
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 39, No 5, 2005, pp. 1041–1059

DOI: 10.1051/m2an:2005037

APPROXIMATION BY GENERALIZED IMPEDANCE BOUNDARY
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Abstract. This paper addresses some results on the development of an approximate method for
computing the acoustic field scattered by a three-dimensional penetrable object immersed into an in-
compressible fluid. The basic idea of the method consists in using on-surface differential operators that
locally reproduce the interior propagation phenomenon. This approach leads to integral equation for-
mulations with a reduced computational cost compared to standard integral formulations coupling both
the transmitted and scattered waves. Theoretical aspects of the problem and numerical experiments
are reported to analyze the efficiency of the method and precise its validity domain.
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1. Introduction

Since the advent of the fast multipole method (FMM) [30], the technique of integral equations [16] has became
one of the most efficient and useful methods in computational acoustics for solving the Helmholtz equation. Its
principle consists in rewriting the initial problem as an equation set onto the surface of the considered object
and leads to a gain of one dimension space. This equation is integro-differential and therefore non-local. If
one considers the practical point of view of their numerical approximation by a boundary element method, the
number of degrees of freedom nλ of the dense complex and generally non-Hermitian linear system can be of
several millions when the wavelength λ of the incident signal is small compared to the size of the target. Instead
of a direct Gauss elimination solver, the linear system is nowadays often solved by a Krylov subspace iterative
solver (GMRES, CGS, QMR, etc.) [32]. Consequently, the total cost of a such algorithm to get a sufficiently
accurate solution is O(niter

ε n2
λ), where O(n2

λ) comes from the Matrix-Vector (MV) products involved at each
step of the iterative solver and niter

ε designates the number of iterations required to compute the solution with
a tolerance ε. The quadratic cost of a MV evaluation can actually be reduced to O(nλ log nλ) for instance by
the FMM [19–21, 30]. The number of iterations niter

ε can be diminished by using a suitable preconditioning
strategy of the linear system [10,11, 13] or the integral equation [6, 7, 14, 26, 27, 38].
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Upstream from the problem of solving the linear system by a preconditioned Krylov/FMM solver is posed
the question of the construction of an integral equation which gives an accurate computation of the scattered
field and minimizes the size nλ of the system. The present work is placed in this framework. More precisely,
the problem under consideration here is the scattering of a time-harmonic acoustic wave by a three-dimensional
bounded object Ω1 immersed into an incompressible fluid occupying the complementary domain Ω2 = R

3/Ω1.
The regular and arbitrarily shaped interface Γ between the two media is here supposed to coincide with the
boundary of Ω1. The total field associated to the diffraction phenomenon is given as the solution to a transmis-
sion problem coupling two Helmholtz equations in each medium for two distinct wavenumbers k1 in Ω1 and k2

in Ω2. To numerically solve such a problem, one may solve a system of coupled equivalent integral equations
[8, 16] set on Γ. This provides an accurate solution [9, 18, 24]. However, the handling of two distinct domains
defined by some different constitutive parameters involves two wavelengths: λ1 and λ2. The number of degrees
of freedom is then fixed by the so-called “rule of the thumb” which corresponds to taking a certain number of
points per wavelength. Therefore if |k1| � |k2|, the size of the mesh is linked to the smallest wavelength λ1.
Moreover, this approach has also the drawback (see Sect. 2) of working with two surfacic densities: the two
first traces (p, ζ) of the acoustic field at the interface. If we proceed to a boundary element approximation, the
size nex of the resulting linear system for this exact formulation is 3NVλ1 , where NVλ1 designates the number
of vertices of the triangular mesh discretized with respect to the smallest wavelength λ1.

A possible solution to work with only one surface field and to deal with a size napp = NVλ2 which only depends
on the exterior wavelength λ2 (whence reducing drastically the size of the linear system since NVλ2 � NVλ1)
consists in replacing the exact interior integral equation by a localized approximate one proceeding to an
asymptotic analysis in the high frequency regime assuming |k1| � |k2|. This kind of equation is usually called
a generalized impedance boundary condition [36] and can be written as

∂nw = Y w, on Γ,

where Y is a differential operator including both the constitutive physical parameters and the geometrical char-
acteristics of the scatterer Ω1. The simplest condition is the so-called Fourier-Robin boundary condition. It
links the normal derivative and the trace of the exterior solution through a complex constant coefficient repre-
senting the surface impedance. It seems that the development of higher-order impedance boundary conditions
has received less attention in acoustics than in electromagnetism [31, 33, 34, 36, 37, 41]. In 1992, Jones [23]
has investigated an improvement of the On-Surface Radiation Conditions [25] method to construct generalized
impedance boundary conditions for the Helmholtz equation in the case of a spherical interface. Next, Senior [35]
derived approximate conditions for a flat interface. Recently, we have proposed in [5] a first and a second-order
generalized impedance boundary conditions for the three-dimensional acoustic scattering problem by an arbi-
trarily shaped dissipative body. Using some explicit computations based on Mie series expansions in the case of
both the circular cylinder and the spherical scatterer, it has been proved that the second-order condition yields
a better accuracy and owns a wider physical and numerical domain of validity than the usual Fourier-Robin
condition. The aim of this work is to extend the application range of the second-order generalized impedance
boundary condition to a general scatterer by the way of an integral equation framework. It can be noticed that
other kinds of numerical procedures may also be considered by using for instance a three-dimensional finite
element method coupled to an efficient iterative solver and a non-reflecting boundary condition [3, 22].

