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APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION

Guillaume Carlier1, Myriam Comte2 and Gabriel Peyré1

Abstract. This article deals with the numerical computation of the Cheeger constant and the ap-
proximation of the maximal Cheeger set of a given subset of R

d. This problem is motivated by landslide
modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger
set can be approximated by solving a rather simple projection problem, we propose a numerical strategy
to compute maximal Cheeger sets and Cheeger constants.
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1. Introduction

Given Ω, a Lipschitz bounded open subset of R
d and two functions f ∈ L∞(Ω) and g ∈ C0(Ω) such that

min(f, g) ≥ c on Ω for some constant c > 0, let us consider:

inf
{∫

Ω
g|∇u|∫

Ω f |u| , u ∈ W 1,1
0 (Ω)

}
. (1.1)

In general, the previous problem is ill-posed, so it is natural to consider its relaxation in BV (Ω):

h(Ω) := inf

{∫
Ω

gd|Du|+ ∫
∂Ω

g|u|dHd−1∫
Ω f |u| , u ∈ BV (Ω)

}
(1.2)

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure (see [18]). The fact that the values of (1.1) and
(1.2) are the same is well-known and follows from standard approximation results (see for instance [3]). Using
the coarea formula (see [18]), it is easy to see that the quantity h(Ω) can also be expressed as

h(Ω) := inf

{∫
∂∗A

gdHd−1∫
A f

, A ⊂ Ω of finite perimeter

}
(1.3)

where ∂∗A stands for the reduced boundary of A (see [3,18]).
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When f ≡ g ≡ 1, h(Ω) is known as the Cheeger constant of Ω and solutions of (1.3) are called Cheeger sets
of Ω, and, in this case, it can be also considered as the first eigenvalue of the degenerate 1-Laplacian operator,
see for instance Demengel [14,15]. With weights f and g as above, we will again refer to h(Ω) as the Cheeger
constant and to solutions of (1.3) as Cheeger sets. In this case, the minimization problem (1.2) and the value
h(Ω) are related to the so-called maximal flow problem, see Strang [24,25] and Section 2.2 below.

The existence of Cheeger sets i.e. of solutions of (1.3) is well-known and we refer the reader to [7] for
the precise links between Cheeger sets and the variational problem (1.2) and various qualitative properties of
solutions of (1.2). It was recently proved in [1–8], that the Cheeger set is unique when f ≡ g ≡ 1 and Ω is
convex. For a general Ω and/or general weights f and g, Cheeger sets need not be unique. This makes the
selection of a particular Cheeger set and the numerical computation of Cheeger constants and Cheeger sets a
relevant issue, potentially important in view of applications to landslide modelling and the blocking property
described in Section 2.1.

Let us consider the following closed and convex subset of L2(Ω):

K =
{
u ∈ L2(Ω) :

∫
Ω

div(gp)u ≤ 1, ∀p ∈ C1(Ω, Rd), ‖p‖∞ ≤ 1
}
.

The numerical approach of the present paper is based on the fact that the projection (for some suitably weighted
L2 norm) of the constant function ε−1 onto K converges as ε → 0 to a multiple of the characteristic function
of the maximal Cheeger set (see [6] and Sect. 3 below for details). This projection problem presents of course
great similarities with the famous Rudin-Osher-Fatemi problem in computer vision [23], see also Chambolle
and Lions [10]. Indeed, if the value of the Lagrange multiplier associated to the total variation constraint
was known, then one could rewrite the projection problem in the form of the Rudin-Osher-Fatemi, for which
one can use for instance the algorithm of Chambolle [9]. In [9], Chambolle also shows how to update the
Lagrange multipliers for total variation minimization with an L2 equality constraint (known variance of the
noise). In our projection problem, we do not have such a consistent updating rule and it is not clear how to
adapt the algorithm of Chambolle. We therefore prefer to take advantage of the special structure of the problem
(projection with linear constraint) for which we can use the algorithm of Combettes and Pesquet [12]. This
algorithm performs iterative sub-gradient projections in order to enforce the total variation and minimize the
distance to the function ε−1. Let us also mention the article of Alter, Caselles and Chambolle [2], where the
evolution of convex sets in the plane by the flow of the total variation is explicitly given (with some natural
connections with maximal Cheeger sets) and some numerical results are obtained.

