We consider a fully practical finite element approximation of the following degenerate system
Mots-clés : Stefan problem, Joule heating, degenerate system, finite elements, convergence
@article{M2AN_2004__38_4_633_0, author = {Barrett, John W. and N\"urnberg, Robert}, title = {Finite element approximation of a {Stefan} problem with degenerate {Joule} heating}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {633--652}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004030}, mrnumber = {2087727}, zbl = {1072.80010}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2004030/} }
TY - JOUR AU - Barrett, John W. AU - Nürnberg, Robert TI - Finite element approximation of a Stefan problem with degenerate Joule heating JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 633 EP - 652 VL - 38 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004030/ DO - 10.1051/m2an:2004030 LA - en ID - M2AN_2004__38_4_633_0 ER -
%0 Journal Article %A Barrett, John W. %A Nürnberg, Robert %T Finite element approximation of a Stefan problem with degenerate Joule heating %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 633-652 %V 38 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004030/ %R 10.1051/m2an:2004030 %G en %F M2AN_2004__38_4_633_0
Barrett, John W.; Nürnberg, Robert. Finite element approximation of a Stefan problem with degenerate Joule heating. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 633-652. doi : 10.1051/m2an:2004030. https://www.numdam.org/articles/10.1051/m2an:2004030/
[1] A finite element method on a fixed mesh for the Stefan problem with convection in a saturated porous medium, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (London) (1982) 389-409. | Zbl
and ,[2] Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323-363. | Zbl
and ,[3] On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1 (1981) 115-125. | Zbl
,[4] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl
,[5] A finite element model for the time-dependent Joule heating problem. Math. Comp. 64 (1995) 1433-1453. | Zbl
and ,[6] Existence of generalized weak solutions to a model for in situ vitrification. European J. Appl. Math. 9 (1998) 543-559. | Zbl
, and ,[7] Modeling of the in situ vitrification process. Amer. Ceram. Soc. Bull. 70 (1991) 832-835.
and ,
[8] Compact sets in the space
[9] A compactness theorem and its application to a system of partial differential equations. Differential Integral Equations 9 (1996) 119-136. | Zbl
,[10] Existence for a model arising from the in situ vitrification process. J. Math. Anal. Appl. 271 (2002) 333-342. | Zbl
,- Numerical simulation of the melting process of a cylindrical sample with a localized heat source, iPolytech Journal, Volume 28 (2025) no. 4, p. 563 | DOI:10.21285/1814-3520-2024-4-563-572
- Stable finite element approximation of a Cahn–Hilliard–Stokes system coupled to an electric field, European Journal of Applied Mathematics, Volume 28 (2017) no. 3, p. 470 | DOI:10.1017/s0956792516000395
- Finite element approximation of a phase field model arising in nanostructure patterning, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 6, p. 1890 | DOI:10.1002/num.21972
- EXISTENCE, UNIQUENESS AND APPROXIMATION OF A DOUBLY-DEGENERATE NONLINEAR PARABOLIC SYSTEM MODELLING BACTERIAL EVOLUTION, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 07, p. 1095 | DOI:10.1142/s0218202507002212
- A Convergent and Constraint‐Preserving Finite Element Method for thep‐Harmonic Flow into Spheres, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 3, p. 905 | DOI:10.1137/050639429
- Finite Element Approximation of Soluble Surfactant Spreading on a Thin Film, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 3, p. 1218 | DOI:10.1137/040618400
Cité par 6 documents. Sources : Crossref