0) is strictly
increasing, and moreover it can be checked that G(0, n0) = 0 and lim

n2→+∞G(n2, n0) = +∞; consequently, the

function G−1 is well defined.

Proof of Proposition 3.3. Initial bounds (3.16) imply of course

k1 < n1(0,x) < K1, k2 < n2(0,x) < K2. (3.20)

At first let us prove that the “maximum principle” holds for (t,x) ∈ [0, T ]× Ω.

Lemma 3.5. Let ε > 0 and Ω be a bounded regular (C2) open set of R
N . For any T > 0, there exists a strong

solution (Nε
1 (t,x), Nε

2 (t,x)) (in C2([0, T ]× Ω̄)) to system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tN
ε
1 − d1 ΔxNε

1 = − 2P(Nε
1 , Nε

2 , n0 eε t)
νt
30n0 eε t + νt

31N
ε
1 + νt

32N
ε
2

[
Nε

1 − G(Nε
2 , n0 eε t)

]

∂tN
ε
2 − d2 ΔxNε

2 =
P(Nε

1 , Nε
2 , n0 eε t)

νt
30n0 eε t + νt

31N
ε
1 + νt

32N
ε
2

[
Nε

1 − G(Nε
2 , n0 eε t)

] (3.21)

with Neumann boundary conditions (1.7) and initial conditions

Nε
1 (0,x) = n1(0,x), Nε

2 (0,x) = n2(0,x), (3.22)
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where n1(0,x), n2(0,x) satisfy the bounds (3.16). This solution (Nε
1 (t,x), Nε

2 (t,x)) satisfies the upper bounds:

Nε
1 (t,x) < K1 eε t, Nε

2 (t,x) < K2 eε t, (3.23)

where K1, K2 are the constants defined in (3.19).

Proof of Lemma 3.5. We first suppose to have a strong solution (Nε
1 , Nε

2 ) (in C2([0, T ] × Ω̄)) to system (3.21)
with Neumann boundary conditions (1.7) and initial conditions (3.22). Let us consider the functions

Ñε
1 (t,x) = Nε

1 (t,x) e− ε t, Ñε
2 (t,x) = Nε

2 (t,x) e− ε t, (3.24)

and let us prove that

Ñε
1 (t,x) < K1, Ñε

2 (t,x) < K2. (3.25)

From equations (3.1), it follows that the evolution of Ñε
1 , Ñε

2 is governed by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tÑ
ε
1 − d1 ΔxÑε

1 = − 2P(Ñε
1 , Ñε

2 , n0) eε t

νt
30n0 + νt

31Ñ
ε
1 + νt

32Ñ
ε
2

[
Ñε

1 − G(Ñε
2 , n0)

]
− ε Ñε

1

∂tÑ
ε
2 − d2 ΔxÑε

2 =
P(Ñε

1 , Ñε
2 , n0) eε t

νt
30n0 + νt

31Ñ
ε
1 + νt

32Ñ
ε
2

[
Ñε

1 − G(Ñε
2 , n0)

]
− ε Ñε

2 .

(3.26)

Suppose that the inequalities (3.25) do not hold for all (t,x) ∈ [0, T ]× Ω, and define

Bε =
{
τ > 0 : Ñε

1 (t,x) < K1, Ñε
2 (t,x) < K2 ∀ (t,x) ∈ [0, τ) × Ω

}
·

If we denote t̃ = sup Bε, there must exist x̃ ∈ Ω̄ such that at least one of the following equalities holds:

Ñε
1 (t̃, x̃) = K1 or Ñε

2 (t̃, x̃) = K2.

Case 1. Ñε
1 (t̃, x̃) = K1.

By definitions of t̃ and x̃, we have Ñε
1 (t̃, x̃) ≥ Ñε

1 (t̃,x) ∀x ∈ Ω, namely the function Ñε
1 (t̃,x) takes maximum

for x = x̃ ∈ Ω̄, and consequently d1 ΔxÑε
1 (t̃, x̃) ≤ 0 (for more details, see the proof of Prop. 2.1).