The paper is organized as follows. We first spend some time in Section 2 to motivate the interest of prob-
lem (1.2) with general weights f and g. More precisely, we describe two different applied settings where (1.2)
and the Cheeger constant h(Ω) naturally arise: landslide modelling [13,19–21] and the continuous maximal flow
problem (see Strang [24,25]). In Section 3, we recall the results of [6] on the selection of the maximal Cheeger set.
Taking a quadratic perturbation, this gives an approximation strategy based on simple L2 projection problems.
The discretization of these projections is detailed, with a convergence result in Section 4. Numerical results are
given in Section 5.

2. Motivations

2.1. Landslides

In [13], the authors’ approach to landslides modelling is to consider that the soil behaves like a Bingham
inhomogeneous fluid. In this model, the inhomogeneous yield limit g is an important parameter in describing
landslide phenomenon. Indeed, due to their own weight, the geomaterials are compacted so that their mechan-
ical properties also vary with depth. Therefore the yield limit g and the body forces f cannot be supposed
homogeneous.



APPROXIMATION OF MAXIMAL CHEEGER SETS BY PROJECTION 141

The evolution equations describing the flow of an inhomogeneous Bingham fluid in a domain D ⊂ R
3 in the

time interval (0, T ) are

∂u

∂t
+ (u · ∇)u− divσ′ +∇p = f (2.1)

div u = 0, (2.2)

where u is the velocity field, σ denotes the Cauchy stress tensor field, p = − trace(σ)/3 represents the pressure
and σ′ = σ + pI is the deviatoric part of the stress tensor and f denotes the body forces. The constitutive
equation of the Bingham fluid is:

σ′ = 2ηD(u) + g
D(u)
|D(u)| if |D(u)| �= 0,

|σ′| ≤ g if |D(u)| = 0,

where D(u) = (∇u + ∇T u)/2, η(x) ≥ η0 > 0 is the viscosity distribution and g = g(x) > 0 on D is the (non
homogeneous) yield limit distribution in D.

The boundary conditions are u = 0 on ∂D× (0, T ) and u|t=0 = u0. Writing the problem under variational
form leads to∫

D

(∂u

∂t
+ (u · ∇)u

)
· (v − u) +

∫
D

2ηD(u).(D(v)−D(u)) +
∫
D

g(|D(v)| − |D(u)|) ≥
∫
D

f · (v − u), (2.3)

for all t ∈ (0, T ), u and v in some suitable space, see [16]. If we consider the stationary anti-plane flow, that
is D = Ω× R with Ω open domain of R

2 with Lipschitz boundary, u = (0, 0, u(x1, x2)) and similar hypotheses
for f , etc. Problem (2.3) then becomes

∫
Ω

2η(x)∇u(x) · ∇(v(x) − u(x)) dx +
∫

Ω

g(x)(|∇v(x)| − |∇u(x)| )dx ≥
∫

Ω

f(x)(v(x) − u(x)) dx, (2.4)

for all u, v in some suitable functional space, see [20]. Since u is the velocity of the fluid, the Bingham fluid is
blocked, that is there is no landslide, if u ≡ 0 is a solution of (2.4). Hence the blocking property reads as

1 ≤ μ := inf
v∈W 1,1

0 (Ω)

∫
Ω

g(x) |∇v(x)| dx∣∣∣∣
∫

Ω

f(x)v(x) dx

∣∣∣∣
· (2.5)

Thus μ has been considered in [19] as a safety factor and it is important to know for given f and g, if μ is larger
than 1 (blocking property).

2.2. Maximal flow, minimum cut duality and Cheeger sets

Another motivation for (1.2) comes from its relation with the so-called maximal flow problem. The duality
between (1.1) and the continuous maximal flow problem is essentially due to Strang [24]. We refer to the papers
of Strang [24,25] for a detailed exposition of the problem, extensions and related questions. This continuous
duality is used by Appleton and Talbot [4] to solve computer vision problems such as image segmentation.