The plan of the paper is the following. In Section 2, we fix the notations relative to the transmission acoustic
scattering boundary-value problem. Next, we recall the derivation of the system of equivalent integral equations
to solve and its boundary element approximation following [9]. In the third section, we introduce the approach
based on the first and second-order generalized impedance boundary conditions derived in [5]. We state some
results on existence and uniqueness of the solution to the generalized impedance boundary-value problem under
some physical and geometrical sufficient conditions. Next, we proceed to a numerical study of the validity domain
of these two impedance conditions for a spherical scatterer. It appears that the numerical domain of application
exactly coincides with the theoretical one formerly drawn to ensure the well-posedness. In a fourth section, we
briefly describe the integral equation framework for the second-order generalized impedance boundary condition
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and focus on some aspects of its numerical implementation using boundary elements. This provides a numerical
procedure with a cost close to the one usually required for the solution of a Neumann boundary-value problem
in the exterior computational domain. Finally, we analyze the accuracy and computational cost of the exact and
approximate integral equations to show the efficiency and sometimes also certain limitations of the proposed
approach.

2. The transmission problem

2.1. Notations and problem setting

Let us consider a bounded domain Ω1 ⊂ R3 whose boundary Γ is C∞ and the associated domain of propagation
Ω2 = R3\Ω1. We suppose that each medium Ωj , j = 1, 2, is homogeneous and isotropic. As a consequence, the
density and sound velocity are two positive real constants respectively denoted by ρj and cj for each domain Ωj .
In the sequel, we make the assumption that Ω1 is a dissipative medium characterized by a real strictly positive
damping coefficient δ.

Let u0 be a complex-valued time-harmonic incident field defined in an open neighborhood V of Γ and satisfying
the Helmholtz equation

∆u0 + k2
2u0 = 0, in V .

Hereabove, k2 designates the wavenumber in the exterior domain. Such an equation results from removing the
sinusoidal time dependence e−iωt in the linear wave equation. The wavenumber k2 is related to the pulsation ω
by k2 = ω/c2. A second wavenumber k1 relative to the interior dissipative domain is defined as

k2
1 =

ω2

c2
1

(
1 + i

δ

ω

)
· (1)

A quite usual notation consists in introducing the complex refractive index N and the complex contrast coeffi-
cient α [9]

N =
1
cr

(
1 + i

δ

ω

)1/2

, α =
1

ρr(1 + iδ/ω)
, (2)

where cr = c1/c2 and ρr = ρ1/ρ2 respectively stand for the relative velocity and density. In the sequel, we
denote by z1/2 the principal determination of the square root of z ∈ C with branch-cut along the negative real
axis. Therefore, the imaginary part of N is strictly positive and α is a complex number with a real part and a
non-negative imaginary part. Let us introduce finally γ1 = δ/ω.

The scattered field v satisfies the boundary-value problem



∆v2 + k2
2v2 = 0, in Ω2,

∆v1 + k2
1v1 = k2

2(1 − N2)u0, in Ω1,

[v] = 0 and [χ∂nv] = −[χ∂nu0], on Γ,

lim
|x|→+∞

|x|
(
∇v2 ·

x
|x| − ik2v2

)
= 0,

(3)

where the piecewise constant function χ is such that χ = 1 in Ω2 and χ = α in Ω1. Vector n is the outwardly
directed unit normal to Ω1. The restriction of the scattered field v to Ωj , j = 1, 2, is denoted by vj := v|Ωj

;
notation [.] designates the jump through Γ of a distribution defined in Ω1 ∪ Ω2 and is given as the difference
between the interior and exterior traces: [v] := v1|Γ − v2|Γ. If a and b are two complex-valued vector fields,
their inner product is set as: a · b =

∑3
k=1 akbk. Operator ∇ is the gradient operator of a scalar complex field

and ∆ designates the Laplace operator. Finally, the last condition in problem (3) is the well-known Sommerfeld
radiation condition which ensures the uniqueness of the solution to the boundary-value problem. The notation
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SRC(v) = 0 means that the given field v satisfies the Sommerfeld radiation condition. We refer to Chazarain
and Piriou [12] for any notation concerning the functional spaces (e.g. the Schwartz spaces D′(Ω1) or Sobolev
spaces H1(Ω1) or H1/2(Γ)). Here, H1

loc

(
Ω2

)
is the Sobolev space

H1
loc(Ω2) =

{
v ∈ D

′
(Ω2)/ϕv ∈ H1(Ω2), ∀ϕ ∈ D(R3)

}
.

Under the above assumptions, we have the following existence and uniqueness result [4, 9].

Theorem 2.1. Let f ∈ L2(Ω1) and g ∈ H−1/2 (Γ). Then, there exists a unique solution v ∈ H1(Ω1)∩H1
loc

(
Ω2

)
to the transmission boundary-value problem




∆v + k2
1v = f, in D′(Ω1),

∆v + k2
2v = 0, in D′(Ω2),

[v] = 0, in H1/2(Γ),

[χ∂nv] = g, in H−1/2(Γ),

SRC(v).

(4)

2.2. Integral equation formulation (IE)

Let u = v + u0 be the total field in Ω1 ∪ Ω2. Let us define the Green kernel Gj associated to the Helmholtz
equation in Ωj by

Gj(x,y) :=
1
4π

eikj |x−y|

|x − y| ·

We consider the following surface fields pj := uj|Γ and ζj := χ∂nuj|Γ, for j = 1, 2. Using the interface conditions
arising from (4), the determination of the total field can be reduced to the computation of the quantities: ζ := ζj

and p := pj . Let us consider the following integral operators on Γ

Vjζ(x) :=
∫

Γ

Gj(x,y)ζ(y)dΓ(y), Njp(x) :=
∫

Γ

∂n(y)Gj(x,y)p(y)dΓ(y),

Kjζ(x) := NT
j ζ(x) =

∫
Γ

∂n(x)Gj(x,y)ζ(y)dΓ(y), Djp(x) := ∂n(x)

∫
Γ

∂n(y)Gj(x,y)p(y)dΓ(y),

where x ∈ Γ. The integral operators Vj , Nj and Kj are pseudodifferential operators of order −1 whereas Dj is
a first-order hypersingular operator (see e.g. [17]).

