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Abstract. We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as de-
fined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second
derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard
interpolants. We compare the difference formulae with those defining optimal finite difference methods
and discuss their deviation from optimality.
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1. Introduction

During the last decade several meshless methods for the solution of partial differential equations were devel-
oped, among them particle methods, finite element-type methods and methods of generalized finite differences,
see [1] for a review of the state-of-the-art in the midst 1990s. Although the history of finite difference-based
meshless methods started as far back as 1975 with the classical paper by Perrone and Kao [11] which was itself
taken up by Liszka and Orkisz in [9] the development in this area is by far not as fast as in other classes of
meshless methods. There are several reasons for this situation. First of all finite elements provide a versatile
machinery for problems of (seemingly) all kind because the theory is completely imbedded in mathematical
analysis. In contrast, finite differences are really discrete operators and even the link to the continuous oper-
ators which they represent is only possible by exploiting Taylor series arguments – a fairly low-level weapon
if compared to the finite element theories where the “discrete” spaces are itself continuous and imbedded in
beautiful function spaces. As an implication of the aforesaid much more researchers have turned their attention
towards finite element methods but in classical areas of finite differences like numerical fluid dynamics many
people moved into finite volume techniques which are finite difference methods on irregular grids. Hence, due
to the simplicity and versatility of finite differences in applications there is a need for meshless finite difference
methods. Fortunately, there always have been a few researchers interested in the theory and applications of
“meshless” finite differences. In Germany we find early work from 1982 in a Ph.D. Thesis of an aeronauti-
cal engineer from the University of Stuttgart with the title Ein gitterfreies Differenzenverfahren (A meshfree
difference method) [13], in which flow around turbine blades was analyzed with the help of a meshless finite
difference method. While the method used (based on Taylor series expansions, of course) depended strongly
on a certain regularity in the point distribution it was Schönauer and his co-workers who developed practically
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relevant algorithms to choose stable finite differences on points of clouds but who also established the first links
to difference operators in order to analyze the quality of his meshless derivatives, see [12]. Coming from a
different direction Fürst and the author constructed in [5] a meshless finite difference scheme on the basis of
John’s theory of positive schemes for parabolic equations.

In contrast to using locally defined differences derived by Taylor series expansions another approach is given
by the classical moving least squares (MLS) method as derived by Lancaster and Šalkauskas in [7]. Here, a
globally defined meshless approximant is used in order to compute derivatives at certain nodes. Many authors
were concerned with the approximating moving least squares (AMLS) method but only few used the interpolating
MLS (IMLS) method since this technique leads to singular matrices and can be handled numerically with great
care only. It was another Ph.D. thesis [6] in which the IMLS technique was used in order to compute compressible
flow problems in one space dimension. In this thesis the IMLS interpolants are derived differently from [7] by
an ingenious asymptotic argument in matrix computation and the IMLS is compared to the AMLS by looking
at numerical examples.

The present work starts a series of three papers which are concerned with the analysis of the IMLS method
and its interpretation as a generalized (“meshless”) finite difference method. In this paper the IMLS method is
constructed exactly as in [7] in Section 2. From this construction we prove a useful Theorem on the derivatives
of the Shepard interpolant which is the “building block” of the method. We then construct IMLS interpolants
based on a linear as well as on a quadratic polynomial basis and document their performance with numerical
experiments. After recalling optimal finite difference formulae in Section 3 we start a detailed analysis of
IMLS interpolants in Section 4. It is here where exact formulae for the first and second derivatives of IMLS
interpolants at the nodes are derived. It is shown that the second derivative of an IMLS interpolant based on
a linear polynomial basis is inconsistent. In Section 5 we establish the link between IMLS interpolants and
finite difference operators in which we compute first and second differences from the interpolant on small sets
of points i.e. under a restriction on the support of certain weight functions. Besides some structural insight it
turns out that the IMLS interpolants yield optimal formulae by restricting the support of the weights but lead
to sub-optimal formulae in case of unrestricted supports. Although these results may seem to yield arguments
against the use of IMLS interpolants in the numerical computation of partial differential equations they may
turn out to be quite useful in terms of stability. This, however, is one of the topics of the following two papers
from which both already exist in manuscript, [10, 14], and will be submitted soon.

In that second paper the Ansatz of Kunle [6] is taken up and analyzed in a multidimensional setting. It will be
shown that it is versatile enough to solve problems in compressible fluid mechanics as well as the incompressible
Navier-Stokes equations in two space dimensions. In a third and final paper [14] we shall consider stability
properties of the difference operators derived.

2. Interpolating moving least squares

The moving least squares (MLS) technique for interpolation derives all its advantages as well as its disad-
vantages directly from the idea of construction: for given data of a function f : D ⊂ R → R and a fixed point
x̃ ∈ D one looks for a function

Lx̃f(x) :=
n∑

i=1

ai(x̃)b(i)(x)

expanded with respect to a given basis {b(0), b(0), . . . , b(n)} which is the best approximation to f in a certain
least squares sense (for details see [7]). Then this local approximation is shifted over D and hence a global
function

Gf(x̃) = Lx̃f(x̃) =
n∑

i=1

ai(x̃)b(i)(x̃)

is achieved. If we assume that data
(x1, f1), . . . , (xN , fN )
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with fk := f(xk) is given on a grid we may introduce different weights to different points by defining functions

w(i)(x) := w(x − xi).

Following Lancaster and Šalkauskas the computation of a least square function in the sense described above
requires the solution of coefficients aT (x) := (a1(x), . . . , aN(x)) from the normal equations

BW (x)B�a = BW (x)f (1)

where fT := (f1, . . . , fN) and B :=




b(1)(x1) · · · b(1)(xN )

...
. . .

...
b(n)(x1) · · · b(n)(xN )



 and W (x) := diag (w(1)(x), . . . , w(N)(x)).

We shall confine ourselves to the linear and quadratic polynomial basis

{b(1)(x) = 1, b(2)(x) = x} (2)

and
{b(1)(x) = 1, b(2)(x) = x, b(3)(x) = x2}, (3)

respectively. It is easily seen that in order to interpolate the given data weights with limx→ xi w(i)(x) = ∞ are
necessary. In this paper we will always use the function classes

w(i)(x) :=
1

(x − xi)α
, α even. (4)

Note that the choice of the weights is completely independent from the choice of the basis functions. As can be
seen from the normal equations the coefficients of the interpolating moving least squares (IMLS) function Gf
can not be computed once on a discrete set of points as in the case of polynomial interpolation. In contrast,
the coefficients have to be computed at every point where the value of Gf is needed. Moreover, at the nodes xk

there is a singularity occurring in W making it impossible to compute the coefficients directly from the normal
equations in general. However, the case n = 1 corresponds to the Shepard interpolant and can be treated
directly.