First, it is easy to see that

− 1
h(Ω)

= inf{F (u) + H(∇u) : u ∈W 1,1
0 (Ω)} (2.6)
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where

F (u) = −
∫

Ω

fu, H(q) =
{

0 if ‖gq‖L1 =
∫
Ω

g|q| ≤ 1
+∞ otherwise,

for all u ∈ W 1,1
0 (Ω) and q ∈ L1(Ω, Rd). Since F and G are convex l.s.c. functionals with F everywhere finite

and G continuous at 0, the Fenchel-Rockafellar duality theorem (see Ekeland and Temam [17]) yields

1
h(Ω)

= min{F ∗(− div(v)) + H∗(−v), v ∈ L∞(Ω, Rd)}

where F ∗ and H∗ denote the Fenchel conjugates of F and H . By direct computation, we then get:

1
h(Ω)

= min
{∥∥∥∥v

g

∥∥∥∥
L∞

: v ∈ L∞(Ω, Rd), div(v) = f

}
,

which enables us to rewrite the Cheeger constant as

h(Ω) = max
{
λ ∈ R : (λ, v) ∈ R× L∞(Ω, Rd), div(v) = λf, |v| ≤ g

}
. (2.7)

The duality relation (2.7) is known as the maximal flow-minimal cut theorem. The maximization problem in
(2.7) is a continuous version of the problem that consists in finding the largest flow that can be sent through
the edges of a graph given their capacity (the function g in a continuous setting) and subject to the mass
conservation constraint (Kirchhoff’s law on a graph and div(v) = λf in a continuous setting). The natural
assumption on f is that it has zero average and can be written as f = f+ − f− with f+ and f− giving the
distribution of sinks and sources. Also, the maximal flow problem described above is isotropic in the sense
that the capacity constraint simply is |v| ≤ g and does not depend on the direction of the flow, we refer to
Nozawa [22] for a general anisotropic formulation. As usual in convex duality, one expects useful relations
between maximal flows and all the solutions of the primal problem (in particular characteristic functions of
Cheeger sets). In fact, it follows from the maximal flow-minimal cut theorem that if C is a Cheeger set and v
a maximal flow then (at least formally, i.e. ignoring regularity issues) v · n = g on ∂C. Therefore ∂C is filled
to its maximum capacity, ∂C is then refered to as a minimum cut.

3. Selection of the maximal Cheeger set

As already pointed out, Cheeger sets i.e. solutions of (1.3) are non-unique in general, however there exists a
unique maximal Cheeger set i.e. a solution of (1.3) that contains any other one up to a negligible set. We refer
to [6] for a proof of the next result:

Proposition 3.1. There exists a unique maximal Cheeger set, i.e. a unique C0 solving (1.3) such that for every
C solving (1.3), C is included in C0 up to a Lebesgue negligible set.

In [6], the question of whether some natural perturbations of (1.2) select at the limit the maximal Cheeger
set is addressed. In particular, if we rewrite the Cheeger constant as

1
h(Ω)

= sup
{∫

Ω

fu dx :
∫

Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1 ≤ 1, u ∈ BV (Ω)
}

. (3.1)

Following the approach of [6], we approximate (3.1) by the strictly concave penalization

sup
{∫

Ω

f
(
u− εΦ(u)

)
dx :

∫
Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1 ≤ 1, u ∈ BV (Ω)
}

(3.2)
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where ε > 0 is a perturbation parameter and Φ is a strictly convex even function that satisfies

Φ(0) = 0, 0 ≤ Φ(t) < +∞ ∀t ∈ R
+. (3.3)

Denoting by χA the characteristic function of a set A, the following convergence1 result states that solutions of
the penalized problems converge to a multiple of the characteristic function of the maximal Cheeger set (see [6]
for a proof).

Theorem 3.2. Let uε be the unique solution of (3.2). Then (uε)ε converges in L1(Ω), as ε→ 0+, to u = αχC0 ,
where α > 0 and C0 ⊂ Ω is the maximal Cheeger set.