Let us introduce the product-space Z = H−1/2(Γ) × H1/2(Γ), 〈., .〉 the antiduality product between spaces
H1/2(Γ) and H−1/2(Γ) and the integral operators

V := α−1V1 + V2, N := N1 + N2, K := K1 + K2, D := αD1 + D2.

We define the following integral operators

cj(p, q) :=
∫ ∫

Γ×Γ

Gj(x,y)curlΓp(y) · curlΓq(x)dΓ(y)dΓ(x), j = 1, 2,

dj(p, q) := k2
j

∫ ∫
Γ×Γ

Gj(x,y)p(y)q(x)n(y) · n(x)dΓ(y)dΓ(x), j = 1, 2,

and
c(p, q) := αc1(p, q) + c2(p, q), d(p, q) := αd1(p, q) + d2(p, q).



APPROXIMATION OF A TRANSMISSION PROBLEM IN ACOUSTIC SCATTERING 1045

If ∇Γ designates the surfacic gradient operator, the surfacic curling vector curlΓ is given by curlΓϕ = ∇Γϕ×n,
for a distribution ϕ ∈ D′(Γ). Let us define the sesquilinear forms

a(ζ, µ) := 〈V ζ, µ〉, b(p, µ) := 〈Np, µ〉, b∗(ζ, q) := 〈V q, ζ〉.

Basing upon the approach of Bendali and Souilah [9], it can be shown that the solution to the boundary-value
problem (4) can be calculated by solving the following system of integral equations:




find (ζ, p) ∈ Z solution to

a(ζ, µ) − b(p, µ) = 〈u0, µ〉, ∀µ ∈ H−1/2(Γ),

−b∗(ζ, q) − c(p, q) + d(p, q) = −〈q, ∂nu0|Γ〉, ∀q ∈ H1/2(Γ).

2.3. The boundary element method

Let Γh be a polyhedral surface interpolating Γ and satisfying the classical non-overlapping condition involved
in finite element methods [9, 15]. Let Th = ∪NT

i=1Ki be a triangulation of Γh where each triangle Ki satisfies:
Ki ∩ Kj = ∅ for 1 ≤ i 
= j ≤ NT . We denote by Pm the space of complex-valued polynomials of degree lower
than or equal to m. Then, we consider the finite element spaces

Mh := {ζ ∈ L2(Γh)/ζK := ζ|K ∈ P0, ∀K ∈ Th}, Vh := {q ∈ C0(Γh)/qK := q|K ∈ P1, ∀K ∈ Th}.

We have DimMh = NT and DimVh = NV , where NV denotes the number of vertices arising from the
triangulation. If Zh := Mh × Vh, the discrete solution (ζh, ph) ∈ Zh satisfies the formulation (called IE during
the numerical experiments at Sect. 4)

ah(ζh, µh) − bh(ph, µh) = 〈u0|Γh
, µh〉, ∀µh ∈ Mh,

−b∗h(ζh, qh) − ch(ph, qh) + dh(ph, qh) = −〈qh, ∂nh
u0|Γh

〉, ∀qh ∈ Vh,
(5)

where the discrete sesquilinear forms are given by: ∀(ζh, µh) ∈ Mh × Mh and ∀(ph, qh) ∈ Vh × Vh

ah(ζh, µh) :=
∫ ∫

Γh×Γh

∑
j=1,2

1
χ j

Gj(xh,yh)ζh(yh)µh(xh)dΓh(yh)dΓh(xh),

bh(ph, µh) :=
∫ ∫

Γh×Γh

∑
j=1,2

∂nh(yh)Gj(xh,yh)ph(yh)µh(xh)dΓh(yh)dΓh(xh),

ch(ph, qh) :=
∫ ∫

Γh×Γh

∑
j=1,2

χGj(xh,yh)curlΓh
ph(yh) · curlΓh

qh(xh)dΓh(yh)dΓh(xh),

dh(ph, qh) :=
∫ ∫

Γh×Γh

∑
j=1,2

χk2
j Gj(xh,yh)ph(yh)qh(xh)nh(yh) · nh(xh)dΓh(yh)dΓh(xh).

Before an assembling process, the numerical implementation involves elementary integrals which depend on
quantities like ∇Γh

ph|Γh
locally computed in a basis of each triangle K [1, 2, 39, 40]. In the case of some

disjoint triangles, the integrals can be computed by a standard quadrature formula. For near interactions, a
semi-numerical quadrature formula [1, 8] can be used. The convergence rate of the boundary element method
is O(h1/2) since a consistency error [9] involves in the approximation of the exact surface by a polyhedral one.
The size of the dense linear system associated to (5) is (NT + NV ). The solution to the linear system can
be obtained by a Gauss elimination solver or more efficiently by a preconditioned subspace iterative solver
accelerated by a “fast multipole method”.
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3. The generalized impedance boundary-value problem

3.1. The generalized impedance operators

Let us recall that the transmitted wave can be computed by the Helmholtz integral representation [16]

∀x ∈ Ω1, u1(x) =
∫

Γ

(G1(x,y)ζ1(y) − ∂n(y)G1(x,y)p1(y))dΓ(y). (6)

The above relation shows that the interior field can be determined by the interior Cauchy data (ζ1, p1). In other
words, if the Steklov-Poincaré operator Y is known for the interior problem