Due to our choice of weight functions the sum
∑N

i=1 w(i)(x) is positive. Hence, dividing the normal equa-
tions (1) by this sum does not change the solution. We arrive at

BV (x)B�a(x) = BV (z)f (5)

with V (x) = diag (v(1)(x), . . . , v(N)(x)) and

v(i)(x) :=
w(i)(x)

∑N
j=1 w(j)(x)

·

It is easily seen that the weight functions v(i) enjoy the following properties:
(1) v(i)(xj) = δi

j ;
(2) 0 ≤ v(i)(x) ≤ 1 for all x ∈ D;
(3)

∑N
i=1 v(i)(x) = 1; and

(4) v(i) = O(1/N) for |x| → ∞.
In case n = 1 i.e. the basis {b(1)(x) = 1}, the normal equations (5) give immediately

(
N∑

i=1

v(i)(x)

)
a1(x) =

N∑

i=1

fiv
(i)(x)
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and since
∑N

i=1 v(i)(x) = 1 and b(1)(x) ≡ 1 this results in

Sf(x) := Gf(x) =
N∑

i=1

fiv
(i)(x) (6)

which is called the Shepard interpolant.

Remark 2.1. We note in passing that in their book [8] Lancaster and Šalkauskas erroneously describe the com-
putation of first and second derivatives at the nodes of an arbitrary IMLS interpolant based on the weights v(i).
The presentation given there (p. 233) is based on the equation BV (x)B� d

dxa(x) = B d
dxV (x)(f − B�a) and

the observation that at every node xk the matrix d
dxV (x) will vanish due to the properties of the weights. The

authors then conclude that d
dxa(x) will also vanish at the nodes. This, however, can not be concluded since the

matrix BV (x)B� is of rank one at each node!

In [7] Lancaster and Šalkauskas used the Shepard interpolant as building block and succeeded in shifting the
problems with the singularity in W (x) solely on Sf . For reasons of easy reference let us give a summary of
their Theorem 4.1:

Theorem 2.1. Let b(i) ∈ Cm(D), i = 1, . . . , n, be a given basis and let the weights be given as in (4). Then the
IMLS interpolant is given by

Gf(x) = Sf(x) +
n∑

i=2

βi−1(x)g(i)(x) (7)

where
g(i)(x) := b(i)(x) − Sb(i)(x)

and β�(x) := (β1(x), . . . , βn−1(x)) is solution of the linear system

U(x)W (x)U�(x)β(x) = UW
(
f − Sf(x)b(1)

)

where b(1) := (b(1)(x1), . . . , b(1)(xN ))�, U ∈ R(n−1)×N with row (i − 1) given by
u(i)�(x) := (u(i)(x, x1), . . . , u(i)(x, xN )) and

u(i)(x, xk) := b(i)(xk) − Sb(i)(x), i = 2, 3, . . . , n.

2.1. The Shepard interpolant

The case n = 1 corresponds to the use of the constant basis and the interpolant was given in (6). The actual
computation of the weights v(i) has to be done with some care due to the singularity in w(i) at a node. We
recommend the use of

v(i)(x) =
1

w(1)(x)

w(i)(x)
+ · · · + w(i−1)(x)

w(i)(x)
+ 1 + w(i+1)(x)

w(i)(x)
+ · · · + w(N)(x)

w(i)(x)

and evaluated v(i)(x) for all x with |x − xi| > 10−12 in double precision arithmetic. In case of |x − xi| ≤ 10−12

simply the value 1 was returned by the weight function.
We start with the function f : [0, 2π] → [0, 2π], x �→ x and use 10 equally spaced data points

0 = x1 < x2 < . . . < xN = x10 = 2π. The Shepard interpolant was then evaluated at 200 equally spaced
data points 0 = xplot

1 < xplot
2 < . . . < xplot

200 = 2π and the Shepard function was then plotted as piecewise linear
polygonal line.
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Figure 1. Shepard interpolants of f(x) = x with four different weight functions.

The typical behaviour of the Shepard interpolant at the nodes is the so called flat spot phenomenon. It
follows easily from the properties 1 and 2 of the weights v(i) listed above that

d
dx

Sf(xk) = 0

as is well known, compare [8]. We will come back to this flat spot phenomenon later and prove a useful lemma
concerning the values of higher derivatives in connection with the weight function used.

It can be seen from the plots given in Figure 1 that for increasing singularity in the weights w(i) the Shepard
interpolant tends towards a piecewise constant interpolation.

As a second example we consider interpolation of f : [0, 2π] → [−1, 1], x �→ sin x. We use 20 equally spaced
data points 0 = x1 < x2 < . . . < xN = x20 = 2π. The Shepard interpolant was again evaluated at 200 equally
spaced data points 0 = xplot

1 < xplot
2 < . . . < xplot

200 = 2π and the Shepard function was plotted as piecewise
linear polygonal line.

Obviously the flat spot phenomenon rules out the Shepard interpolant for purposes of the computation of
derivatives. Enriched bases are needed to overcome the difficulties.
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Figure 2. Shepard interpolants of f(x) = sinx with four different weight functions.
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Figure 3. Interpolants of f(x) = x with four different weight functions and a linear basis.
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Figure 4. Interpolants of f(x) = sin x with four different weight functions in a linear polyno-
mial basis.

2.2. The case of the linear polynomial basis

We discuss the case n = 2, i.e. the case of the basis (2).

Remark 2.2 (note on notation). We have already introduced the notation Sf(x) for the Shepard interpolant.
Here S acts as an operator on f . If f is simply the function F (x) = x we will write Sx in order to be consistent
with the general notation Sf(x). Consequently, Sx2 means Sf(x) where f(x) = x2. The only case where we
(have to) depart from this convention are functions of the form f(x) = x + h where we write S[x + h] in order
to remind the reader that S is an operator acting on the function x �→ x + h and not a function of x + h.