A natural choice for the perturbation Φ is of course

Φ(t) :=
t2

2

in which case, the perturbed problem (3.2) is easily seen to be equivalent to the projection problem

inf
{ ∫

Ω

f
(
u− 1

ε

)2

dx :
∫

Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1 ≤ 1, u ∈ BV (Ω)
}

. (3.4)

The solution of the previous problem uε can of course be expressed as

uε = ΠK

(1
ε

)
(3.5)

where ΠK denotes the projection (for the weighted L2 inner product (u, v) :=
∫
Ω

fuv) on the closed subset K

of L2(Ω) defined by

K :=
{

u ∈ L2(Ω) ∩BV (Ω) :
∫

Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1 ≤ 1
}
. (3.6)

It is convenient to extend every u ∈ BV (Ω) (or L2(Ω)) by 0 outside Ω, doing so we have:∫
Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1 =
∫

Rd

g d|Du|.

If we further assume that g ∈ C1(Ω) then it is well-known that K can be described by a set of linear constraints
as follows

K =
{

u ∈ L2(Ω) :
∫

Ω

div(gp)u ≤ 1, ∀p ∈ C1(Ω, Rd), ‖p‖∞ ≤ 1
}
. (3.7)

4. Discretization and projection

4.1. Discretization

We aim now to discretize our projection problem to approximate the projection uε = ΠK

(
1
ε

)
with K defined

by (3.7). For the sake of simplicity, we shall from now on assume that the ambient space dimension is d = 2
and that Ω = (0, 1)2. More generally, given u0 ∈ L2(Ω), we are interested in projecting u0 onto K i.e.

inf
u∈K

F (u) =
∫

Ω

f(u− u0)2 (4.1)

1The fact that we do not have to impose any growth condition on Φ comes from the fact that solutions of (1.2) are all L∞,
see [7].
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with K defined as before by K = {u ∈ BV (Ω) : G(u) ≤ 1} where

G(u) :=
∫

Ω

g d|Du|+
∫

∂Ω

g|u|dHd−1.

We assume that the weights f and g are respectively continuous and C1 on some neighbourhood of Ω and
bounded by below by some strictly positive constant. We denote by ΠK(u0) the solution of (4.1). Given a
step size h = 1/N , we then consider the following discretization of (4.1). First, let Eh be the set of matrices
u with entries ui,j , i, j ∈ {0, N}2, by convention we extend u by setting ui,j = 0 when either i or j belongs to
{−1, N + 1}. For u = (ui,j)ij ∈ Eh we set

∂h
xui,j :=

{
h−1(ui+1,j − ui,j) if − 1 ≤ i ≤ N, −1 ≤ j ≤ N − 1
0 if − 1 ≤ i ≤ N, j = N.

∂h
y ui,j :=

{
h−1(ui,j+1 − ui,j) if − 1 ≤ i ≤ N − 1, −1 ≤ j ≤ N
0, if − 1 ≤ j ≤ N, i = N.

We also set ∇hui,j = (∂h
xui,j, ∂

h
y ui,j). Denoting fh

ij and gh
ij some discrete approximation of the weights f and g

(e.g. fh
i,j = f(ih, jh), gh

i,j = g(ih, jh)) and u0
i,j some discretization of u0 (approximation by mean values say)

we then discretize G by defining, for all u ∈ Eh:

Gh(u) := h2
N∑

i=−1

N∑
j=−1

gh
i,j |∇hui,j |

which can be rewritten as

Gh(u) = h2
N−1∑
i=0

N−1∑
j=0

gh
i,j |∇hui,j| + h

N∑
i=0

(
gh

i,−1|ui,0|+ gh
i,N |ui,N |

)
+ h

N∑
j=0

(
gh
−1,j|u0,j |+ gh

N,j|uN,j|
)
.

Defining Kh by Kh := {u ∈ Eh : Gh(u) ≤ 1} and

Fh(u) := h2
N−1∑
i=0

N−1∑
j=0

fh
i,j(ui,j − u0

i,j)
2,

we then approximate (4.1) by
inf

u∈Kh

Fh(u) (4.2)

and denote by uh the solution of (4.2). Denoting by Cij the square (ih, (i + 1)h) × (jh, (j + 1)h), we define
vh as the piecewise constant function having value uh

i,j on Cij . Denoting by M(Ω, R2) the space of bounded
R

2-valued measures on Ω, we then have the following convergence result.

Theorem 4.1. Let vh be defined as above, then vh converges to ΠK(u0) strongly in L2(Ω) and ∇vh converges
weakly � to ∇ΠK(u0) in M(Ω, R2) as h→ 0.

