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SINGULARITIES OF EDDY CURRENT PROBLEMS

Martin Costabel1, Monique Dauge1 and Serge Nicaise2

Abstract. We consider the time-harmonic eddy current problem in its electric formulation where the
conductor is a polyhedral domain. By proving the convergence in energy, we justify in what sense
this problem is the limit of a family of Maxwell transmission problems: Rather than a low frequency
limit, this limit has to be understood in the sense of Bossavit [11]. We describe the singularities of
the solutions. They are related to edge and corner singularities of certain problems for the scalar
Laplace operator, namely the interior Neumann problem, the exterior Dirichlet problem, and possibly,
an interface problem. These singularities are the limit of the singularities of the related family of
Maxwell problems.

Mathematics Subject Classification. 35B65, 35R05, 35Q60.

Received: May 20, 2003.

1. Maxwell equations and the eddy current limit

Let us consider the model case of an homogeneous conducting body ΩC which we assume to be a three-
dimensional bounded polyhedral domain with a Lipschitz boundary B. The conductivity σ = σC is constant and
positive inside ΩC , while σ vanishes outside ΩC , i.e., σ ≡ 0 in the “air” (or “empty”) region ΩE = R3 \ΩC . For
the sake of simplicity we further assume that the boundary B of ΩC is connected(∗). The electric permittivity ε
is equal to a positive constant εC inside ΩC and has another value εE in the exterior medium. Similarly,
the magnetic permeability µ is equal to µC > 0 in ΩC and to µE > 0 in ΩE . The treatment of piecewise
constant σC , εC , µC and µE can be made in a similar manner.

1.1. Maxwell and eddy current problems

Let ω > 0 be a fixed frequency. The time harmonic Maxwell equations are

curl E = −iωµH in R
3, (1)

curl H = (iωε+ σ)E + j0 in R
3, (2)
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1 IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.
http://perso.univ-rennes1.fr/martin.costabel, http://perso.univ-rennes1.fr/monique.dauge
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E (resp. H) is the electric (resp. magnetic) field and j0 is the source current density which is supposed to be
a L2(R3) field with support in ΩC and to be divergence free, i.e. div j0 = 0 in R3. Let us recall

Lemma 1.1. Let u ∈ L2(R3)3 be such that u|ΩE ≡ 0 and div u = 0 in R3. Then the normal trace u|ΩC · n
on B is zero (here n denotes the unit outward normal vector on B, pointing from ΩC to ΩE).

Thus the assumption on div j0 is equivalent to

div j0 = 0 in ΩC and j0 · n = 0 on B.

Note that, taking the divergence of equation (2), we obtain the following equation on the divergence of E:

div(iωε+ σ)E = 0 in R
3. (3)

Equations (1) – (2) have to be completed by conditions at infinity (Silver-Müller radiation conditions)

lim
|x|→∞

(
H× x− |x|E)

= 0. (4)

The time-harmonic eddy current problem [3, 10, 11, 22] reads

curl E = −iωµH in R
3, (5)

curl H = σE + j0 in R
3. (6)

Let us denote E|ΩC and E|ΩE by EC and EE , respectively. Now, taking the divergence of equation (6) we only
obtain, thanks to Lemma 1.1, div EC = 0 in ΩC and EC · n = 0 on B. These conditions have to be completed
by the gauge conditions:

div EE = 0 in ΩE and
∫

B

EE · n dS = 0. (7)

The condition at infinity takes the form

E(x) = O(|x|−1), H(x) = O(|x|−1) as |x| → ∞. (8)

Remark 1.1. Equations (5)–(6) are clearly obtained from (1)–(2) by setting ε to zero. The gauge conditions (7)
can also be obtained from (3): Since iωε+ σ is equal to the two non-zero constants iωεC + σ in ΩC and iωεE

in ΩE , (3) implies that div EC = 0 in ΩC , div EE = 0 in ΩE and (by a result similar to Lem. 1.1)