According to Theorem 2.1 we compute
g(2)(x) = x − Sx

U(x) = (x1 − Sx, . . . , xN − Sx)

U(x)W (x)B�(x) =
N∑

i=1

w(i)(x) · (xi − Sx)2

U(x)W (x)
(
f − Sf(x)b(1)

)
=

N∑

i=1

w(i)(x) · (xi − Sx) · (fi − Sf(x))
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Figure 5. Details of the interpolants of f(x) = sin x showing the dimpling phenomenon under
two different weight functions and a linear basis.

and hence we arrive at

β2(x) =
∑N

i=1 w(i)(x) · (xi − Sx) · (fi − Sf(x))
∑N

i=1 w(i)(x) · (xi − Sx)2
, x �∈ {x1, . . . , xN}. (8)

Since g(2)(x) = x−Sx vanishes at every node xk the value of β2(xk) is not of interest for the pure interpolation
problem. However, this value will play an important role in computing derivatives and we will come back to it
in the sequel.

In order to compare the numerical results we conclude this section with numerical experiments. We start
again with interpolation of f(x) = x with all parameters exactly as in the Shepard case.

As can be seen the basis (2) is perfect in interpolating a linear polynomial. In the case of f(x) = sin x with
parameters as in the Shepard case we get the results shown in Figure 4.

In a closer look at the first local maximum of the sine function in Figure 5 the so called dimpling phenomenon
can be seen which was already described by Lancaster and Šalkauskas in [7]. This is a clear sign that the linear
basis is not well suited to interpolate quadratic-like shapes. However, as can also be seen from Figure 5 the
dimpling phenomenon depends on the singularity of the weights used.

2.3. The case of the quadratic polynomial basis
We end our numerical excursion with the discussion of the case n = 3, i.e. the case of the quadratic basis (3).

According to Theorem 2.1 we compute
g(2)(x) = x − Sx

g(3)(x) = x2 − Sx2

U(x) =
(

x1 − Sx · · · xN − Sx
x2

1 − Sx2 · · · x2
N − Sx2

)

M (x) := U(x)W (x)U�(x)

=

(∑N
i=1 w(i)(x) · (xi − Sx)2

∑N
i=1 w(i)(x) · (x2

i − Sx2) · (xi − Sx)∑N
i=1 w(i)(x) · (x2

i − Sx2) · (xi − Sx)
∑N

i=1 w(i)(x) · (x2
i − Sx2)2

)

U(x)W (x)
(
f − Sf(x)b(1)

)

=

(∑N
i=1 w(i) · (xi − Sx) · (fi − Sf(x))∑N
i=1 w(i) · (x2

i − Sx2) · (fi − Sf(x))

)
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and hence, for all x �∈ {x1, . . . , xN},

β2(x) =
1
∆

{(
N∑

i=1

w(i)(x) · (x2
i − Sx2)2

)
·
(

N∑

i=1

w(i)(x) · (xi − Sx) · (fi − Sf(x))

)

−
(

N∑

i=1

w(i)(x) · (x2
i − Sx2) · (xi − Sx)

)
·
(

N∑

i=1

w(i)(x) · (x2
i − Sx2) · (fi − Sf(x))

)}
(9)

β3(x) =
1
∆

{(
N∑

i=1

w(i)(x) · (xi − Sx)2
)

·
(

N∑

i=1

w(i)(x) · (x2
i − Sx2) · (fi − Sf(x))

)

−
(

N∑

i=1

w(i)(x) · (x2
i − Sx2) · (xi − Sx)

)
·
(

N∑

i=1

w(i)(x) · (xi − Sx) · (fi − Sf(x))

)}
, (10)

where
∆ := detM(x).

As was the case with the linear basis the node values of β2, β3 do not play a role in the pure interpolation
problem, since g(2) and g(3) vanish at the nodes.

We conclude again with the numerical experiments. Numerical tests with f(x) = sin x are shown1 in Figure 6.
The case of an inverse quadratic weight still exhibits a dimpling phenomenon which is completely gone already
with an inverse quartic weight.

3. Finite difference operators from pseudospectral interpolants

In pseudospectral methods for partial differential equations (see e.g. [2]) global interpolants are used on a
given grid for purposes of approximation. Without diving too deep into the theory of these approximation
techniques we follow Fornberg [4] in his interpretation of pseudospectral methods as global finite difference
methods. On a grid with N points x1, . . . , xN a polynomial of degree at most N − 1 can be uniquely described.
Fornberg solves the task:

Find coefficients ck
i,j such that the approximations

i∑

j=1

ck
i,jf(xj) ≈ dkf

dxk
(x), k = 0, 1, . . . , m, i = k, k + 1, . . . , N

are optimal, i.e. exact for polynomials of degree as high as possible by means of a simple algorithm. See [3] for
a proof that the given algorithms in fact produce the required optimal coefficients. We are interested in the first
and second derivative, respectively, i.e. the cases k = 1 and k = 2. On an equidistant grid with three points
x1, x2, x3 and h := x2 − x1 the optimal central difference formulae are given by

D1f(x) := c1
2,1f(x1) + c1

2,2f(x2) + c1
2,3f(x3)

= − 1
2h

f(x1) +
1
2h

f(x3) =
f(x3) − f(x1)

2h

D2f(x) := c2
3,1f(x1) + c2

3,2f(x2) + c2
3,3f(x3)

=
1
h2

f(x1) − 2
h2

f(x2) +
1
h2

f(x3) =
f(x1) − 2f(x2) + f(x3)

h2
·

1 The test case f(x) = x is of course treated perfectly by the quadratic basis. In this case β2(x) ≡ 1 so that the interpolant is

the basis function b(2)(x) = x.
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Figure 6. Interpolants of f(x) = sin x with two different weight functions in a quadratic
polynomial basis.

For the case h = 1 tables can be found in [4] giving the coefficients corresponding to the order.
If we reorder the nodes around a central node x0 so that x−1, x1 are the neighbours to the left and right of

x0, respectively, and so on, Fornberg was able to compute growth rates of the optimal order coefficients. If p
denotes the even order of accuracy then the optimal coefficients for the first derivative satisfy

c1
p,j =






(−1)j+1
(

p
2 !
)2

j
(

p
2 + j

)
!
(

p
2 − j

)
!

; j = ±1,±2, . . . ,± p
2

0 ; j = 0.