Proof. It is easy to see that (vh)h is bounded in BV and in L2 hence admits a (not relabeled) subsequence that
strongly converges in L1 and weakly in L2 to some v ∈ BV ∩ L2 and such that ∇vh converges to ∇v weakly �
in M(Ω, R2). Let us prove that v ∈ K, i.e. (recalling (3.7))∫

Ω

div(gp)v ≤ 1
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for every p ∈ C1(Ω, R2) such that ‖p‖∞ ≤ 1. For such a p = (p1, p2) we obviously have

∫
Ω

div(gp)v = lim
h

h

⎛
⎝N−1∑

j=0

N∑
i=0

(ai,j − ai−1,j)uh
i,j +

N−1∑
i=0

N∑
j=0

(bi,j − bi,j−1)uh
i,j

⎞
⎠

where we have set
ai,j = gi,jp

1(ih, jh) and bi,j = gi,jp
2(ih, jh).

Rearranging terms, we have

h

⎛
⎝N−1∑

j=0

N∑
i=0

(ai,j − ai,j−1)uh
i,j +

N−1∑
i=0

N∑
j=0

(bi,j − bi,j−1)uh
i,j

⎞
⎠ =

− h2
N−1∑
i=0

N−1∑
j=0

(ai,j , bi,j) · ∇huh
i,j + h

N−1∑
i=0

(bi,Nuh
i,N − bi,−1u

h
i,0) + h

N−1∑
j=0

(aN,ju
h
N,j − a−1,ju

h
0,j)

we thus deduce from |(ai,j , bi,j)| ≤ gi,j and the continuity of g

∫
Ω

div(gp)v ≤ lim sup
h

Gh(uh) ≤ 1

which proves that v ∈ K.
Let us now prove that v = ΠK(u0). Let ϕ ∈ C1(Ω)∩K and ϕh be the affine interpolate of ϕ on the triangles

(T +
ij , T−

ij ) where T−
ij has vertices (ih, jh), ((i+1)h, jh) and (ih, (j+1)h) and T +

ij is the complement of T−
ij in Cij .

It is obvious that
G(ϕ) = lim

h
Gh(ϕh)

hence for every δ > 0, ϕh/(1 + δ) ∈ Kh for h small enough. We then have (also denoting by ϕh the values of ϕ
at the nodes)

Fh(vh) ≤ Fh

(
ϕh

1 + δ

)
and then

F (v) ≤ lim inf
h

Fh(vh) ≤ lim inf
h

Fh

(
ϕh

1 + δ

)
= F

(
ϕ

1 + δ

)
·

Since δ > 0 is arbitrary we deduce that F (v) ≤ F (ϕ) for every ϕ ∈ C1(Ω) ∩K, it then follows from standard
approximation arguments in BV (see [15] and Rem. 3.22, p. 132, in [3]) that v = ΠK(u0). It is then easy to
check that ‖vh‖L2 converges to ‖v‖L2, so that by classical arguments the whole sequence vh converges strongly
in L2 to v = ΠK(u0). �

4.2. Algorithm for the discrete projection problem

The projection (4.2) of the discretized problem is computed numerically using the iterative algorithm of
Combettes and Pesquet [12]. It corresponds to a subgradient projection method that only requires, at each iter-
ation, the projection of the current estimate on the intersection of two half spaces. The iterative algorithm [12]
needs to be modified to take into account the weight f in the least square objective function. We thus use the
algorithm to compute the projection of

√
fu0 where u0 = ε−1.

We now detail the steps of this algorithm. For clarity we drop the dependencies on the grid size h = 1/N of
the processed vectors.

(1) Initialization. Set u(0) =
√

fu0 and set k ← 0.
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(2) Sub-gradient computation. Define the sub-gradient of the total variation at the current iterate as

t(k) =
1√
f

div(gp(k)) (4.3)

with p
(k)
i,j =

⎧⎨
⎩

∇ũ
(k)
i,j∥∥∥∇ũ
(k)
i,j

∥∥∥ if ∇ũ
(k)
i,j �= 0,

0 otherwise,
(4.4)

where ũ = u/
√

f .
(3) Sub-gradient projection computation. Define

z(k) =

{
u(k) − (G(ũ(k))− 1) t(k)

‖t(k)‖2 if G(ũ(k)) > 1,

u(k) otherwise,

as the sub-gradient projection of the current estimate.
(4) Projection onto half-spaces. Define the two half spaces

D(k) =
{

v : 〈u(k) − v, u(k) − u(0)〉 ≤ 0
}
,

H(k) =
{

v : 〈v − z(k), u(k) − z(k)〉 ≤ 0
}
.