Moreover, by evaluating the chemical contribution of equation (3.26) for Ñε
1 at (t̃, x̃), we get

− 2P(Ñε
1 (t̃, x̃), Ñε

2 (t̃, x̃), n0) e− ε t̃

νt
30n0 + νt

31Ñ
ε
1 (t̃, x̃) + νt

32Ñ
ε
2 (t̃, x̃)

[
Ñε

1 (t̃, x̃) − G(Ñε
2 (t̃, x̃), n0)

]
=

− 2P(K1, Ñ
ε
2 (t̃, x̃), n0) e− ε t̃

νt
30n0 + νt

31K1 + νt
32Ñ

ε
2 (t̃, x̃)

[
K1 − G(Ñε

2 (t̃, x̃), n0)
]
≤

− 2P(K1, Ñ
ε
2 (t̃, x̃), n0) e− ε t̃

νt
30n0 + νt

31K1 + νt
32Ñ

ε
2 (t̃, x̃)

[
K1 − G(K2, n0)

]
= 0,

where the inequality holds since Ñε
2 (t̃, x̃) ≤ K2 and n2 �→ G(n2, n0) is increasing. Therefore, from equation (3.21)

for Ñε
1 , we get that ∂tÑ

ε
1 (t̃, x̃) ≤ − ε Ñε

1 (t̃, x̃) = − εK1 < 0, hence Ñε
1 (t, x̃) > Ñε

1 (t̃, x̃) = K1 for some t < t̃,
contradicting the definition of t̃.
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Case 2. Ñε
2 (t̃, x̃) = K2.

In this case we have Ñε
2 (t̃, x̃) ≥ Ñε

2 (t̃,x) ∀x ∈ Ω, namely Ñε
2 (t̃,x) takes its maximum for x = x̃ ∈ Ω̄,

therefore d2 ΔxÑε
2 (t̃, x̃) ≤ 0. For the chemical contributions at (t̃, x̃) appearing in the equation for Ñε

2 , we get

P(Ñε
1 (t̃, x̃), Ñε

2 (t̃, x̃), n0) e− ε t̃

νt
30n0 + νt

31Ñ
ε
1 (t̃, x̃) + νt

32Ñ
ε
2 (t̃, x̃)

[
Ñε

1 (t̃, x̃) − G(Ñε
2 (t̃, x̃), n0)

]
=

P(Ñε
1 (t̃, x̃),K2, n0) e− ε t̃

νt
30n0 + νt

31Ñ
ε
1 (t̃, x̃) + νt

32K2

[
Ñε

1 (t̃, x̃) − G(K2, n0)
]
≤

P(Ñε
1 (t̃, x̃),K2, n0) e− ε t̃

νt
30n0 + νt

31Ñ
ε
1 (t̃, x̃) + νt

32K2

[
K1 − G(K2, n0)

]
= 0,

hence we obtain ∂tÑ
ε
2 (t̃, x̃) ≤ − ε Ñε

2 (t̃, x̃) = − εK2 < 0, which leads to a contradiction as in Case 1.

Consequently, the set Bε is unbounded, hence Ñε
1 (t,x) < K1 and Ñε

2 (t,x) < K2 for all x ∈ Ω and for all
t ∈ [0, T ]. This means that Nε

1 (t,x) < K1 e− ε t and Nε
2 (t,x) < K2 e− ε t.