(11)

In the limit p → ∞ the growth rate of the coefficients is thus given by

c1
∞,j =






(−1)j+1

j
; j = ±1,±2, . . .

0; j = 0.

(12)
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The corresponding growth rates for the second derivatives are given by

c2
p,j =






2c1
p,j

j
; j = ±1,±2, . . . ,± p

2

−2
p/2∑

i=1

1
i2

; j = 0

(13)

and

c2
∞,j =






2(−1)j+1

j2
; j = ±1,±2, . . . p

2

−π

3
; j = 0.

(14)

We will now compute global difference formulae for the first and second derivatives from the IMSL interpolants
and then start a comparison with the optimal coefficients.

4. Derivatives of IMSL interpolants at the nodes

As was seen in the previous sections the IMSL interpolant rests upon the Shepard interpolant which is then
“augmented” in order to increase the approximation order. Since we are interested in the derivatives of the
IMSL interpolant we need a basic result concerning the behaviour of the derivatives of the Shepard interpolant
at the nodes.

Theorem 4.1. Let α ∈ N be even and w(i)(x) := 1/(x − xi)α. Then the Shepard interpolant satisfies

dj

dxj
Sf(xk) = 0, j = 1, 2, . . . , α − 1

at every node xk.

Proof. Although the result for the first derivative is known and can be deduced from the properties of the
weights v(i) alone we give a direct proof for structural reasons.

Since Sf(x) =
∑N

i=1 fiv
(i)(x) and v(i)(x) = w(i)(x)∑N

�=1 w(�)(x)
we get by the quotient rule

d
dx

Sf(x) =
N∑

i=1

fi
d
dx

v(i)(x)

=
N∑

i=1

fi

dw(i)

dx (x)
(∑N

�=1 w(�)(x)
)
− w(i)(x)

(∑N
�=1

dw(�)

dx (x)
)

(∑N
�=1 w(�)(x)

)2

︸ ︷︷ ︸
=: A

B

·
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Since w(i)(x) = 1/(x−xi)α it follows dw,(i)

dx = −α
(x−xi)α+1 · Define h by x = xk +h so that xk +h < xk+1. Hence,

A =
−α

(xk − xi + h)α+1

{
1

(xk − x1 + h)α
+ · · · + 1

(xk − xk−1 + h)α
+

1
hα

+
1

(xk − xk+1 + h)α
+ · · · + 1

(xk − xN + h)α

}
− 1

(xk − xi + h)α

×
{ −α

(xk − x1 + h)α+1
+ · · · + −α

(xk − xk−1 + h)α+1
+

−α

hα+1

+
−α

(xk − xk+1 + h)α+1
+ · · · + −α

(xk − xN + h)α+1

}
,

so that for k �= i we have d
dx

v(i)(xk + h) =
O ( 1

hα+1

)

O ( 1
h2α

) = O (hα−1
)
.

For k = i the term of order O ( α
h2α+1

)
cancels so that in that case also

d
dx

v(i)(xi + h) = O (hα−1
)
.

We now proceed with

d2

dx2
Sf(x) =

N∑

i=1

fi
d2

dx2
v(i)(x)

=
N∑

i=1

fi
C · D − E · A
(∑N

�=1 w(�)(x)
)4

with

C :=
d2w(i)

dx2
(x)

N∑

�=1

w(�)(x) − w(i)(x)
N∑

�=1

d2w(�)

dx2
(x)

D :=

(
N∑

�=1

w(�)(x)

)2

E := 2

(
N∑

�=1

w(�)(x)

)(
N∑

�=1

dw,(�)

dx
(x)

)

and A as defined above. Replacing x by xk + h as before and since d2w(i)

dx2 (x) = α(α+1)
(x−x1)α+2 we get

C · D =
[

α(α + 1)
(xk − xi + h)α+2

×
{

1
(xk − x1 + h)α

+ · · · + 1
(xk − xk−1 + h)α

+
1
hα

+
1

(xk − xk+1 + h)α
+ · · · + 1

(xk − xN + h)α

}
− 1

(xk − xi + h)α

×
{

α(α + 1)
(xk − x1 + h)α+2

+ · · · + α(α + 1)
(xk − xk−1 + h)α+2

+
α(α + 1)

hα+2

+
α(α + 1)

(xk − xk+1 + h)α+2
+ · · · + α(α + 1)

(xk − xN + h)α+2

}]

×
(

1
(xk − x1 + h)α

+ · · · + 1
hα

+ · · · 1
(xk − xN + h)α

)2

·
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Hence, C · D is of order O ( 1
h3α+2

)
for k �= i while for k = i the terms of order O ( 1

h4α+2

)
cancel. Inspection

of E · A also yields an order of O ( 1
h3α+2

)
. Together with the order O ( 1

h4α

)
of the denominator we therefore

arrive at

d2

dx2
v(i)(x) =

O ( 1
h3α+2

)

O ( 1
h4α

) = O (hα−2
)
.

Now we proceed by induction and note that the cancellation mechanism used twice is implied by the Leibniz
rule for differentiating a product. �

With the help of this useful Theorem we are now ready to compute the derivatives of the IMSL interpolants.

4.1. Derivatives of the interpolant with linear basis

We concentrate on the IMSL interpolant with linear basis

Gf(x) = Sf(x) + β2(x)g(2)(x) = Sf(x) + β2(x)(x − Sx)

where β2 is given for x �∈ {x1, . . . , xN} by (8).

Lemma 4.1. The value of β2 at a node xk exists and is given by

β2(xk) =

n∑

i=1
i�=k

w(i)(xk) · (xi − xk)(fi − fk)

n∑

i=1
i�=k

w(i)(xk) · (xi − xk)2
·

Proof. Introducing h by x = xk + h so that xk + h < xk+1 we consider

β2(xk + h) =
∑

i=1 w(i)(xk + h) · (xi − S[xk + h]) · (fi − Sf(xk + h))∑
i=1 w(i)(xk + h) · (xi − S[xk + h])2

·

The only terms which may become singular for h → 0 are

K(h) := w(k)(xk + h) · (xk − S[xk + h]) · (fk − Sf(xk + h))

in the nominator and

L(h) := w(k)(xk + h) · (xk − S[xk + h])2

in the denominator. Due to Theorem 4.1 a Taylor series gives

S[xk + h] = Sxk + h
d
dx

Sxk + · · · + hα−1

(α − 1)!
dα−1

dxα−1
Sxk + O (hα)

= xk + O (hα) ,
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and, analogously

Sf(xk + h) = fk + O (hα) .