ζ1 = Y p1, on Γ, (7)

the solution u1 can be obtained by a simple calculation of p1 (ζ1 being computed by Eq. (7)). Unfortunately, Y
cannot generally be explicitly computed for a surface. Moreover, even if it would be the case, no numerical gain is
made comparatively to the exact integral approach since this operator is a non-local pseudodifferential operator
of order one. However, when the interior propagation phenomenon is such that the intensity of the internal
field is essentially located near the boundary, the operator Y can be efficiently localized by a high-frequency
asymptotic analysis [5]. If Y� denotes the differential operator of order 
 ∈ N∗ arising from the localization
of Y , we can define the approximate densities (ζ̃1, p̃1) linked by the relation: ζ̃1 = Y�p̃1, on Γ. The surface
fields (ζ̃1, p̃1) are an approximation of the Cauchy data (ζ1, p1). For the sake of conciseness, we do not mention
the dependence of (ζ̃1, p̃1) with respect to 
. In electromagnetism [35–37], the operators Y� are generally called
generalized impedance operators of order 
 (at this step, let us note that these operators are called admittance
operators in acoustic scattering; the impedance is defined as the inverse of the admittance; however, we choose
here the denomination impedance which is maybe more commonly used in the theory of generalized boundary
conditions [36]). They depend on the physical parameters α, N and k1 but also on the geometry of the scatterer.
In [5], we show that

Y� = −divΓ (A�∇Γ) + α�, l = 1, 2,

where A� is a tensor defined on the tangent plane Tx(Γ) and α� a scalar surface field on Γ. The operator divΓ

designates the surfacic divergence operator. We can define an approximation (ζ̃2, p̃2) of the exterior Cauchy
data (ζ2, p2) by using the transmission conditions. The pair (ζ̃2, p̃2) then satisfies the relation

ζ̃2 = Y�p̃2, on Γ. (8)

Before giving the explicit form of Y� for 
 = 1, 2, let us introduce some useful notations linked to the geometry
of the interface Γ. Let R be the curvature tensor. Its eigenvalues are the principal curvatures κ1 and κ2.
More precisely, if R1 and R2 designate the principal curvature radii, we have κj = 1/Rj, j = 1, 2. We define
H = (κ1 + κ2)/2 as the mean curvature and K = κ1κ2 as the Gauss curvature. Finally, ∆Γ = divΓ∇Γ denotes
the Laplace-Beltrami operator.

According to [5], the first-order condition corresponds to the choice A1 := 0 and α1 := −α (ik2N + H) and
the second-order one to




A2 := −α

(
1

2ik2N

(
I +

iR
k2N

))

α2 := −α

(
ik2N + H− 1

2ik2N

(
H2 −K

)(
1 +

2iH
k2N

)
− 1

4k2
2N

2
∆ΓH

)
,

setting I as the identity operator of Tx(Γ).
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Remark 3.1. Higher-order differential operators can be constructed by a recursive process described in [5].
They should lead to more accurate approximations of the Cauchy data. However, they require the use of higher-
order boundary element methods which can be difficult to numerically handle and penalize the computational
cost. An alternative solution consists in rather using some Padé approximants for computing the symbols of
the expansion of the exact impedance operator. This possibility is examined in [3] but still requires further
developments.

3.2. An existence and uniqueness result

The pair (ζ̃2−∂nu0|Γ, p̃2−u0|Γ) defines a scattered field w2 through (6). Therefore, w2 satisfies the Helmholtz
equation in the exterior domain of propagation Ω2 and the Sommerfeld radiation condition at infinity. The
natural question is now the following: if we can define w2|Γ and ∂nw2|Γ, do we have the two identifications
w2|Γ = p̃2 − u0|Γ and ∂nw2|Γ = ζ̃2 − ∂nu0|Γ? According to Equation (8), we propose to define w2 as the solution
to the boundary-value problem 



∆w2 + k2
2w2 = 0 in Ω2,

(∂n − Y�)w2 = g� on Γ,

SRC(w2).

(9)

In formulation (9), the source term g� is given by: g� = −(∂n − Y�)u0. Let us prove that the boundary-value
problem (9) admits a unique solution under some sufficient conditions, giving hence an answer to the above
question under some precised conditions.

In the case of the first-order condition (A1 := 0), the impedance operator is a zeroth-order operator. The
boundary condition is a Fourier-Robin condition. The resulting boundary-value problem (9) is classical to solve
by considering the space H1

loc

(
Ω2

)
. Since the boundary condition is a compact perturbation of the Neumann

condition, the Riesz-Fredholm theory applies and the existence of a solution is ensured providing the uniqueness
only. The following result holds.

Proposition 3.2. Let g1 be given in H−1/2 (Γ). We assume that the mean curvature H is positive. Then, the
exterior boundary-value problem (9) related to the Fourier-Robin impedance boundary condition admits one and
only one solution w2 in H1

loc

(
Ω2

)
provided

k2H−1�(N) >

(
1 +

1
2c2

r�2(N)

)−1

· (10)

Proof. We use a standard argument involving the Rellich lemma [29] to prove the uniqueness. Let BR be a ball
centered at the origin with a sufficiently large radius R to enclose Ω1. Setting ΩR := Ω2 ∩ BR, we get

∫
ΩR

(
∆w2 + k2

2w2

)
w2 dΩR = 0.

By using the usual Green formula, the above variational equation modifies to

∫
ΩR

(
k2
2 |w2|2 − |∇w2|2

)
dΩR =

∫
Γ

∂nw2w2 dΓ −
∫

SR

∂rw2w2 dSR,

where SR := ∂BR denotes the boundary of BR. Since the integral on ΩR is real, we get

�
∫

Γ

∂nw2w2 dΓ = �
∫

Γ

α1 |w2|2 dΓ = �
∫

SR

∂rw2w2 dSR.
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Let us remark that � (−α1) = k2� (αN) + H�(α), � (αN) > 0 and �(α) < 0. It results that the imaginary
part of α1 is negative if

k2� (αN) + H�(α) > 0 ⇔ k2 > −H �(α)
� (αN)

· (11)

Noticing that �(α) = −γ−1
1 �(α), with γ1 = δ/ω, we conclude that �(αN) = −�(α)(�(N) + γ−1

1 �(N)). As a
consequence, inequality (11) reads

k2 >
H

�(N) + γ−1
1 �(N)

·

Moreover, using the definition of the refractive index N , a simple calculation gives: �(N)�(N) = γ1/(2c2
r).

