We present families of scalar nonconforming finite elements of arbitrary order with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order form inf-sup stable finite element pairs of order for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case . A numerical comparison between conforming and nonconforming discretisations will be given. Since higher order nonconforming discretisation on quadrilaterals and hexahedra have less unknowns and much less non-zero matrix entries compared to corresponding conforming methods, these methods are attractive for numerical simulations.
Mots-clés : nonconforming finite elements, inf-sup stability, quadrilaterals, hexahedra
@article{M2AN_2007__41_5_855_0, author = {Matthies, Gunar}, title = {Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {855--874}, publisher = {EDP-Sciences}, volume = {41}, number = {5}, year = {2007}, doi = {10.1051/m2an:2007034}, mrnumber = {2363886}, zbl = {1147.65094}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007034/} }
TY - JOUR AU - Matthies, Gunar TI - Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 855 EP - 874 VL - 41 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007034/ DO - 10.1051/m2an:2007034 LA - en ID - M2AN_2007__41_5_855_0 ER -
%0 Journal Article %A Matthies, Gunar %T Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 855-874 %V 41 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007034/ %R 10.1051/m2an:2007034 %G en %F M2AN_2007__41_5_855_0
Matthies, Gunar. Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 5, pp. 855-874. doi : 10.1051/m2an:2007034. http://www.numdam.org/articles/10.1051/m2an:2007034/
[1] Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. | Zbl
and ,[2] An efficient smoother for the Stokes problem. Appl. Numer. Math. 23 (1997) 3-19. | Zbl
and ,[3] Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112-124. | Zbl
and ,[4] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. | Zbl
, and ,[5] Nonconforming quadrilateral finite elements: a correction. Calcolo 37 (2000) 253-254. | Zbl
, , , and ,[6] Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO. Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl
and ,[7] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747-770. | Numdam | Zbl
, , and ,[8] An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341-354. | Numdam | Zbl
,[9] Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986). | MR | Zbl
and ,[10] Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223-233. | Zbl
,[11] A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701-738. | Zbl
, and ,[12] Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering 34, Springer-Verlag, Berlin, Heidelberg, New York (2003). | MR | Zbl
,[13] Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37 (2001) 885-903. | Zbl
and ,[14] MooNMD-a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163-169. | Zbl
and ,[15] Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68 (2002) 313-341. | Zbl
, , and ,[16] The inf-sup condition for the mapped element in arbitrary space dimensions. Computing 69 (2002) 119-139. | Zbl
and ,[17] Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102 (2005) 293-309. | Zbl
and ,[18] Nonconforming finite elements of arbitrary degree over triangles. RANA report 0328, Technical University of Eindhoven (2003).
and ,[19] Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8 (1992) 97-111. | Zbl
and ,[20] A general transfer operator for arbitrary finite element spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2000).
,[21] Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Engrg. 59 (1986) 29-48. | Zbl
,[22] Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. | Numdam | Zbl
,Cité par Sources :