Hence,

K(h) = O (h−α
) · O (hα) · O (hα) = O (hα)

and

L(h) = O (h−α
) · O (h2α

)
= O (hα) .

Thus,

β2(xk) = lim
h→0

β2(xk + h) =

∑n
i=1
i�=k

w(i)(xk) · (xi − xk)(fi − fk)
∑n

i=1
i�=k

w(i)(xk) · (xi − xk)2

which is the required result. �

Lemma 4.2. The value of d
dxβ2 at node xk exists and is given by

dβ2

dx
(xk) =

A · B − C · D



N∑

i=1
i�=k

w(i)(xk)(xi − xk)2





2

with

A :=
N∑

i=1
i�=k

dw(i)

dx
(xk)(xi − xk)(fi − fk)

B :=
N∑

i=1
i�=k

w(i)(xk)(xi − xk)2

C :=
N∑

i=1
i�=k

w(i)(xk)(xi − xk)(fi − fk)

D :=
N∑

i=1
i�=k

dw(i)

dx
(xk)(xi − xk)2.

Proof. Taking the derivative of β2 for x �∈ {x1, . . . , xN} yields

dβ2

dx
(x) =

(a − b − c) · d − e · f
(∑N

i=1 w(i)(x) · (xi − Sx)2
)2
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with

a :=
N∑

i=1

dw(i)

dx
(x) · (xi − Sx) · (fi − Sf(x))

b :=
N∑

i=1

w(i)(x) · dSx

dx
(x) · (fi − Sf(x))

c :=
N∑

i=1

w(i)(x) · (xi − Sx) · dSf

dx
(x)

d :=
N∑

i=1

w(i)(x) · (xi − Sx)2

e :=
N∑

i=1

w(i)(x) · (xi − Sx) · (fi − Sf(x))

f :=
N∑

i=1

dw(i)

dx
(x) · (xi − Sx)2 − 2w(i)(x) · (xi − Sx)

dSx

dx
(x).

Introducing x = xk + h we see that singularities may occur only if i = k. In this case the product (a− b− c) · d
gives an order of

O1 :=
(
O
(

1
hα+1

)
· O (hα) · O (hα) · −O

(
1
hα

)
· O (hα−1

) · O (hα)

−O
(

1
hα

)
· O (hα) · O (hα−1

)) ·
(
O
(

1
hα

)
· O (h2α

))

= O (h2α−1
)
.

Analogously, the product e · f results in

O2 := O (h2α−1
)

while the case i = k results in the denominator in a term of order

O3 := O (h2α
)
.

Hence, no singularity occurs for h → 0. In that case b, c and the summand in f vanishes as the first derivative
of the Shepard interpolant vanishes at the nodes. Furthermore, Sxk = xk and Sf(xk) = fk and the formula
stated follows. �

Lemma 4.3. The first derivative of the IMSL interpolant based on the linear basis (2) at the node xk is given by

dGf

dx
(xk) = β2(xk).

If the exponent in the weights w(i) is α > 2 then the second derivative at the nodes is given by

d2Gf

dx2
(xk) = 2

dβ2

dx
(xk).
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Proof. Since Gf(x) = Sf(x) + β2(x)(x − Sx) we get

dGf

dx
(x) =

dSf

dx
(x) +

dβ2

dx
(x)(x − Sx) + β2(x)

(
1 − dSx

dx
(x)
)

and

d2Gf

dx2
(x) =

d2Sf

dx2
(x) +

d2β2

dx2
(x)(x − Sx) + 2

dβ2

dx
(x)
(

1 − dSx

dx
(x)
)

−β2(x)
d2Sx

dx2
(x).

The results now follow for x = xk since Sxk = xk and dSx/dx(xk) = 0. For the second derivative we exploit
Theorem 4.1 to conclude d2Sx/dx2(xk) = 0 under the given assumptions on α. �

Due to the flat spot phenomenon the Shepard interpolant will not result in a consistent first derivative. Here,
consistency is meant in the finite difference sense, i.e. a derivative Df is consistent, if and only if Df → df

dx for
grid size h → 0. It would therefore be strange if the IMLS interpolant based on the linear basis would give a
consistent second derivative. In fact we can prove

Theorem 4.2. The second derivative d2Gf
dx2 of the IMLS interpolant based on the linear basis is inconsistent.

Proof. We consider N = 3 since a consistent finite difference representation is possible with three grid points
and evaluate at the point x2. For simplicity renumber x1 := −1, x2 := 0, x3 = 1 by x−1, x0, x1 and evaluate dβ2

dx
at x2, see Lemma 4.2. Then

dβ2

dx
(0) =

A · B − C · D
(
w(−1)(0) + w(1)(0)

)2

with

A =
dw(−1)

dx
(0)(f0 − f−1) +

dw(1)

dx
(0)(f1 − f0)

B = w(−1)(0) + w(1)(0)

C = w(−1)(0)(f0 − f−1) + w(1)(0)(f1 − f0)

D =
dw(−1)

dx
(0) +

dw(1)

dx
(0).

Now w(−1)(0) = w(1)(0) and dw(−1)

dx (0) = −dw(1)

dx (0) so that A = dw(1)

dx (0)(f1 − 2f0 + f−1), B = 2w(1)(0),
C = w(1)(0)(f1 − f−1) and D = 0. Hence,

dβ2

dx
(0) =

dw(1)

dx (0)(f1 − 2f0 + f−1) · 2w(1)(0)
(
2w(1)(0)

)2 =
dw(1)

dx (0)(f1 − 2f0 + f−1)
2w(1)(0)

·

Since w(1)(x) = 1/(x − 1)α we have w(1)(0) = 1 and dw(1)

dx (0) = −α/(−1)α+1 = α we end up with

dβ2

dx
(0) =

α(f1 − 2f0 + f−1)
2

·

Following Lemma 4.3 we see that

d2Gf

dx
(0) = 2

dβ2

dx
(0) = α(f1 − 2f0 + f−1)
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Figure 7. IMLS interpolant and first and second derivative of f(x) = sin x with weight
function 1/(x − xi)8.

and since f1 − 2f0 + f−1
··= d2f

dx2 up to terms of second order the inconsistency manifests itself in a constant
factor α > 1. �

We conclude by presenting numerical experiments and use again 20 equispaced nodes for the sine function.
In the left subfigure of Figure 7 the IMLS interpolant is shown on 200 plot points together with the first
derivative on the 20 node points. In the right subfigure we see the second derivative showing clearly the kind of
inconsistency predicted in Theorem 4.2. While the shape of the second derivative (− sinx) is clearly seen the
constant factor α = 8 spoils the result.

