In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
Mots-clés : thermoviscoelasticity, dynamic contact problem, finite element approximation, numerical simulations
@article{M2AN_2004__38_4_691_0, author = {Copetti, Maria I. M.}, title = {Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {691--706}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004029}, mrnumber = {2087730}, zbl = {1080.74036}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004029/} }
TY - JOUR AU - Copetti, Maria I. M. TI - Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 691 EP - 706 VL - 38 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004029/ DO - 10.1051/m2an:2004029 LA - en ID - M2AN_2004__38_4_691_0 ER -
%0 Journal Article %A Copetti, Maria I. M. %T Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 691-706 %V 38 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004029/ %R 10.1051/m2an:2004029 %G en %F M2AN_2004__38_4_691_0
Copetti, Maria I. M. Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 691-706. doi : 10.1051/m2an:2004029. http://www.numdam.org/articles/10.1051/m2an:2004029/
[1] Linear thermoelasticity, in Handbuch der physik, C. Truesdell Ed., VIa/2 (1972) 297-345.
,[2] A one-dimensional thermoelastic problem with unilateral constraint. Math. Comp. Simul. 59 (2002) 361-376. | Zbl
,[3] Numerical solution of a thermoviscoelastic contact problem by a penalty method. SIAM J. Numer. Anal. 41 (2003) 1487-1504. | Zbl
and ,[4] Heat conduction with linear thermoelasticity. Springer, New York (1985). | MR | Zbl
,[5] Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction. Math. Mod. Meth. Appl. Sci. 12 (2002) 1491-1511.
,[6] The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22 (1999) 1221-1234. | Zbl
and ,[7] A dynamic contact problem in thermoelasticity. Nonlinear Anal. 23 (1994) 883-898. | Zbl
and ,[8] Evolution equations in thermoelasticity. Chapman & Hall/ CRC (2000). | MR | Zbl
and ,[9] A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Meth. Appl. Sci. 13 (1990) 55-79. | Zbl
,[10] A dynamic contact problem in one-dimensional thermoviscoelasticity. Nonlinear World 2 (1995) 355-385. | Zbl
and ,[11] Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 55-79. | Zbl
and ,Cité par Sources :