In order to prove the existence of a solution (in C2([0, T ]×Ω̄)) to system (3.21) with Neumann boundary condi-
tions (1.7) and initial conditions (3.22), let us consider a function χ := χ(Nε

1 , Nε
2 ) in C2 such that χ(Nε

1 , Nε
2 ) = 1

when |Nε
1 | and |Nε

2 | ≤ eε T max
{K1, K2

}
, and χ(Nε

1 , Nε
2 ) = 0 when |Nε

1 | or |Nε
2 | ≥ 2 eε T max

{K1, K2

}
. De-

noting by Ri the right hand side of the i-th equation (3.21), the function

f(Nε
1 , Nε

2 ) =
(
− 2R2(Nε

1 , Nε
2 )χ(Nε

1 , Nε
2 ), R2(Nε

1 , Nε
2 )χ(Nε

1 , Nε
2 )

)
lies in C2 ∩ W 1,∞. Thus, we can resort to a simple fixed point argument (see for instance [8]) that guarantees
that, under these assumptions on the function f , there exists a unique strong solution on [0, T ] to the problem⎧⎪⎨

⎪⎩
∂tU − D · ΔxU = f(U)
n̂ · ∇xU = 0 for x ∈ ∂Ω

U(0,x) = U0(x),

(3.27)

where in our case the vector U ≡ (Nε
1 , Nε

2 ), and D stands for the diagonal matrix containing the diffusion
coefficients d1, d2 as diagonal entries.

As long as ∀x ∈ Ω, |Nε
1 (t,x)| and |Nε

2 (t,x)| ≤ eε T max
{K1, K2

}
, the solution U(t,x) = (Nε

1 (t,x), Nε
2 (t,x))

is also a (strong) solution of system (3.21) (in this range χ ≡ 1, hence f ≡ (R1,R2)), and satisfies therefore
the maximum principle (3.23), so that at the end, |Nε

1 (t,x)| and |Nε
2 (t,x)| ≤ eε T max

{K1, K2

}
holds up to

time T . �
By using Lemma 3.5, we get a sequence of solutions {Nε

1}ε>0 of system (3.21), which is uniformly bounded
in L∞([0, T ] × Ω̄). Therefore, it converges (up to a subsequence) weakly ∗ in L∞ to some function n1. The
same holds for {Nε

2}ε>0.
Boundedness from above of Nε

1 and Nε
2 implies boundedness (in [0, T ]) of the polynomial function

[
Nε

1 −
G(Nε

2 , n0 eε t)
]
P(Nε

1 , Nε
2 , n0 eε t) = F(Nε

1 , Nε
2 , n0 eε t) (see (3.3)–(3.4)) appearing in the right hand sides of

(3.21). Therefore, using the smoothing properties of the heat equation, we can pass to the limit ε → 0 in the
weak form of equations (3.21), obtaining that the limit functions (n1, n2) are weak solutions of the system (3.1).
Passing to the limit in (3.23), we get the upper bounds in (3.17).

Since (3.1) is a strict parabolic system, it is clear that (n1, n2) lies in C2([0, T ]× Ω̄) (cf. [16]), and is therefore
the (unique) solution of system (3.1) satisfying the upper bounds in (3.17).
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We now turn to the minimum principle, that is the lower bounds in estimate (3.17). We begin by establishing
the following result:

Lemma 3.6. Let ε > 0 and Ω be a bounded regular (C2) open set of R
N . Let (Nε

1 (t,x), Nε
2 (t,x)) be a strong

solution (that is, in C2([0, T ]× Ω̄)) to system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tN
ε
1 − d1 ΔxNε

1 = − 2P(Nε
1 , Nε

2 , n0 e− ε t)
νt
30n0 e− ε t + νt

31N
ε
1 + νt

32N
ε
2

[
Nε

1 − G(Nε
2 , n0 e− ε t)

]

∂tN
ε
2 − d2 ΔxNε

2 =
P(Nε

1 , Nε
2 , n0 e− ε t)

νt
30n0 e− ε t + νt

31N
ε
1 + νt

32N
ε
2

[
Nε

1 − G(Nε
2 , n0 e− ε t)

] (3.28)

with Neumann boundary conditions (1.7) and with initial conditions satisfying the bounds (3.16). This solution
(Nε

1 (t,x), Nε
2 (t,x)) satisfies the lower bounds:

k1 e− ε t < Nε
1 (t,x), k2 e− ε t < Nε

2 (t,x), (3.29)

where k1, k2 are the constants defined in (3.18).