The new iterate is defined as the following projection

u(k+1) = ΠD(k)∩H(k)

(
u(0)

)
. (4.5)

(5) Boundary correction. Constrain the current estimate to vanish outside Ω by defining

u
(k+1)
i,j =

{
u

(k+1)
i,j if (i, j)/N ∈ Ω,

0 otherwise.

(6) Stopping criterion. While
∥∥u(k−1) − u(k)

∥∥ > Tol, set k ← k + 1 and go back to 2. If the algorithm has
converged, return u = u(k)/

√
f .

As shown in [11,12], the iterates u(k)/
√

f converge when k → +∞ to the solution uh of the discrete opti-
mization problem (4.2). The algorithm is stopped when

∥∥u(k−1) − u(k)
∥∥ is smaller than a given tolerance value

Tol.
Let us remark that, by construction, D(k) ∩ H(k) contains

√
fK = {v : G(ṽ) ≤ 1} hence is nonempty.

Indeed (taking f = 1 for the sake of simplicity and without loss of generality) let v ∈ K and let us prove that
v ∈ H(k). If G(u(k)) ≤ 1, there is nothing to prove, we may then assume that G(u(k)) > 1, since t(k) ∈ ∂G(u(k)),
we have

〈v − z(k), t(k)〉 = 〈v − u(k), t(k)〉+ 〈u(k) − z(k), t(k)〉 ≤ G(v) − 1 ≤ 0

so that v ∈ H(k). Now assume that v ∈ D(k) (which is the case for k = 0), since u(k+1) is the projection of u(0)

on D(k) ∩H(k), we have
〈u(k+1) − v, u(k+1) − u(0)〉 ≤ 0

hence v ∈ D(k+1).
The main step of the algorithm is the computation of (4.5) which is an Euclidean projection on the (nonempty)

intersection of two half spaces. As explained in [11], such a projection is computed as follows.
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Figure 1. The original shape is composed of two rectangles linked with a tube of increasing
width. The corresponding Cheeger sets are displayed on the right.

Figure 2. Left: Cheeger set C0 of a square. Center: zoom on the exact Cheeger boundary
∂∗C0 together with the curves extracted by our algorithm after k = 40 and k = 100 iterations
(dotted line). Right: convergence of the L∞ error log10

∥∥αχC0 − u(k)
∥∥
∞ during the iterations

of the projection algorithm.

Lemma 4.2. Let u, u0 and z be vectors in R
n and define the half planes

D = {v : 〈u − v, u− u0〉 ≤ 0} and H = {v : 〈v − z, u− z〉 ≤ 0}.

Let π = 〈u0− u, u− z〉, μ = ‖u0 − u‖2, ν = ‖u− z‖2 and ρ = μν− π2. If D ∩H �= ∅, the orthogonal projection
of u0 on D ∩H satisfies

ΠD∩H(u0) =

⎧⎨
⎩

z if ρ = 0 and π ≥ 0,
u0 + (1 + π/ν)(z − u) if ρ > 0 and πν ≥ ρ,
u + ν

ρ (π(u0 − u) + μ(z − u)) if ρ > 0 and πν ≤ ρ.

5. Numerical results

For the numerical experiments, we have used ε = 1/100 which results in an approximate solution uε with
sharp transitions. The discretization step size h = 1/N is set with N = 400 for d = 2 (2D computations) and
N = 50 for d = 3 (3D computations).
Convergence study. The convergence of our projection algorithm is studied for a square domain Ω of unit
side length, for f = g = 1. In this case, the Cheeger set C0 is unique and known, since it is composed of parts
of the square edges and arcs of a circle of radius (2 +

√
π)−1, as shown in Figure 2, left. Figure 2, right, shows

the convergence of the iterates u(k) toward the normalized indicator function αχC0 , where α = 1
|∂∗C0| . The L∞

error converges toward a non-zero residual error
∥∥αχC0 − u(+∞)

∥∥
∞ that decreases if the value ε is reduced.