Even more pronounced the problems with the second derivative can be seen with the function x �→ x3 on
[0, 2π]. Figure 8 shows the inconsistency as predicted by Theorem 4.2 but also a strange phenomenon at the
boundaries. This is easily explainable from a finite difference viewpoint. At the boundaries the formulae for the
derivatives correspond to one-sided differences which always are worse than centered differences concerning the
consistency. It is therefore not astonishing that we see massive problems at the boundaries in our numerical
tests.

4.2. Derivatives of the interpolant with quadratic basis

We now discuss the case of the basis (3), i.e.

Gf(x) = Sf(x) + β2(x)(x − Sx) + β3(x)(x2 − Sx2)

where β2 and β3 are given by (9) and (10), respectively.

Lemma 4.4. The values of β2(xk) and β3(xk) exist and are given by

β2(xk) =
a22 · r1 − a12 · r2

∆
,

β3(xk) =
a11 · r2 − a12 · r1

∆
,
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Figure 8. IMLS interpolant and first and second derivative of f(x) = x3 with different weight
functions showing massive problems with the second derivative at the boundaries.

where

a11 :=
N∑

i=1
i�=k

w(i)(xk) · (xi − xk)2

a12 :=
N∑

i=1
i�=k

w(i)(xk) · (x2
i − x2

k) · (xi − xk)

a22 :=
N∑

i=1
i�=k

w(i)(xk) · (x2
i − x2

k)2

r1 :=
N∑

i=1
i�=k

w(i)(xk) · (xi − xk) · (fi − fk)

r2 :=
N∑

i=1
i�=k

w(i)(xk) · (x2
i − x2

k) · (fi − fk)

∆ := a11 · a22 − a2
12.

Proof. With the notations above the functions β2 and β3 are defined at points x �∈ {x1, . . . , xN} by (compare
with (9), (10)),

β2(xk) =
ã22 · r̃1 − ã12 · r̃2

∆̃
,

β3(xk) =
ã11 · r̃2 − ã12 · r̃1

∆̃
,
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where the ˜ -terms are exactly the terms above but with i = k allowed in the summation. An asymptotic
analysis of the kind already carried out previously shows that in case of x → xk the singular weights die out by
multiplication with terms of positive order. �

Lemma 4.5. The values of dβ2
dx (xk) and dβ3

dx (xk) exist and are given by

dβ2

dx
(xk) =

1
∆2

{(A22 · r1 + a22 · R1 − A12 · r2 − a12 · R2) · ∆
−(a22 · r1 − a12 · r2) · (A11 · a22 + a11 · A22 − 2a12 · A12)}

dβ3

dx
(xk) =

1
∆2

{(A11 · r2 + a11 · R2 − A12 · r1 − a12 · R1) · ∆
−(a11 · r2 − a12 · r1) · (A11 · a22 + a11 · A22 − 2a12 · A12)} ,

where aij , ri are defined as in Lemma 4.4 and

A11 :=
N∑

i=1
i�=k

dw(i)

dx
(xk) · (xi − xk)2

A12 :=
N∑

i=1
i�=k

dw(i)

dx
(xk) · (x2

i − x2
k) · (xi − xk)

A22 :=
N∑

i=1
i�=k

dw(i)

dx
(xk) · (x2

i − x2
k)2

R1 :=
N∑

i=1
i�=k

dw(i)

dx
(xk) · (xi − xk) · (fi − fk)

R2 :=
N∑

i=1
i�=k

dw(i)

dx
(xk) · (x2

i − x2
k) · (fi − fk).

Proof. Take derivatives of (9) and (10) and consider again the case x → xk where an asymptotic analysis shows
again that the singularity of w(i) and dw(i)/dx at xk die out by multiplication with terms of positive order. �
Lemma 4.6. The first and second derivative of Gf at the nodes xk are given by

dGf

dx
(xk) = β2(xk) + 2xkβ3(xk)

d2Gf

dx2
(xk) = 2

(
dβ2

dx
(xk) + β3(xk)

)
+ 4xk

dβ3

dx
(xk).

Proof. Proceed exactly as in the proof of Lemma 4.3. �
As in the case of the IMLS interpolant based on the linear polynomial basis we now present results for the

case of the quadratic basis. In the case of interpolation of x �→ sinx on [0, 2π] we get the following, very
interesting numerical results. In Figure 9a we see the IMLS interpolant, its first and second derivative on 20
nodes with weight exponent α = 8. The shape of the second derivative (− sinx) is clearly seen but there seem
to be problems at the boundaries. In case these problems were consistency problems as in the case of the linear
basis they would not decrease if N would be increased. However, in Figure 9b all parameters are unchanged
but the number of nodes is increased to N = 200. We see that the problems at the boundaries diminished
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Figure 9. Interpolants of f(x) = sin x with first and second derivative using different weight
functions and different number of nodes in a quadratic polynomial basis.

drastically. Which rôle is played by the weight function? In Figure 9c the number of nodes is again 20 but
the weight exponent is α = 12. Obviously, the boundary problem is more pronounced as in the case of α = 8.
Finally, in Figure 9d the weight exponent α = 4 is used which is a valid exponent. In that case consistency
is lost completely and a useless second derivative appears. Numerical experiments show that α ≥ 6 leads to a
consistent second derivative. In order to understand this behaviour we now start to examine the derivatives in
terms of finite differences.

5. A finite difference analysis of IMLS derivatives

5.1. First derivatives

We start by inspecting the first derivative

dGf

dx
(xk) = β2(k)
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of the IMLS interpolant based on the linear polynomial basis where β2(xk) was derived in Lemma 4.3. In order
to compare with the coefficients of optimal difference formulae (11), (12) we change the enumeration to

. . . , x−2 := xk−2, x−1 := x−1, x0 := xk, x1 := xk+1, x2 := xk+2, . . . ,

define h to be the mesh width and concentrate on central difference formulae. If the IMLS interpolant is
constructed on a grid with N points then the resulting difference formula will also include N points. Thus, for
the sake of comparision, we will consider the IMLS interpolant on exactly three points and will speak then of a
“three-point grid”. Note that this is just a technical trick to reduce the support of the interpolant. We could
have restricted the support also by restricting the support of the weights which is very common in practice.