Therefore, relation (11) can be simplified as

k2H−1�(N) >

(
1 +

1
2c2

r�2(N)

)−1

· (12)

Consequently, since we get

�
(∫

SR

∂rw2w2 dSR

)
≤ 0, (13)

the uniqueness is then classically obtained by using the Sommerfeld condition and the Rellich lemma. �

In [5], we describe how to approximate the Steklov-Poincaré operator in a consistent way for the interior
problem by an asymptotic analysis with respect to the high-frequency parameter |k1| = k2|N | � 1. In this
approach, another possibility is to consider a high refraction index N , i.e. |N | � 1, to get the same generalized
impedance boundary conditions. As a consequence, condition |N | � 1 is a first condition to impose to ensure
the validity of the approximation of the transmission acoustic scattering problem using an impedance boundary
condition. Moreover, as proposed in Proposition 3.2, a sufficient condition to have a well-posed problem is

k2H−1�(N) >

(
1 +

1
2c2

r�2(N)

)−1

·

Hence, the existence and uniqueness to the approximate problem is proved if

k2�(N)H−1 >

(
1 +

1
2c2

r�2(N)

)−1

and |N | � 1. (14)

In the numerical study of the validity of the approximate model using a Fourier-Robin (order 1/2) boundary
condition

∂nw2 + iαk2Nw2 = g1/2, on Γ, (15)
in the context of two-dimensional electromagnetism, Wang [36,41] has given two quantitative validity conditions
of the model

k2R�(N) > C1 and |N | > C2, (16)
for a circular cylinder Ω1 of radius R. The real positive constants C1 and C2 are obtained by fixing a tolerance
on the computation of the far-field. These relations have next been extended to a second-order generalized
impedance boundary condition by Senior and Volakis [36]. To the best of the authors’ knowledge, no theoretical
justification on the origin of conditions (16) has been given. Moreover, these conditions have been extrapolated
in the framework of the three-dimensional acoustics. A possible explanation is that only the Fourier-Robin
boundary condition (15) is usually used in acoustics. However, this condition does not take the geometry of
the scatterer into account. When the well-posedness of the boundary-value problem is examined, then only
conditions involving the physical parameters of the problem are needed during the proof of the existence and
uniqueness result [35]. Hence, conditions (14) can be seen as a qualitative justification of Wang’s conditions (16)
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extended to the case of the acoustic scattering by an arbitrarily shaped convex body. In the situation where
the hypothesis H > 0 is not satisfied everywhere, the global property (13) may still be fulfilled but a sufficient
condition cannot be so explicitly stated. This remains an interesting issue to investigate in details.

The second-order impedance boundary condition is defined by the operator Y2. The boundary-value problem
is a non-standard scattering problem (sometimes also called a Ventcel problem). A well-adapted functional
framework is given by the Fréchet space H1,1

loc

(
Ω2, Γ

)
=
{
u ∈ H1

loc

(
Ω2

)
, u|Γ ∈ H1 (Γ)

}
. According to [40], one

gets the following theorem.

Theorem 3.3. Let us assume that g2 ∈ H−1 (Γ) and that

�
(
A2 (x) ξ · ξ

)
≤ 0 , ∀x ∈ Γ, ∀ξ ∈ Tx (Γ) , and �(α2 (x)) ≤ 0, ∀x ∈ Γ. (17)

Then, the boundary-value problem (9) admits a unique solution w2 in H1,1
loc

(
Ω2, Γ

)
. Moreover, if g2 ∈ Hs (Γ),

s ≥ −1, then we have: w2 ∈ H
s+5/2
loc

(
Ω2

)
.

Thus, the well-posedness of problem (9) is ensured provided A2 and α2 satisfy conditions (17). As far as the
numerical solution of (9) is concerned, we intend to consider the conditions involving (1)–(2). The following
proposition holds.

Proposition 3.4. Let us assume that Ω1 is a convex domain and that we have the inequality

∆ΓH
4

+ H(H2 −K) ≥ 0. (18)

Moreover, we suppose that γ1 ∈
]√

3 , +∞[. Then, conditions (17) are satisfied provided

k2H−1�(N) >
1
2

(
1 +

1
2c2

r�2(N)

)−1
(

1 +

√(
1 +

2(H2 −K)
H2

�(N)2

|N |2

(
1 − 1

4c4
r�4(N)

)))
(19)

and

k2�(N)min
x∈Γ

Rj(x) >
2

c2
r|N |2

(
1 − 1

2c2
r�2(N)

)−1

· (20)

Proof. We have already seen that it is sufficient to fulfill that �(A2ξ · ξ) ≤ 0. If Ω1 is convex, the eigenvalues of
the curvature operator R are positive and we have Rξ · ξ ≥ 0. Moreover, a straightforward calculation yields

�(A2(x)ξ · ξ) =
1

2k2
�
( α

N

)
|ξ|2 − 1

2k2
2

�
( α

N2

)
Rξ · ξ.

Without any specific hypothesis, �(α/N2) is negative and we get �( α
N ) > 0 ⇐⇒ γ1 ∈ ]0,

√
3[, �( α

N ) < 0 ⇐⇒
γ1 ∈ ]

√
3, +∞[. Hence, we deduce that if γ1 ∈ ]0,

√
3[, then we have: �(A2(x)ξ · ξ) > 0. This implies that we

cannot ensure the uniqueness of the solution if γ1 ∈ ]0,
√

3[. It does not mean that the solution is not unique
since the inequality �(A2(x)ξ · ξ) ≤ 0 is only a sufficient condition. However, we will later see that the case
γ1 ∈ ]0,

√
3[ (corresponding to a weak absorbing medium) yields an inaccurate approximate model. Therefore,

we restrict our attention to the case γ1 ∈ ]
√

3, +∞[. Then, �(A2(x)ξ · ξ) ≤ 0 if and only if we have

k2Rj(x) >
�(α/N2)
�(α/N)

