Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I : modelling of incompressible charged porous media
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 4, pp. 661-678.

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory in which a deformable and charged porous medium is saturated with a fluid with dissolved ions. Four components are defined: solid, liquid, cations and anions. The aim of this paper is the construction of the lagrangian model of the four-component system. It is shown that, with the choice of lagrangian description of the solid skeleton, the motion of the other components can be described in terms of lagrangian initial system of the solid skeleton as well. Such an approach has a particularly important bearing on computer-aided calculations. Balance laws are derived for each component and for the whole mixture. In cooperation of the second law of thermodynamics, the constitutive equations are given. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic constraint for electroneutrality. In this model, it is desirable to obtain an accurate approximation of the fluid flow and ions flow. Such an accurate approximation can be determined by the mixed finite element method. Part II is devoted to this task.

DOI : 10.1051/m2an:2007036
Classification : 76S05, 74B05, 74F10
Mots clés : mixture theory, porous media, hydrated soft tissue
@article{M2AN_2007__41_4_661_0,
     author = {Malakpoor, Kamyar and Kaasschieter, Enrique F. and Huyghe, Jacques M.},
     title = {Mathematical modelling and numerical solution of swelling of cartilaginous tissues. {Part} {I} : modelling of incompressible charged porous media},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {661--678},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {4},
     year = {2007},
     doi = {10.1051/m2an:2007036},
     mrnumber = {2362910},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2007036/}
}
TY  - JOUR
AU  - Malakpoor, Kamyar
AU  - Kaasschieter, Enrique F.
AU  - Huyghe, Jacques M.
TI  - Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I : modelling of incompressible charged porous media
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 661
EP  - 678
VL  - 41
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2007036/
DO  - 10.1051/m2an:2007036
LA  - en
ID  - M2AN_2007__41_4_661_0
ER  - 
%0 Journal Article
%A Malakpoor, Kamyar
%A Kaasschieter, Enrique F.
%A Huyghe, Jacques M.
%T Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I : modelling of incompressible charged porous media
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 661-678
%V 41
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2007036/
%R 10.1051/m2an:2007036
%G en
%F M2AN_2007__41_4_661_0
Malakpoor, Kamyar; Kaasschieter, Enrique F.; Huyghe, Jacques M. Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I : modelling of incompressible charged porous media. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 4, pp. 661-678. doi : 10.1051/m2an:2007036. http://www.numdam.org/articles/10.1051/m2an:2007036/

[1] R.M. Bowen, Theory of mixtures, in Continuum Physics, A.C. Eringen Ed., Vol. III, Academic Press, New York (1976) 1-127.

[2] R.M. Bowen, Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18 (1980) 1129-1148. | Zbl

[3] R.M. Bowen, Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20 (1982) 697-735. | Zbl

[4] Y. Chen, X. Chen and T. Hisada, Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int. J. Numer. Mech. Engng. 65 (2006) 147-173.

[5] B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963) 167-178. | Zbl

[6] W. Ehlers, Foundations of multiphasic and porous materials, in Porous Media: Theory, Expriements and Numerical Applications, W. Ehlers and J. Blaum Eds., Springer-Verlag, Berlin (2002) 3-86. | Zbl

[7] A.J.H. Frijns, A four-component mixture theory applied to cartilaginous tissues. Ph.D. thesis, Eindhoven University of Technology (2001). | Zbl

[8] W.Y. Gu, W.M. Lai and V.C. Mow, A triphasic analysis of negative osmotic flows through charged hydrated soft tissues J. Biomechanics 30 (1997) 71-78.

[9] W.Y. Gu, W.M. Lai and V.C. Mow, Transport of multi-electrolytes in charged hydrated biological soft tissues. Transport Porous Med. 34 (1999) 143-157.

[10] F. Helfferich, Ion exchange. McGraw-Hill, New York (1962).

[11] G.A. Holzapfel, Nonlinear Solid Mechanics. Wiley (2000). | MR | Zbl

[12] J.M. Huyghe and J.D. Janssen, Quadriphasic mechanics of swelling incompressible porous media. Int. J. Engng. Sci. 35 (1997) 793-802. | Zbl

[13] J.M. Huyghe, M.M. Molenaar and F.P.T. Baaijens, Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. (2007) in press.

[14] W.M. Lai, J.S. Houa and V.C. Mow, A triphasic theory for the swelling and deformation behaviours of articular cartilage. ASME J. Biomech. Eng. 113 (1991) 245-258.

[15] E.G. Richards, An introduction to physical properties of large molecules in solute. Cambridge University Press, Cambridge (1980).

[16] C. Truesdell and R.A. Toupin, The classical field theories, in Handbuch der Physik, Vol. III/1, S. Flügge Ed., Springer-Verlag, Berlin (1960) 226-902.

Cité par Sources :