By simply evaluating β2 at x0 we get

Lemma 5.1. In case of a three-point grid the first derivative of the “linear” IMLS interpolant gives the finite
difference formula

dGf

dx
(x0) =

f1 − f−1

2h
, (15)

while the difference formula for a five-point grid is

dGf

dx
(x0) =

f1 − f−1

2h
(
1 + 4

2α

) +
f2 − f−2

2αh
(
1 + 4

2α

) · (16)

On a seven-point grid the formula is given by

dGf

dx
(x0) =

3α(f1 − f−1)
h
(
18 + 8 · ( 3

2

)α + 2 · 3α
) +

2 · ( 3
2

)α (f2 − f−2)

h
(
18 + 8 · ( 3

2

)α + 2 · 3α
)

+
3(f3 − f−3)

h
(
18 + 8 · ( 3

2

)α + 2 · 3α
) · (17)

Here, fj := f(xj).

Proof. Since nothing has to be done as a little bit of arithmetic there is nothing to prove. Notice that
w(−j)(x0) = w(j)(x0) and w(i)(x0) = 1/(i · h)α has to be used. �

In order to look more closely into these formulae we exploit Taylor series in the form of

fj = f(x0) + j · h · f ′(x0) +
(j · h)2

2!
+ O (h3

)

which we insert into (15), (16), (17). This gives, after some algebra,

Lemma 5.2. The difference formulae (15)–(17) are consistent approximations to the first derivative of f .
In particular, (15) yields

dGf

dx
(x0) =

df

dx
(x0) +

h2

3!︸︷︷︸
=:L1h2

f ′′′(x0) + O (h4
)
,

(16) leads to
dGf

dx
(x0) =

df

dx
(x0) +

(16 + 2α)h2

3!(2α + 4)︸ ︷︷ ︸
=:L2h2

f ′′′(x0) + O (h4
)
,
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Figure 10. Size of error term Li plotted versus α.

and from (17) we get

dGf

dx
(x0) =

df

dx
(x0) +

(
27 + 16

3

(
3
2

)α + 3α−1
)
h2

18 + 8
(

3
2

)α + 2 · 3α

︸ ︷︷ ︸
=:L3h2

f ′′′(x0) + O (h4
)
.

In comparing the α-depending factors Li, i = 1, 2, 3, which determine the error level (not the order of error)
we see in Figure 10 that the quality of the numerical derivative deteriorates with the number of points. While
the three-point formula is exactly the optimal formula the truncation error is higher for small values of α and
approaches the optimal value of L1 = 1/6 from α = 10 on. Hence, for a classical IMLS method based on a linear
basis it seems always advisable to choose large weights in order to reduce the error in the first derivative. We
now turn our attention to the IMLS interpolant based on the quadratic basis and inspect the first derivative

dGf

dx
(xk) = β2(xk) + 2xkβ3(xk)

as derived in Lemma 4.6.

Lemma 5.3. In case of a three-point grid the first derivative of the “quadratic” IMLS interpolant gives the
finite difference formula

dGf

dx
(x0) =

f1 − f−1

2h
, (18)

while the difference formula for a five-point grid is

dGf

dx
(x0) =

1
ah

(c2f2 + c1f1 − c1f−1 − c2f−2) (19)

with

a = 2
(
64 + 5 · 22+α + 4α

)

c2 = 32 + 21+α

c1 = 24+α + 4α.
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On a seven-point grid the difference formula turns out to read as

dGf

dx
(x0) =

1
ah

(c3f3 + c2f2 + c1f1 − c1f−1 − c2f−2 − c3f−3) (20)

with

a = 2
(
5 · 21+2α · 32+α + 729 · 4α + 13 · 62+α + 64 · 9α + 5 · 22+α · 9α + 36α

)

c3 = 24+α · 31+α + 243 · 4α + 31+α · 4α

c2 = 2
(
2α · 34+α + 16 · 9α + 18α

)

c1 = 34+α · 4α + 24+α · 9α + 36α.

Proof. The proof follows from an enormous amount of elementary algebra and noting that w(−i)(x0) = w(i)(x0),
w(i)(x0) = (i · h)−α. While the five-point formula can be computed by hand Mathematica was used to compute
the coefficients of the seven-point formula. �

As in the case of the IMLS interpolant based on the linear basis we end with a remark on the consistency of
the above difference formulae.

Lemma 5.4. The difference formulae (18)–(20) are consistent approximations to the first derivative of f .
In particular, (18) yields

dGf

dx
(x0) =

df

dx
(x0) +

h2

3!︸︷︷︸
=:Q1h2

f ′′′(x0) + O (h4
)
,

(19) leads to

dGf

dx
(x0) =

df

dx
(x0) +

(16 + 2α)2h2

6(64 + 5 · 22+α + 4α)︸ ︷︷ ︸
=:Q2h2

f ′′′(x0)

+
(1024 + 5 · 24+α + 4α)h4

120(64 + 5 · 22+α + 4α)
f (v)(x0) + O (h6

)
,

and from (20) we get

dGf

dx
(x0) =

df

dx
(x0) +

(25+α · 34+α + 21+2α · 34+α + 6561 · 4α + 256 · 9α + 25+α · 9α + 36α)h2

6(5 · 21+2α · 32+α + 729 · 4α + 13 · 62+α + 64 · 9α + 5 · 22+α · 9α + 36α)︸ ︷︷ ︸
=:Q3h2

f ′′′(x0)

+
(5 · 21+2α · 34+α + 59049 · 4α + 13 · 64+α + 1024 · 9α + 5 · 24+α · 9α + 36α)h4

120(5 · 21+2α · 32+α + 729 · 4α + 13 · 62+α + 64 · 9α + 5 · 22+α · 9α + 36α)
f (v)(x0) + O (h5

)
.

Proof. The proof follows from inserting Taylor series expansions into the difference formulae of Lemma 5.3. �
Although clearly Q1 ≡ L1 one could conclude that since the construction of the “quadratic” IMLS interpolant

includes the “linear” interpolant by construction we may also conjecture that Q2 and Q3 are in fact identical
to the corresponding error terms in the “linear” interpolant. In fact, this conclusion is true.