Proof of Lemma 3.6. The proof is very similar to the one performed for the maximum principle. We now have
to resort to the auxiliary functions

Ñε
1 (t,x) = Nε

1 (t,x) eε t, Ñε
2 (t,x) = Nε

2 (t,x) eε t, (3.30)

and to prove that
k1 < Ñε

1 (t,x), k2 < Ñε
2 (t,x). (3.31)

The evolution of Ñε
1 , Ñε

2 is now governed by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tÑ
ε
1 − d1 ΔxÑε

1 = − 2P(Ñε
1 , Ñε

2 , n0) e− ε t

νt
30n0 + νt

31Ñ
ε
1 + νt

32Ñ
ε
2

[
Ñε

1 − G(Ñε
2 , n0)

]
+ ε Ñε

1

∂tÑ
ε
2 − d2 ΔxÑε

2 =
P(Ñε

1 , Ñε
2 , n0) e− ε t

νt
30n0 + νt

31Ñ
ε
1 + νt

32Ñ
ε
2

[
Ñε

1 − G(Ñε
2 , n0)

]
+ ε Ñε

2 ,

(3.32)

and we conclude like in Lemma 3.5. �

Let us now take initial data such that (3.16), and consequently (3.20), hold. Then, there exists a time T ∗ > 0
depending only on K1, K2 (and not on ε nor n0

1, n0
2) such that (3.28) (with the initial datum Nε

1 (0,x) = n1(0,x),
Nε

2 (0,x) = n2(0,x), and the Neumann boundary conditions) admits a strong solution on [0, T ∗] satisfying (3.29)
and such that

Nε
1 (t,x) ≤ C, Nε

2 (t,x) ≤ C for t ∈ [0, T ∗], x ∈ Ω,

where C does not depend on ε (this can be obtained by a standard fixed point argument).
As a consequence, passing to the limit in (3.29), we obtain that n1(t,x) and n2(t,x) satisfy the lower bounds

in (3.17) on [0, T ∗]. Since we can apply this argument at time T ∗ (because the data at this time are still bounded
from above by K1, K2), we see that the lower bounds in (3.17) hold on [T ∗, 2T ∗]. By induction, they will hold
on [0, T ], and this concludes the proof of Proposition 3.3. �

By sticking together the solutions on [0, T ] (for T ∈ R
+), we obtain a (unique) solution in C2(R+ × Ω̄) to

system (3.1)–(1.7). This concludes the proof of existence and uniqueness of a solution stated in Theorem 1.1,
since the assumption of strictly positive initial data in C2(Ω̄) compatible with the Neumann boundary conditions
(introduced in Thm. 1.1) coincides with assumption (3.16).
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3.3. Entropy functionals and convergence to equilibrium

A crucial feature of the reaction-diffusion system (3.1) is that it admits a unique collision equilibrium (n∗
1, n

∗
2),

characterized by the relation n∗
1 = G(n∗

2, n0), plus the conservation of number of atoms n∗
1 + 2 n∗

2 = n̄0. This
allows to build up several different Lyapounov functionals.

Let ϕ(·) be a strictly increasing function (regular enough). It can be proved that the following functional is
suitable for our problem:

Eϕ =
∫

Ω

[
1
2

Ψ(n1) + Φ(n2)
]

dx, (3.33)

with Ψ and Φ such that

Ψ′(n1) = ϕ(n1),
∂Φ
∂n2

(n2, n0) = ϕ
(G(n2, n0)

)
.