, j = 1, 2. (21)
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A direct calculation gives �(αN−2) = �(α)�(N−2) + �(α)�(N−2). Since �(α) = −γ−1
1 �(α), we get

�( α
N2 ) = �(α)

|N |4 (�(N2) + γ−1
1 �(N2)), which can be further reduced to

�
( α

N2

)
=

2�(α)
c2
r|N |4 (22)

using �(N2) = γ−1
1 �(N2) and �(N2) = γ1/c2

r.
Let us consider now the term �(α/N). Using �( α

N ) = 1
|N |2 (�(α)�(N) + �(α)�(N)), �(α) = −γ−1

1 �(α)
and 2c2

r�(N) = γ1(�(N))−1, we obtain

�
( α

N

)
=

�(α)�(N)
|N |2

(
1 − 1

2c2
r�2(N)

)
· (23)

Then, by plugging (22) and (23) into (21) when γ1 ∈]
√

3, +∞[, we see that �(A2(x)ξ · ξ) ≤ 0 if and only if the
following inequality holds

k2�(N)min
x∈Γ

Rj(x) >
2

c2
r|N |2

(
1 − 1

2c2
r�2(N)

)−1

·

Let us study the sign of α2. Since �(αN2) and �(α/N2) have the same signs, the following inequality holds:

�( α
N2 )
k2
2

(
∆ΓH

4
+ H(H2 −K)

)
≤ 0,

under the assumption ∆ΓH/4 + H(H2 −K) ≥ 0. Hence, the inequality �(α2) ≤ 0 is satisfied if we have

�(αN)k2
2 + H�(α)k2 +

(H2 −K)
2

�
( α

N

)
≥ 0. (24)

Now, let us observe that �(αN) and �(α/N) have the same signs. Hence, if γ1 ∈]
√

3, +∞[, Equation (24) is
equivalent to

P (k2) = k2
2 +

HIm(α)
�(αN)

k2 +
(H2 −K)
2�(αN)

�
( α

N

)
≥ 0.

A computation of the discriminant D associated to the above polynomial P shows that D > 0 if γ1 ∈]
√

3, +∞[.
Hence, P admits two distinct real roots k±

2 of opposite sign. The positive root k+
2 is given by

k+
2 = − H�(α)

2�(αN)

(
1 +

(
1 − 2(H2 −K)�(αN−1)�(αN)

H2�(α)2

)1/2
)
· (25)

Some simple calculations allow to show that

�(αN)�
( α

N

)
= �(α)2�(N)�

(
1
N

)
+ �(α)2�(N)�

(
1
N

)
−�(α)�(α)

[
�(N)�

(
1
N

)
+ �

(
1
N

)
�(N)

]
.

Moreover, since −γ1�(α) = �(α), we also have �(αN)�(αN−1)
�(α)2 = [ 1

γ2
1
�(N)�( 1

N ) + �(N)�( 1
N )]. Finally, since

�(1/N) = �(N)/|N |2 and �(1/N) = −�(N)/|N |2, we get �(αN)�(αN−1)
�(α)2 = −�(N)2

|N |2 [1 − 1
4c4

r�4(N) ]. Therefore,
(25) is satisfied if k2 ≥ k+

2 or in other words if

k2H−1�(N) >
1
2

(
1 +

1
2c2

r�2(N)

)−1
(

1 +

√(
1 +

2(H2 −K)
H2

�(N)2

|N |2

(
1 − 1

4c4
r�4(N)

)))
· �
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In the case of a sphere, the condition (19) associated to the second-order condition is identical to the one obtained
for the first-order condition and condition (18) is fulfilled. For a regular surface, quantity
(H2 − K)/H2 = (κ1 − κ2)2/(κ1 + κ2)2 is generally quite small and always lower than 1. Similarly, expres-
sion �(N)2/|N |2 is inferior to 1. Hence, condition (19) is not much more restrictive than (10). Condition (20)
is not so restrictive as it looks like. Indeed, the approximate model is associated to some physical parameters
such that �(N) � 1 and |N | � 1. This implies that in (20), the right hand-side tends to be small while the
left hand-side is relatively large. If we compare the sufficient conditions in Propositions 3.2 and 3.4, it seems at
first sight that the second-order condition is more restrictive than the first-order one. However, these conditions
must be coupled with the asymptotic one: |N | � 1. Hence, the conditions of Proposition 3.4 are satisfied for
a larger range of parameters (k2, N, α) than in Proposition 3.2. We will see in the following section that the
same conclusion holds when considering the validity domain of each impedance boundary condition. Finally,
condition γ1 ≥

√
3 must be satisfied when applying the second-order condition to obtain a sufficiently small

error. From a practical point of view, it is not a real restriction as seen in the following section.

3.3. Numerical validity domain

It is not surprising that the impedance boundary-value problem approximates the exact problem with a
good accuracy for a suitable set of parameters. Indeed, the impedance boundary condition arises from an
approximation of an exact condition. This approximation is justified for a sufficiently absorbing object [5]. In
this situation, the main part of the energy of the interior field is localized near the interface. Therefore, the
localization of the exact boundary operator is valid and leads to an accurate approximate operator.

To precise the validity domain of the method, we consider the scattering problem of a plane wave u0 which
strikes the unitary ball centered at the origin. More precisely, we take u0 = exp(−ik2x1). We define the far-field
pattern given by the Sonar cross section (SCS)

SCS(θ) = 10Log10(4π|a(θ)|2) (dB),

where a(θ) denotes the diffusion amplitude of the scattered field in the direction θ = (cosθcosϕ, sinθcosϕ, sinϕ),
setting (θ, ϕ) as the spherical angular coordinates on the unit sphere. We represent the relative error on the
SCS for the L2(SR)-norm, where SR designates the sphere centered at the origin and with a radius R large
enough to have a suitable representation of the far-field.