(iωεC + σC)EC · n = iωεEEE · n on B. (9)

The condition divEC = 0 implies by integration by parts that
∫

B EC · n = 0. Then, by (9), we obtain that∫
B

EE · n dS = 0. (10)

Setting εC = εE = 0, we obtain (7) and the two conditions issued from the equation div(σE) = 0, that is

div E = 0 in ΩC ∪ ΩE and EC · n = 0 on B. (11)

Thus we see that the gauge conditions (7) are natural. But we obtain them by first deducing conditions on the
divergence of the Maxwell solution E and then passing to the limit. The converse order does not provide (7).
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Remark 1.2. The conditions at infinity (4) imply the uniqueness of solutions for equations (1)–(2) (Rellich
lemma). Moreover, with the (exterior) wave number k := ω

√
εEµE , we have the following asymptotics at

infinity (here x̂ := x/|x|):
E(x) =

eik|x|

|x|
(
E∞(x̂) +O(|x|−1)

)
as |x| → ∞.

The function E∞ is the electric far field pattern, see [12].
Concerning equations (5)–(7), the conditions at infinity (8) also imply the uniqueness, and the following asymp-
totics at infinity holds [3, Prop. 3.1]

E(x) = O(|x|−2), H(x) = O(|x|−2) as |x| → ∞.

This means that the far field pattern goes to zero in the eddy current limit.

1.2. Eddy current limit

We want to give a sense to the notion of eddy current limit: This means that the quantities ωεC/σC

and ωεE/σC are small. For a conducting material, the permittivity εC is of the same order of magnitude than εE

(also denoted ε0), but εC/σC is very small. For moderate frequencies ω the quantities ωεC/σC and ωεE/σC are
still small. Let us fix two numbers ε̂C and ε̂E which are of the same order than σC and such that there exists
δ > 0 (thus δ is small)

εC = δε̂C and εE = δε̂E . (12)
Thus

iωε+ σ =
{
iωδε̂C + σC in ΩC

iωδε̂E in ΩE .
(13)

We fix σC , ω, ε̂C and ε̂E . The eddy current limit is the limit as δ → 0. This notion of limit coincides with that
presented in [11, Ch. 4].

Thus, we may say that this limit is a “low frequency limit” only in the special sense that it is not a high
frequency limit. This limit is not a limit as ω → 0. This fact is important, since there is a notion of high
frequency asymptotics inside the eddy current model, which gives rise to boundary layers inside the conductor
(skin effect).

1.3. Outline of the paper

In this paper, our main goal is the description of the singularities near the edges and corners of B of the eddy
current problem (5)–(8). Moreover, considering a one parameter family of Maxwell problems along the lines
of (12)–(13), we want to follow the singularities as δ → 0. The “standard” regularity and singularity results for
the Maxwell interface problem from [9, 15, 17] can be adapted for δ > 0, but not for the limit δ = 0.

We show here that the regularity and the singularities of the solution of the eddy current problem are related
to the regularity and the singularities of the interior Neumann Laplace operator, the exterior Dirichlet Laplace
operator and the interface Laplace operator (for the parameter µ). To our knowledge this coupling phenomenon
seems to be new. As in [15,17] our technique relies on a regularized formulation of the problem and on the use
of Mellin transformation.

Such results are useful for the numerical analysis of the eddy current problem as considered in [1, 22],
where certain refinement rules or weighted regularization are susceptible to give a better order of convergence
[6, 16, 19, 29].

Moreover, we show how the singularities of the eddy current problem are the limit as δ → 0 of the singularities
of the Maxwell problem.