Let us explain now why Eϕ is indeed suitable:

Dissipation of the functional

D(n1, n2) = − ∂tEϕ(n1, n2) = −
∫

Ω

(
1
2

Ψ′(n1) ∂tn1 +
∂Φ
∂n2

(n2, n0) ∂tn2

)
dx

= − d1

2

∫
Ω

ϕ(n1)Δxn1 dx − d2

∫
Ω

ϕ
(G(n2, n0)

)
Δxn2 dx

−
∫

Ω

(
1
2

ϕ(n1)Q1 + ϕ
(G(n2, n0)

)Q2

)
dx

=
d1

2

∫
Ω

ϕ′(n1)|∇xn1|2dx + d2

∫
Ω

ϕ′(G(n2, n0))
∂G
∂n2

(n2, n0) |∇xn2|2 dx

+
∫

Ω

P(n1, n2, n0)
νt
30n0 + νt

31n1 + νt
32n2

[
n1 − G(n2, n0)

][
ϕ(n1) − ϕ

(G(n2, n0)
)]

dx ≥ 0,

since ϕ(·) is strictly increasing.

Strict coercivity of the Lyapounov functional

Eϕ(n1, n2) − Eϕ(n∗
1, n

∗
2) =

∫
Ω

[
1
2

Ψ(n1) − 1
2

Ψ(n∗
1) + Φ(n2) − Φ(n∗

2)
]

dx

=
∫

Ω

{
1
2

[
Ψ′(n1)|n1=n∗

1
(n1 − n∗

1) +
1
2

Ψ′′(ξ)(n1 − n∗
1)

2

]

+

[
∂Φ
∂n2

(n2, n0)
∣∣∣∣
n2=n∗

2

(n2 − n∗
2) +

1
2

∂2Φ
∂n2

2

(ξ, n0)(n2 − n∗
2)

2

]}
dx

=
∫

Ω

{
1
2

ϕ(n∗
1)(n1 − n∗

1) + ϕ
(G(n∗

2, n0)
)
(n2 − n∗

2)

+
1
4

ϕ′(ξ)(n1 − n∗
1)

2 +
1
2

ϕ′(G(ξ, n0)
) ∂G

∂n2
(ξ, n0)(n2 − n∗

2)
2

}
dx

=
∫

Ω

{
1
4

ϕ′(ξ)(n1 − n∗
1)

2 +
1
2

ϕ′(G(ξ, n0)
) ∂G

∂n2
(ξ, n0)(n2 − n∗

2)
2

}
dx,
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because of conservation of total number of atoms∫
Ω

(n1 + 2 n2)dx = n̄0 =
∫

Ω

(n∗
1 + 2 n∗

2)dx

and of the relation n∗
1 = G(n∗

2, n0). Since ϕ(·) and n2 �→ G(n2, n0) are strictly increasing functions, the relative
entropy is strictly positive for each (n1, n2) �= (n∗

1, n
∗
2).

From now on we shall stick to the choice ϕ(s) = s, already adopted in the simplified case dealt with in
Section 2, hence to the corresponding “quadratic” entropy functional:

E(n1, n2) =
∫

Ω

[
1
4

(n1)2 + Φ(n2, n0)
]

dx, (3.34)

with
∂Φ
∂n2

(n2, n0) = G(n2, n0).

Lemma 3.7 (entropy dissipation inequality). Let P and G be defined as in Subsection 3.1 from Q1, Q2 defined
by (1.5). We suppose that n0, n1 := n1(x), n2 := n2(x) ≥ 0 are such that (for some d3 > 0)

d3 ≤ P(n1, n2, n0)
νt
30n0 + νt

31n1 + νt
32n2

·

We also suppose that estimate (3.13) holds.
Then, the entropy dissipation relevant to the quadratic entropy (3.34):

D(n1, n2) =
d1

2

∫
Ω

|∇xn1|2dx + d2

∫
Ω

∂G
∂n2

(n2, n0) |∇xn2|2 dx

+
∫

Ω

P(n1, n2, n0)
νt
30n0 + νt

31n1 + νt
32n2

[
n1 − G(n2, n0)

]2

dx
(3.35)

fulfils the inequality:

D(n1, n2) ≥ C
[
E(n1, n2) − E(n∗

1, n
∗
2)

]
, (3.36)

with

C = min
{

min
{

1,
(2 + g̃)2

6(2 + G̃)

}
d1

2 P (Ω)
, min

{
1
2
,

(2 + g̃)2

6 G̃(2 + G̃)

}
d2 g̃

P (Ω) G̃
,

(2 + g̃)2

6(2 + G̃)
d3

}
, (3.37)

where P (Ω) is the Poincaré constant.

