Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations
ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 5, pp. 923-937.

In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assumed to be quasiuniform. In the present paper we show a resolvent estimate, in one and two space dimensions, under weaker conditions on the triangulations than quasiuniformity. In the two-dimensional case, the bound for the resolvent contains a logarithmic factor.

DOI : 10.1051/m2an:2006040
Classification : 65M06, 65M12, 65M60
Mots clés : resolvent estimates, stability, smoothing, maximum-norm, elliptic, parabolic, finite elements, nonquasiuniform triangulations
Bakaev, Nikolai Yu.  ; Crouzeix, Michel 1 ; Thomée, Vidar 

1 Université de Rennes 1 IRMAR, UMR 6625 Campus de Beaulieu 35042 Rennes Cedex FRANCE
@article{M2AN_2006__40_5_923_0,
     author = {Bakaev, Nikolai Yu. and Crouzeix, Michel and Thom\'ee, Vidar},
     title = {Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {923--937},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {5},
     year = {2006},
     doi = {10.1051/m2an:2006040},
     mrnumber = {2293252},
     zbl = {1116.65108},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2006040/}
}
TY  - JOUR
AU  - Bakaev, Nikolai Yu.
AU  - Crouzeix, Michel
AU  - Thomée, Vidar
TI  - Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2006
SP  - 923
EP  - 937
VL  - 40
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2006040/
DO  - 10.1051/m2an:2006040
LA  - en
ID  - M2AN_2006__40_5_923_0
ER  - 
%0 Journal Article
%A Bakaev, Nikolai Yu.
%A Crouzeix, Michel
%A Thomée, Vidar
%T Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2006
%P 923-937
%V 40
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2006040/
%R 10.1051/m2an:2006040
%G en
%F M2AN_2006__40_5_923_0
Bakaev, Nikolai Yu.; Crouzeix, Michel; Thomée, Vidar. Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 5, pp. 923-937. doi : 10.1051/m2an:2006040. http://www.numdam.org/articles/10.1051/m2an:2006040/

[1] N.Yu. Bakaev, Maximum norm resolvent estimates for elliptic finite element operators. BIT 41 (2001) 215-239. | Zbl

[2] N.Yu. Bakaev, S. Larsson and V. Thomée, Long-time behavior of backward difference type methods for parabolic equations with memory in Banach space. East-West J. Numer. Math. 6 (1998) 185-206. | Zbl

[3] N.Yu. Bakaev, V. Thomée and L.B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators. Math. Comp. 72 (2002) 1597-1610. | Zbl

[4] P. Chatzipantelidis, R.D. Lazarov, V. Thomée and L.B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains. BIT (to appear). | MR | Zbl

[5] M. Crouzeix and V. Thomée, The stability in L p and W p 1 of the L 2 -projection onto finite element function spaces. Math. Comp. 48 (1987) 521-532. | Zbl

[6] M. Crouzeix and V. Thomée, Resolvent estimates in l p for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Meth. Appl. Math. 1 (2001) 3-17. | Zbl

[7] M. Crouzeix, S. Larsson and V. Thomée, Resolvent estimates for elliptic finite element operators in one dimension. Math. Comp. 63 (1994) 121-140. | Zbl

[8] E.L. Ouhabaz, Gaussian estimates and holomorphy of semigroups. Proc. Amer. Math. Soc. 123 (1995) 1465-1474. | Zbl

[9] A.H. Schatz, V. Thomée and L.B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980) 265-304. | Zbl

[10] A.H. Schatz, V. Thomée and L.B. Wahlbin, Stability, analyticity, and almost best approximation in maximum-norm for parabolic finite element equations. Comm. Pure Appl. Math. 51 (1998) 1349-1385. | Zbl

[11] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators. Trans. Amer. Math. Soc. 199 (1974) 141-161. | Zbl

[12] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, New York (1997). | MR | Zbl

[13] V. Thomée and L.B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable. Numer. Math. 41 (1983) 345-371. | Zbl

Cité par Sources :