Lemma 5.5. The error terms Q1, Q2, Q3 corresponding to the order h2 are identical to the error terms in the
IMLS interpolant based on the linear basis, i.e.

Qi ≡ Li, i = 1, 2, 3.

Proof. Use simple algebra to transform Qi into Li. �
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5.2. Differences at the boundary

The differences studied so far are central differences. At the boundaries of a domain or in an upwind
application to transport equations of mathematical physics one-sided differences are needed. It is obvious that
one-sided differences involving the same number of points as corresponding central differences suffer from larger
errors. In the case of IMLS interpolants we prove

Lemma 5.6. Let x0 be a left boundary point and consider a two-point configuration x0, x1 where xi = x0 + h.
In the case of the IMLS interpolant based on the linear polynomial basis the resulting one-sided finite difference
is given by

DGf(x0) =
f1 − f0

h
· (21)

In a three-point configuration x0, x1, x2 where xi = x0 + i · h, i = 1, 2 the resulting difference is

DGf(x0) =
21−αf2 + f1 − (1 + 21−α)f0

(1 + 22−α)h
· (22)

This difference is a consistent approximation to f ′ at x0 and it holds

DGf(x0) = f ′(x0) +
(8 + 2α)(x0f

′′(x0) − f ′(x0))
2(4 + 2α)x0

h + O (h2
)
.

Proof. Use again the formulae derived for the derivative and then insert Taylor series. �

Comparing the above finite difference with the optimal differences listed in [4] we may note some facts. The
optimal one sided differences are

Df(x0) =
f1 − f0

h
(23)

which is a first order approximation as in (21) and (22) but uses only two points, or

Df(x0) =
− 1

2f2 − 3
2f1 + 2f0

h
(24)

which is of second order but uses three points. In the case of (23) a Taylor series analysis reveals

Df(x0) = f ′(x0) +
h

2
f ′′(x0) + O (h2

)

while in the case of difference (24) we get

Df(x0) = f ′(x0) − h2

3
f ′′′(x0) + O (h3

)
.

Hence, the IMLS interpolant based on the linear basis gives the optimal formula for the first derivative on two
points at the boundary. The difference formula resting on three grid points is sub-optimal.
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5.3. Second derivatives

As was already shown before the IMLS interpolant based on the linear polynomial basis results in an incon-
sistent second derivative. Hence, we are only interested in the second derivative stemming from the “quadratic”
interpolant. We use Lemma 4.6 and compute dβ2

dx (x0), β3(x0), and dβ3
dx (x0) on a three-point grid x−1, x0, x1.

Lemma 5.7. The IMLS interpolant based on linear polynomials results on a three-node grid in the finite
difference

D2Gf

dx2
(x0) =

f1 − 2f0 + f−1

h2
· (25)

If x0 is a boundary point, then the three-point one-sided difference is

D2Gf

dx2
(x0) =

f0 − 2f1 + f2

h2
· (26)

In case of four points x0, x1, x2, x3 at the boundary the IMLS interpolant yields

D2Gf

dx2
(x0) =

c0f0 − c1f1 + c2f2 + c3f3

ch2
(27)

where

c = 2α · 32+α + 32+α · 4α + 18α

c0 = 13 · 2α · 31−α + 21+2α · 31+α − 62+α + 18α

c1 = 32+α · 4α + 21+α · 9α

c2 = 18α − 2α · 32+α

c3 = 31+α · 4α + 61+α.

Concerning the order of accuracy formula (25) yields

D2Gf

dx2
(x0) = f ′′(x0) +

1
12

f (iv)(x0)h2 + O (h3
)
,

formula (26) gives

D2Gf

dx2
(x0) = f ′′(x0) + f ′′′(x0)h + O (h2

)
,

and formula (27) leads to

D2Gf

dx2
(x0) = f ′′(x0) +

(5 · 2α · 31+α + 121+α + 18α)f ′′′(x0)
2α · 32+α + 32+α · 4α + 18α

h

(19 · 2α · 32+α + 13 · 32+α · 4α + 7 · 18α)f (iv)(x0)
12(2α · 32+α + 32+α · 4α + 18α)

h2 + O (h3
)
.

Proof. Use the formulae for the derivatives and Taylor series expansions. �
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6. Conclusions

We have established a link between the first and second derivatives of IMLS interpolants based on a linear
and quadratic polynomial basis, respectively, and finite difference operators. It was shown that the higher
derivatives of the Shepard interpolant vanish at the nodes and how this fact could be used to derive exact
formulae for the IMLS derivatives. Furthermore, our analysis revealed explicit finite difference operators which
correspond to the derivatives of the interpolant and that optimal differences are in fact recovered if the support
of the weight function is suitably restricted. Although it is clear the the order of approximation of difference
operators can not be increased by enlarging the support of the IMLS weights we compute exactly the leading
error terms and their dependence on the weights. However, open problems remain. With the given analysis on
three, five and seven points we could not explain the loss of consistency encountered in the second derivative
of the quadratic interpolant. It seems very likely that global tools of analysis have to be used to answer this
problem conclusively instead of the local tool of finite difference operators.
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[8] P. Lancaster and K. Šalkauskas, Curve and Surface Fitting: An Introduction. Academic Press (1986).
[9] T. Liszka and J. Orkisz, The finite difference method at arbitrary irregular grids and its application in applied mechanics.

Comput. Structures 11 (1980) 83–95.
[10] H. Netuzylov, Th. Sonar and W. Yomsatieankul, Finite difference operators from moving least squares interpolation.

Manuscript, Institut Computational Mathematics, TU Braunschweig (2004).
[11] N. Perrone and R. Kao, A general finite difference method for arbitrary meshes. Comput. Structures 5 (1975) 45–58.
[12] W. Schönauer, Generation of difference and error formulae of arbitrary consistency order on an unstructured grid. ZAMM Z.

Angew. Math. Mech. 78 (1998) S1061–S1062.
[13] L. Theilemann, Ein gitterfreies differenzenverfahren. Doktorarbeit, Institut für Aerodynamik und Gasdynamik, Universität

Stuttgart (1983).
[14] W. Yomsatieankul, Th. Sonar and H. Netuzhylov, Spatial difference operators from moving least squares interpolation.

Manuscript, Institut Computational Mathematics, TU Braunschweig (2004).