Proof of Lemma 3.7. For convenience we divide the proof into four steps.

Step 1. Taking into account the bounds (3.13),

D(n1, n2) ≥ d1

2

∫
Ω

|∇xn1|2dx + d2 g̃

∫
Ω

|∇xn2|2 dx + d3

∫
Ω

[
n1 − G(n2, n0)

]2

dx.

Then, by resorting to Poincaré inequality,

D(n1, n2) ≥ d1

2 P (Ω)
‖n1 − n̄1‖2

2 +
d2 g̃

P (Ω)
‖n2 − n̄2‖2

2 + d3‖n1 − G(n2, n0)‖2
2, (3.38)
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where

n̄i(t) =
∫

Ω

ni(t,x) dx.

Step 2. Considering the relative entropy, we have

E(n1, n2) − E(n∗
1, n

∗
2) =

∫
Ω

{
1
4
(n1 − n∗

1)
2 +

1
2

∂G
∂n2

(ξ, n0)(n2 − n∗
2)

2

}
dx

≤ 1
4
‖n1 − n∗

1‖2
2 +

G̃

2
‖n2 − n∗

2‖2
2.

Since
|ni − n∗

i |2 ≤ 2
[
|ni − n̄i|2 + |n̄i − n∗

i |2
]
,

we see that in order to prove Lemma 3.7, it is enough to show that

J :=
∫

Ω

[
d1

2 P (Ω)
|n1 − n̄1|2 +

d2 g̃

P (Ω)
|n2 − n̄2|2 + d3|n1 − G(n2, n0)|2

]
dx

≥ C
∫

Ω

[
1
2
|n1 − n̄1|2 + G̃ |n2 − n̄2|2 +

1
2
|n̄1 − n∗

1|2 + G̃ |n̄2 − n∗
2|2

]
dx.

Since it obviously holds
1
2

J ≥ C1

∫
Ω

[
1
2
|n1 − n̄1|2 + G̃ |n2 − n̄2|2

]
dx,

with

C1 = min
{

d1

2 P (Ω)
,

d2 g̃

2 P (Ω) G̃

}
, (3.39)

it remains to prove that
1
2

J ≥ C2

[
1
2
|n̄1 − n∗

1|2 + G̃ |n̄2 − n∗
2|2

]
, (3.40)

and to take C = min{C1, C2}.
Step 3. Notice that

|n̄1 − G(n̄2, n0)|2 ≤ 3
[
|n̄1 − n1|2 + |n1 − G(n2, n0)|2 + |G(n2, n0) − G(n̄2, n0)|2

]

= 3

[
|n̄1 − n1|2 + |n1 − G(n2, n0)|2 +

∣∣∣∣ ∂G
∂n2

(ξ, n0) (n2 − n̄2)
∣∣∣∣
2
]

≤ 3
[
|n̄1 − n1|2 + |n1 − G(n2, n0)|2 + G̃2|n2 − n̄2|2

]
.

Therefore we have
1
6

min
{

d1

2 P (Ω)
,

d2 g̃

P (Ω) G̃2
, d3

}
|n̄1 − G(n̄2, n0)|2 ≤ 1

2
J.

Thus, in order to prove (3.40), it suffices to show that

|n̄1 − G(n̄2, n0)|2 ≥ 6

min
{

d1
2 P (Ω) ,

d2 g̃

P (Ω) G̃2 , d3

} C2

[
1
2
|n̄1 − n∗

1|2 + G̃ |n̄2 − n∗
2|2

]
. (3.41)
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Step 4. Bearing in mind the preservation of total number of atoms: n̄1 + 2 n̄2 = n̄0 = n∗
1 + 2 n∗

2, we have

n̄1 − n∗
1 = − 2 (n̄2 − n∗

2).

