Coupling Darcy and Stokes equations for porous media with cracks
ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 7-35.

In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive a priori and a posteriori error estimates. We present some numerical experiments that are in good agreement with the analysis.

DOI : 10.1051/m2an:2005007
Classification : 65N30, 65N50, 76D07, 76S05
Mots clés : Darcy and Stokes equations, finite elements, error estimates
@article{M2AN_2005__39_1_7_0,
     author = {Bernardi, Christine and Hecht, Fr\'ed\'eric and Pironneau, Olivier},
     title = {Coupling {Darcy} and {Stokes} equations for porous media with cracks},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {7--35},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/m2an:2005007},
     mrnumber = {2136198},
     zbl = {1079.76041},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2005007/}
}
TY  - JOUR
AU  - Bernardi, Christine
AU  - Hecht, Frédéric
AU  - Pironneau, Olivier
TI  - Coupling Darcy and Stokes equations for porous media with cracks
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 7
EP  - 35
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2005007/
DO  - 10.1051/m2an:2005007
LA  - en
ID  - M2AN_2005__39_1_7_0
ER  - 
%0 Journal Article
%A Bernardi, Christine
%A Hecht, Frédéric
%A Pironneau, Olivier
%T Coupling Darcy and Stokes equations for porous media with cracks
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 7-35
%V 39
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2005007/
%R 10.1051/m2an:2005007
%G en
%F M2AN_2005__39_1_7_0
Bernardi, Christine; Hecht, Frédéric; Pironneau, Olivier. Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 7-35. doi : 10.1051/m2an:2005007. http://www.numdam.org/articles/10.1051/m2an:2005007/

[1] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl

[2] M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47-52. | Zbl

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | Zbl

[4] C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. Nonlinear Partial Differ. Equ. Appl., Collège de France Seminar IX (1988) 179-264. | Zbl

[5] C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application d'une méthode de collocation pour les équations de Stokes. C.R. Acad. Sci. Paris série I 303 (1986) 971-974. | Zbl

[6] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. | Zbl

[7] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | EuDML | Numdam | Zbl

[8] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | Zbl

[9] D.-G. Calugaru, Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique, Thesis, Université de Franche-Comté, Besançon (2002).

[10] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl

[11] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57-74. | Zbl

[12] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Proc. of ENUMATH, F. Brezzi Ed., Springer-Verlag (to appear). | MR

[13] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6 (2004) 93-104.

[14] F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | Zbl

[15] F. Dubois, M. Salaün and S. Salmon, First vorticity-velocity-pressure scheme for the Stokes problem, Internal Report 356, Institut Aérotechnique, Conservatoire National des Arts et Métiers, France (2002) (submitted).

[16] P.J. Frey and P.-L. George, Maillages, applications aux éléments finis. Hermès, Paris (1999).

[17] P.-L. George and F. Hecht, Nonisotropic grids. Handbook of Grid Generation, J.F. Thompson, B.K. Soni & N.P. Weatherhill Eds., CRC Press (1998).

[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl

[19] F. Hecht, Construction d’une base de fonctions P 1 non conforme à divergence nulle dans 3 . RAIRO Anal. Numér. 15 (1981) 119-150. | Numdam | Zbl

[20] F. Hecht and O. Pironneau, FreeFem++, see www.freefem.org.

[21] H. Kawarada, E. Baba and H. Suito, Effects of spilled oil on coastal ecosystems, in the Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering 2000, CD-ROM proceedings (2001).

[22] H. Kawarada, E. Baba and H. Suito, Effects of wave breaking action on flows in tidal-flats, in Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi and J. Périaux Eds., Springer. Notes on Numerical Fluid Mechanics 78 (2001) 275-289.

[23] W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow 22-01 (2001). | MR | Zbl

[24] J.-C. Nedelec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | Zbl

[25] R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. | Zbl

[26] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods. Springer, Berlin. Lect. Notes Math. 606 (1977) 292-315. | Zbl

[27] S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Thesis, Université Pierre et Marie Curie, Paris (1999).

[28] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | Zbl

[29] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl

Cité par Sources :