Let us choose cr = 0.75, ρr = 1.2 and γ1 = 2. The wavenumber k2 is equal to 15. In Figure 1, we can observe
that the bistatic SCS is more accurate for the second-order condition (the relative error is 0.5%) than for the
first-order one (a relative error of 11.6%). Similar results have been reported in [5].

Now, we want to compute an approximate SCS with an error lower than 2%. In Figure 2, we represent the
evolution of the relative error according to k2 (for cr = 0.75, ρr = 1.2 and γ1 = 2). We see that the approach is
a high-frequency method: the error decreases as the wavenumber increases. Moreover, we can observe that the
first-order impedance boundary condition leads to a relative error on the SCS which stabilizes around 10%. In
the case of the second-order condition, the relative error is lower than 2% as soon as k2 ≥ 6.6.

We consider in Figure 3 the variations of the error with respect to the relative velocity cr. To this end, we
take k2 = 6.6, ρr = 1.2, γ1 = 2. The quality of the approximate solution is better as cr decreases. To get an
error lower than 2%, we see that cr must be lower than 0.4 for the first-order condition and than 0.75 for the
second-order condition. In fact, the relative velocity cr is equal to c1/c2, where c1 and c2 are respectively the
velocity in the scatterer and in the external medium. In both cases, the accuracy of the method is guaranteed
as long as c1 is strictly lower than c2. We have already mentioned the fact that the proposed approach is valid
in the case where the interior propagation is mainly localized near the interface Γ. This is effectively the case
when c1/c2 � 1: cr must be small enough to ensure a good accuracy. This last point was already emphasized
in Proposition 3.4 fixing any of the parameters and varying cr. This latter parameter must be small enough to
get the uniqueness of the approximate solution. A wider applicability of the second-order condition compared
to the first-order condition is observed.
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Figure 1. Far field patterns using a first and a second-order generalized impedance boundary condition.
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Figure 2. Computation of the relative error on the SCS according to k2.

We consider now the relative error as a function of ρr. Let us fix k2 = 6.6, cr = 0.75, γ1 = 2. We observe in
Figure 4 that the relative error is maximal (around 2%) for ρr = 1.3 for the second-order condition. In the case
of the first-order condition, the error is relatively important for any value of ρr. We observe that the influence
of the relative density on the error is not really significant for the second-order condition.

Finally, we consider that γ1 = δ/ω varies and we choose k2 = 6.6, cr = 0.75 and ρr = 1.2. Figure 5 shows that
the relative error decreases as γ1 increases. Moreover, the error is lower than 2% for the second-order condition
when γ1 ≥ 2.5. This is a very interesting property since we have proved that the problem is well-posed when
γ1 >

√
3 (≈ 1.73).
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Figure 3. Computation of the relative error on the SCS according to cr.
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Figure 4. Computation of the relative error on the SCS according to ρr.

The validity analysis makes our previous theoretical study consistent. We obtain a condition linking k2, N
and the dimensions of the scatterer to get an error lower than 2% for a given impedance condition. For the
first-order condition, we have k2R�(N) ≥ 13.9 and |N | ≥ 3.8, while for the second-order condition we show
that k2R�(N) ≥ 7 and |N | ≥ 2. Such conditions are similar to those involved for the well-posedness of
the approximate boundary-value problem. Moreover, they are close to the conditions originally derived for the
two-dimensional problems [36].

Two significant aspects result from this analysis. The first interesting point is that one can construct an
integral equation involving only one unknown surface field, the second one being determined by the impedance
condition. Secondly, we see that the use of the microlocal analysis is efficient if |k1| is large enough. In this
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Figure 5. Computation of the relative error on the SCS according to γ1.

situation, a method which would only require the solution to the exterior boundary-value problem would be
interesting for high interior wavenumber. Indeed, in this case, one would have in almost situations a larger
wavelength λ2 in the exterior domain. Since the size of the mesh involved during the approximation of an
integral equation is a fraction of the smallest wavelength, one can expect to have a better convergence of a
numerical method for solving the approximate model rather than for the exact problem at a given resolution.
Since the second-order condition is more efficient, we focus our study on this condition in the above section.

4. Integral equation formulation and numerical experiments

This section is devoted to the study of an integral formulation which makes use of the local generalized
impedance boundary operator. In a first part, we present the formulation that we designate by combined
integral equation (CIE) for the sake of conciseness. In a second part, its numerical approximation is described
precising its numerical advantages as compared to the standard integral equation (IE) method. We finally
report some numerical tests. As in the case of a spherical scatterer, the CIE method gives accurate results for
an ellipsoidal scatterer and provides an interesting alternative to the fully coupled IE formulation.

4.1. The integral equation formulation (CIE)

The selected strategy is based on the integral formulation proposed by Vernhet [39, 40]. We do not develop
all the details of the procedure and refer to [39,40] for completeness. Let us introduce w1 as the solution to the
non-standard interior boundary-value problem associated to (9) which reads

{
∆w1 + k2

2w1 = 0 in Ω1,

(∂n − Y�)w1 = g� on Γ.
(26)

This problem is purely artificial and w1 does not represent an acoustic field which actually exists. Nevertheless
by applying the results of [40], we can prove that it is well-posed. To introduce w1 allows to use the potential
theory [28] to derive the CIE. Let us define w by: w|Ωj

:= wj , for j = 1, 2. We also consider the densities
m̃ ∈ H−1/2(Γ) and j̃ ∈ H1(Γ) and the Lagrange multiplier l̃ ∈ H1(Γ) m̃ := [∂nw], j̃ := [w] and l̃ := w1+w2

2 .
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Following [39, 40], a suitable Fredholm integral formulation of the first kind adapted to problem (9)
(and called here combined integral equation (CIE)) consists in finding (m̃, j̃, l̃) ∈ Θ solution to the saddle
point problem

ã((m̃, j̃), (m, j)) +
∫

Γ

l̃(m − Y T
2 j)dΓ =

∫
Γ

g2jdΓ,∫
Γ

l(m̃ − Y2j̃)dΓ = 0, ∀(m, j, l) ∈ Θ,
(27)

where Θ is the product space defined by Θ := H−1/2(Γ)×H1(Γ)×H1(Γ). The bilinear form ã(., .) is such that

ã((m̃, j̃), (m, j)) := −〈V2m̃, m〉 + 〈N2j̃, m〉 + 〈N2j, m̃〉 + 〈D2j̃, j〉,

with 〈D2j̃, j〉 := c2(j̃, j) − d2(j̃, j) and
∫

Γ

lY2j̃dΓ = A2(j̃, l) :=
∫

Γ

(A2∇Γl · ∇Γj̃ + α2lj̃)dΓ.

