Entropic approximation in kinetic theory
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 3, pp. 541-561.

Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021-1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global existence theorem for such an approximation and derive as a by-product a necessary and sufficient condition for the so-called problem of moment realizability. Applications of the above result are given in kinetic theory: first in the context of Levermore's approach and second to design generalized BGK models for Maxwellian molecules.

DOI : 10.1051/m2an:2004025
Classification : 54C70, 46N10, 82B40, 37L65
Mots-clés : kinetic entropy, convex analysis, nonlinear approximation, moments systems, maxwellian molecules
@article{M2AN_2004__38_3_541_0,
     author = {Schneider, Jacques},
     title = {Entropic approximation in kinetic theory},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {541--561},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {3},
     year = {2004},
     doi = {10.1051/m2an:2004025},
     mrnumber = {2075759},
     zbl = {1084.82010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2004025/}
}
TY  - JOUR
AU  - Schneider, Jacques
TI  - Entropic approximation in kinetic theory
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 541
EP  - 561
VL  - 38
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2004025/
DO  - 10.1051/m2an:2004025
LA  - en
ID  - M2AN_2004__38_3_541_0
ER  - 
%0 Journal Article
%A Schneider, Jacques
%T Entropic approximation in kinetic theory
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 541-561
%V 38
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2004025/
%R 10.1051/m2an:2004025
%G en
%F M2AN_2004__38_3_541_0
Schneider, Jacques. Entropic approximation in kinetic theory. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 3, pp. 541-561. doi : 10.1051/m2an:2004025. http://www.numdam.org/articles/10.1051/m2an:2004025/

[1] P. Andries, P. Le Tallec, J.P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813-830. | Zbl

[2] L. Arkeryd, On the Boltzmann equation. Arch. Rational Mech. Anal. 45 (1972) 1-34. | Zbl

[3] F. Bouchut, C. Bourdarias and B. Perthame, An example of MUSCL method satisfying all the entropy inequalities. C.R. Acad Sc. Paris, Serie I 317 (1993) 619-624. | Zbl

[4] F. Coquel and P. Lefloch, An entropy satisfying muscl scheme for systems of conservation laws. Numerische Math. 74 (1996) 1-34. | Zbl

[5] I. Csiszár, I-divergence geometry of probability distributions and minimization problems Sanov property. Ann. Probab. 3 (1975) 146-158. | Zbl

[6] R. Diperna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989) 321-366. | Zbl

[7] H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. | Zbl

[8] M. Junk, Domain of definition of Levermore's five moments system. J. Stat. Phys. 93 (1998) 1143-1167. | Zbl

[9] M. Junk, Maximum entropy for reduced moment problems. M3AS 10 (2000) 1001-1025. | Zbl

[10] C. Léonard, Some results about entropic projections, in Stochastic Analysis and Mathematical Analysis, Vol. 50, Progr. Probab., Birkhaüser, Boston, MA (2001) 59-73. | Zbl

[11] C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021-1065. | Zbl

[12] L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10 (2000) 1121-1149. | Zbl

[13] A.J. Povzner, The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Trans. 47 (1965) 193-214. | Zbl

[14] F. Rogier and J. Schneider, A Direct Method for Solving the Boltzmann Equation. Proc. Colloque Euromech n0287 Discrete Models in Fluid Dynamics, Transport Theory Statist. Phys. 23 (1994) 1-3. | Zbl

[15] C. Villani, Fisher information bounds for Boltzmann's collision operator. J. Math. Pures Appl. 77 (1998) 821-837. | Zbl

Cité par Sources :