148 G. CARLIER ET AL.

Figure 3. Cheeger sets in 3D with constant weights f = g = 1.

Figure 4. Cheeger sets in a 2D square with f = 1 and several non-constant weights g.

Cheeger sets in 2D and 3D. Figure 1 shows the extraction of the Cheeger set for two squares connected by
a rectangle of increasing width. Our algorithm is able to extract the maximum Cheeger although these shapes
do not have an unique Cheeger. Figure 6 (second column) shows examples of Cheeger sets for 2D shapes and
for constant weights f = g = 1. In these examples, the original domain Ω is non-convex, and the projection
algorithm correctly identifies the maximum Cheeger set.

Our projection algorithm works in arbitrary dimension d, and Figure 3 shows examples of Cheeger sets for
3D shapes with constant weights f = g = 1.

Cheeger sets with non-constant weights. Figure 4 shows examples of Cheeger sets for a non-constant
weight g. This particular choice of weight (a Gaussian bump with a varying position) causes the boundary of
the Cheeger set to deviate from its original position for g = 1. Figure 5 shows others examples of non-constant
weights f and g.
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Weight w f = g = 1 g = w, f   = 1 g = 1 , f = w

Figure 5. Comparison of the Cheeger with constant weights and with varying weights g or f .

Shape L2 cheeger L1 cheeger L∞ cheeger

Figure 6. Cheeger sets in 2D with constant weights f = g = 1 and for both Euclidean (second
row) and crystalline (third and fourth row) total variation.

Crystalline total variation. The Cheeger extraction algorithm presented in this paper can be extended to
handle non isotropic total variation (see [5]). Such a total variation is defined as

Gφ(u) =
∫

Ω

φ(∇u)

where φ : R
2 �→ R

+ is a convex, continuous, and positively homogeneous function. In the numerical simula-
tion we consider the L1 and L∞ crystalline total variation G1 and G∞ which corresponds to taking φ equal
respectively to

‖(x1, x2)‖1 = |x1|+ |x2| and ‖(x1, x2)‖∞ = max(|x1|, |x2|).
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The discrete projection algorithm presented in Section 4.2 can be used in order to compute the Cheeger for
a crystalline norm. The only modification is that the sub-gradient t(k) computed following (4.3) should be
modified as follow

t(k) =
1√
f

div
(
gDφ∗(∇ũ(k))

)
,

where the function Dφ∗ : R
2 → R

2 is defined differently for the L1 and L∞ total variations

Dφ∗
1(x1, x2) = (sign(x1), sign(x2))

Dφ∗
∞((x1, x2)) =

{
(sign(x1), 0) if |x1| > |x2|,
(0, sign(x2)) otherwise.

Figure 6, third and fourth rows, show examples of Cheeger sets for 2D shapes with constant weights f = g = 1
and crystalline total variations.
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[17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and

Applied Mathematics, Philadelphia (1999).
[18] L.C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992).
[19] R. Hassani, I.R. Ionescu and T. Lachand-Robert, Shape optimization and supremal minimization approaches in landslides

modeling. Appl. Math. Opt. 52 (2005) 349–364.
[20] P. Hild, I.R. Ionescu, T. Lachand-Robert and I. Rosca, The blocking of an inhomogeneous Bingham fluid. Applications to

landslides. ESAIM: M2AN 36 (2002) 1013–1026.
[21] I.R. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations

23 (2005) 227–249.
[22] R. Nozawa, Max-flow min-cut theorem in an anisotropic network. Osaka J. Math. 27 (1990) 805–842.
[23] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268.
[24] G. Strang, Maximal flow through a domain. Math. Programming 26 (1983) 123–143.
[25] G. Strang, Maximum flows and minimum cuts in the plane. J. Global Optimization (to appear).

http://cvgmt.sns.it

	Introduction
	Motivations
	Landslides
	Maximal flow, minimum cut duality and Cheeger sets

	Selection of the maximal Cheeger set
	Discretization and projection
	Discretization
	Algorithm for the discrete projection problem

	Numerical results
	References