The existence and uniqueness of the solution to system (27) is based on the statement of a Babuška inf-sup
condition.

4.2. Boundary element approximation and numerical experiments

The boundary element approximation of the unknown fields is given by (m̃h, j̃h, l̃h) in (Vh)3. At first sight,
the dimension of the approximation space is triple compared to the one required for a Neumann problem.
Fortunately, a mass lumping process [39, 40] allows to avoid this problem by keeping j̃h as the only unknown.
Hence, the computational burden is similar to the one arising from the solution of a Neumann problem and the
approach leads to the solution of a linear system of size NV CIE

λ2
. The memory storage of the CIE method seems

a priori three times smaller than for the IE formulation of Section 2 (if we consider that NT IE ≈ 2NV IE).
However, one must keep in mind that the discretization of the IE formulation is made according to the smallest
wavelength min(λ1, λ2). This implies that if λ1 � λ2, we have NV CIE

λ2
� NV IE

λ1
and we should obtain a

faster convergence of the boundary element method for solving the CIE formulation. A difficulty concerns the
construction of a suitable P1-approximation of the curvature tensor R in a basis of the tangent plane at a node
of the mesh. To this end, we adapt the approach established in [2]. Some numerical experiments (not reported
here) using formulation (27) show that the theoretical rate of convergence [39, 40] O(h1/2) of the CIE is not
affected by the approximation of R.

The benchmark computations are given by the exact solution computed by its Mie series for the unit sphere
or by the IE (with a sufficiently refined mesh) otherwise. The first test case consists in illuminating the unit
sphere by an incident plane wave of direction (−1, 0, 0) for a wavenumber k2 = 15. The physical parameters are
cr = ρr = 1.5 and γ1 = 10. The SCS computations are depicted in Figure 6. The relative quadratic error on
the SCS between the exact analytic Mie solutions for the transmission problem and the generalized impedance
problems is 0.1%. This ensures the validity of the approximate model: the generalized impedance boundary value
well modelled the transmission problem. For a given resolution, the size NV CIE

λ2
of the linear system associated

to the CIE is three times smaller than the size NV IE
min(λ1,λ2)

of the system issued from the discretization of
the IE formulation. This reduction of the computational cost is due to the mass lumping process arising from
the boundary element method. Now, let us analyze the influence of the mesh resolution on the convergence
of the two integral methods (IE and CIE). We present in Table 1 the quadratic relative error on the SCS for
several meshes. It appears that the CIE formulation has a better convergence rate than the IE formulation.
Moreover, the IE approach requires a refined mesh for a small mesh step to get a satisfactory accuracy. These
observations are completely in accordance with the above remarks concerning the wavelength dependence of the
sizes NV CIE

λ2
and NV IE

min(λ1,λ2) of the matrices. Indeed, we have considered a smaller wavelength in the interior
domain (|k1| = 30) than in the exterior domain (k2 = 15). Hence, the CIE method seems very attractive in the
case of a high refraction coefficient.
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Figure 6. Computation of the SCS (dB) by the IE and CIE methods for the unit sphere.

Table 1. Quadratic relative error on the SCS between the exact Mie serie solution and the IE
or CIE solution vs. the number NE of edges of the finite element mesh.

NE 750 1080 1920 3000 4320
Quadratic relative error (IE) (%) 429 259 117 71 28
Quadratic relative error (CIE) (%) 76 60 17 13 9

Table 2. Quadratic relative error on the SCS vs. the number NE of edges.

NE 750 1080 1920 3000
Quadratic relative error (IE) (%) 66 10 2 0
Quadratic relative error (CIE) (%) 18 13 8 6
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Figure 7. Computation of the SCS (dB) by the IE and CIE methods for an ellipsoidal scatterer.

We consider in Figure 7 a second test case: the scattering of a plane wave of incidence (−1, 0, 0) and
wavenumber k2 = 10 by an ellipsoidal scatterer centered at the origin and with semi-axis a = 1, b = 0.5 and
c = 0.3 respectively along (Ox1), (Ox2) and (Ox3). The obstacle is characterized by the physical constants
ρr = 1.1, cr = 1.2 and γ1 = 5. We consider that the reference IE solution is given for NE = 3000 edges. As
it can be observed, a good accuracy is obtained for the IE method with NE = 1080 edges. The CIE method
converges towards the reference solution a little bit more slowly than the IE method. This is due to the limit of
validity of the local condition which penalizes the accuracy of the integral method and becomes prevailing. To
precise the convergence of the method, we depict in Table 2 the quadratic relative error on the SCS according
to the mesh refinement. Despite this lower convergence, we must always have in mind that the size of the linear
system related to the CIE method is three times smaller than for the IE method. This finally makes the method
competitive.
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38 (2004) 157–175.
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Ph.D. Thesis, Université de Pau et des Pays de l’Adour, No. 400, France (1997).
[40] L. Vernhet, Boundary element solution of a scattering problem involving a generalized impedance boundary condition. Math.

Methods Appl. Sci. 22 (1999) 587.
[41] D.S. Wang, Limits and validity of the impedance boundary condition on penetrable surfaces. IEEE. Trans. Antennas Prop.

35 (1987) 453.

To access this journal online:
www.edpsciences.org