Moreover,

|n̄1 − G(n̄2, n0)|2 =
∣∣∣n̄1 − n∗

1 + G(n∗
2, n0) − G(n̄2, n0)

∣∣∣2 =
∣∣∣∣n̄1 − n∗

1 +
∂G
∂n2

(ξ, n0) (n∗
2 − n̄2)

∣∣∣∣
2

=
∣∣∣∣2 +

∂G
∂n2

(ξ, n0)
∣∣∣∣
2

|n∗
2 − n̄2|2 ≥

[
2 + g̃

]2

|n∗
2 − n̄2|2.

Consequently it suffices to prove that

[
2 + g̃

]2

|n∗
2 − n̄2|2 ≥ 6

min
{

d1
2 P (Ω) ,

d2 g̃

P (Ω) G̃2 , d3

} C2

[
2 + G̃

]
|n̄2 − n∗

2|2. (3.42)

This is true once we put

C2 =
1
6

min
{

d1

2 P (Ω)
,

d2 g̃

P (Ω) G̃2
, d3

}
(2 + g̃)2

2 + G̃
·

Taking C = min{C1, C2} concludes the proof. �

Notice that if we had G(n2, n0) = γ n2, we would obtain g̃ = G̃ = γ, hence we would correctly reproduce the
constant C found in the particular case treated in Section 2.

End of the Proof of Theorem 1.1. Owing to Proposition 3.3, we consider the unique solution n1 = n1(t,x), n2 =
n2(t,x) of equations (1.1)–(1.2)–(1.5) together with (1.7). It satisfies the bound (3.17), so that estimates (3.13)
and (3.14) are also satisfied (for a suitable d3 > 0). As a consequence, we can use Lemma 3.7 for n1(t, ·) and
n2(t, ·). Bearing in mind that ∂tE(n1, n2) = −D(n1, n2), we have

∂t

[
E(n1, n2) − E(n∗

1, n
∗
2)

]
≤ −C

[
E(n1, n2) − E(n∗

1, n
∗
2)

]
,

thus, by Gronwall inequality,

E(n1, n2) − E(n∗
1, n

∗
2) ≤

(
E(n0

1, n
0
2) − E(n∗

1, n
∗
2)

)
e−C t.

Finally, proceeding like in (3.39), we see that

E(n1, n2) − E(n∗
1, n

∗
2) =

∫
Ω

{
1
4
(n1 − n∗

1)
2 +

1
2

∂G
∂n2

(ξ, n0)(n2 − n∗
2)

2

}
dx

≥ 1
4
‖n1 − n∗

1‖2
2 +

g̃

2
‖n2 − n∗

2‖2
2.

This concludes the proof of Theorem 1.1, and defines properly the constants C1 and C2. �

Remark 3.8. We end this section by a remark about the case when one diffusivity constant is 0. In this case,
the entropy-entropy dissipation estimate (3.36) still holds (and so does the theorem of exponentially fast decay),
though with different constants.
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This comes out (in the case when d1 = 0) from the following inequality∫
Ω

|n1 − n̄1|2dx ≤ 3
∫

Ω

|n1 − G(n2, n0)|2dx + 3
∫

Ω

|G(n2, n0) − G(n2, n0)|2dx + 3
∫

Ω

|G(n2, n0) − n̄1|2dx

≤ 6
∫

Ω

|n1 − G(n2, n0)|2dx + 3 G̃2 P (Ω)
∫

Ω

|∇xn2|2dx.

The case d2 = 0 can be treated in the same way.
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[20] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homo-

geneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667–706.
[21] Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter

Ed., A.I.A.A., New York (1977) 501–517.


	Introduction
	Entropy methods
	A model of dissociation/recombination
	Exponential convergence towards equilibrium

	Particular case
	Study of the reaction terms
	Minimum principle
	Convergence to equilibrium

	Mathematical study in the general case
	Study of the reaction terms
	Existence and uniqueness of a strong solution
	Entropy functionals and convergence to equilibrium

	References

