This paper is concerned with optimal design problems with a special assumption on the coefficients of the state equation. Namely we assume that the variations of these coefficients have a small amplitude. Then, making an asymptotic expansion up to second order with respect to the aspect ratio of the coefficients allows us to greatly simplify the optimal design problem. By using the notion of -measures we are able to prove general existence theorems for small amplitude optimal design and to provide simple and efficient numerical algorithms for their computation. A key feature of this type of problems is that the optimal microstructures are always simple laminates.
Mots-clés : optimal design, $H$-measures, homogenization
@article{M2AN_2007__41_3_543_0, author = {Allaire, Gr\'egoire and Guti\'errez, Sergio}, title = {Optimal design in small amplitude homogenization}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {543--574}, publisher = {EDP-Sciences}, volume = {41}, number = {3}, year = {2007}, doi = {10.1051/m2an:2007026}, mrnumber = {2355711}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007026/} }
TY - JOUR AU - Allaire, Grégoire AU - Gutiérrez, Sergio TI - Optimal design in small amplitude homogenization JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 543 EP - 574 VL - 41 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007026/ DO - 10.1051/m2an:2007026 LA - en ID - M2AN_2007__41_3_543_0 ER -
%0 Journal Article %A Allaire, Grégoire %A Gutiérrez, Sergio %T Optimal design in small amplitude homogenization %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 543-574 %V 41 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007026/ %R 10.1051/m2an:2007026 %G en %F M2AN_2007__41_3_543_0
Allaire, Grégoire; Gutiérrez, Sergio. Optimal design in small amplitude homogenization. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 3, pp. 543-574. doi : 10.1051/m2an:2007026. http://www.numdam.org/articles/10.1051/m2an:2007026/
[1] Shape Optimization by the Homogenization Method. Springer-Verlag (2002). | MR | Zbl
,[2] Optimal design in small amplitude homogenization (extended version). Preprint available at http://www.cmap.polytechnique.fr/preprint/repository/576.pdf (2005).
and ,[3] Optimal design of micro-mechanisms by the homogenization method. Eur. J. Finite Elements 11 (2002) 405-416. | Zbl
and ,[4] Topology optimization for minimum stress design with the homogenization method. Struct. Multidiscip. Optim. 28 (2004) 87-98.
, and ,[5] Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discr. Contin. Dyn. Syst. 8 (2002) 967-982. | Zbl
and ,[6] Topology Optimization. Theory, Methods, and Applications. Springer-Verlag, New York (2003). | MR | Zbl
and ,[7] Variational Methods for Structural Optimization. Springer Verlag, New York (2000). | MR | Zbl
,[8] Optimal design of 2D conducting graded materials by minimizing quadratic functionals in the field. Struct. Multidiscip. Optim. 30 (2005) 360-367.
and ,[9] Topology optimization of continuum structures with local stress constraints. Int. J. Num. Meth. Engng. 43 (1998) 1453-1478. | Zbl
and ,[10] Microlocal defect measures. Comm. Partial Diff. Equations 16 (1991) 1761-1794. | Zbl
,[11] Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math. 27 (2001) 683-704. | Zbl
,[12] FreeFem++ Manual. Downloadable at http://www.freefem.org
, and ,[13] The analysis of linear partial differential operators III. Springer, Berlin (1985). | MR | Zbl
,[14] Relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991) 193-236. | Zbl
,[15] Relaxation through homogenization for optimal design problems with gradient constraints. J. Optim. Theory Appl. 114 (2002) 27-53. | Zbl
,[16] Stress constrained closure and relaxation of structural design problems. Quart. Appl. Math. 62 (2004) 295-321. | Zbl
,[17] Optimal design of gradient fields with applications to electrostatics. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV, Stud. Math. Appl. 31 (2002) 509-532. | Zbl
and ,[18] The theory of composites. Cambridge University Press (2001). | Zbl
,[19] Calcul des Variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Études et Recherches EDF, 57, Eyrolles, Paris (1985) 319-369. English translation in Topics in the mathematical modelling of composite materials, A. Cherkaev and R. Kohn Eds., Progress in Nonlinear Differential Equations and their Applications 31, Birkhäuser, Boston (1997).
and ,[20] The extension of extremal problems connected with a linear elliptic equation. Soviet Math. 19 (1978) 1342-1345. | Zbl
,[21] H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Royal Soc. Edinburgh 115A (1990) 93-230. | Zbl
,[22] Remarks on optimal design problems. Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), World Sci. Publishing, River Edge, NJ, Ser. Adv. Math. Appl. Sci. 18 (1994) 279-296. | Zbl
,[23] An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), A. Cellina and A. Ornelas Eds., Springer, Berlin, Lect. Notes Math. 1740 (2000) 47-156. | Zbl
,Cité par Sources :