It turns out that from the point of view of singularities, the eddy current limit δ → 0 behaves like a regular
perturbation problem. This means that one can choose the singular functions in such a way that they depend
analytically on δ for δ in a neighborhood of 0, see Section 7. It does not mean, however, that the regularity
of the solution as measured by Sobolev regularity in ΩC (or in ΩE) is a continuous function of δ: Indeed, if
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the conductor is convex, the electric field EC in the eddy current model will be a bounded function inside the
conductor, whereas the exterior electric field EE will be unbounded, in general. In the full Maxwell interface
problem, i.e. for any δ > 0, both parts EC and EE of the field will be unbounded, in general. In terms of
Sobolev indices, the regularity of EC may jump from Hs with 1

2 < s < 1 to more than H1 regularity as δ → 0.
Here is the outline of our paper: Since we are mainly interested in the singularities near B, and since their

structure is of local nature, we will define our one-parameter family of problems in a bounded domain Ω and
work in that framework in the remainder of the paper. In Section 2 we first replace the problems in R

3 with
problems in Ω, we propose equivalent regularized variational formulations and we prove the convergence of
solutions in the energy space in the eddy current limit, i.e. as δ → 0.

Section 3 is devoted to a splitting of the variational space into a regular vector field which is piecewise H1

and a singular part which is the gradient of a singular solution of a Laplace interface problem; this kind of
decomposition is in the spirit of [5, 7–9].

After a short description of the corner and edge singularities for the Laplace interface problem in Section 4,
we start the analysis of their dependence on the parameter δ and prove that their exponents (degrees) depend
continuously on δ up to the limit δ = 0.

We describe in Section 5 the corner and edge singularities for our eddy current problem (case when δ = 0,
the case δ > 0 being already investigated in [17]). Section 6 is devoted to the regularity of the solution of the
eddy current problem in terms of standard Sobolev spaces, we further give two different decompositions into a
regular part and a singular one.

Finally Section 7 analyzes the continuous dependence of the singular functions on the parameter δ using
Mellin symbols and the Cauchy residue formula.

For D a subdomain of R
3 we denote by Hs(D) the standard Sobolev space of order s, with norm denoted

by ‖ · ‖s,D.

2. Variational formulations

Let us take the polyhedron ΩC with connected boundary B as in the previous section and let Ω be a smooth
domain with trivial topology (for example a ball) which contains ΩC . Now the exterior domain ΩE is defined
as ΩE = Ω \ ΩC .

For a function u defined in Ω we set uC (resp. uE) its restriction to ΩC (resp. ΩE). For a function u defined
near B and such that the traces of uC and of uE on B have a meaning, we set [u] = uC−uE its jump through B.

The partial differential operator ∂n defined on B is the unit normal derivative pointing from ΩC to ΩE .

2.1. Strong form of equations

Instead of conditions at infinity (4) or (8), we will simply impose the perfect conductor boundary conditions
on the exterior boundary ∂Ω.

According to (13), we set ε̂ = ε̂C in ΩC and ε̂ = ε̂E in ΩE . Our Maxwell problem with parameter δ is
curl Eδ = −iωµHδ in Ω,
curl Hδ = (iωδε̂+ σ)Eδ + j0 in Ω,
Eδ × n = 0 and Hδ · n = 0 on ∂Ω,

(14)

whereas the eddy current problem is

curl E0 = −iωµH0 in Ω,
curl H0 = σE0 + j0 in Ω,

div E0 = 0 in ΩE ,∫
B

E0
E · n dS = 0
E0 × n = 0 and H0 · n = 0 on ∂Ω.

(15)



SINGULARITIES OF EDDY CURRENT PROBLEMS 811

The resolution of the last problem is usually made by eliminating either the electric field (H-formulation or
magnetic approach [2, 10, 11]) or the magnetic field (E-formulation or electric approach [1, 3, 10, 11, 22]). Here
we focus on the electric approach, for both (14) and (15). We find the following systems of equations for any δ.
This includes for δ ≥ 0 both the Maxwell and the eddy current problems.

(i) curl µ−1
C curl Eδ

C + iωσCEδ
C − δω2ε̂CEδ

C = −iωj0 in ΩC ,

(ii) div Eδ
C = 0 in ΩC ,

(iii) curl µ−1
E curl Eδ

E − δω2ε̂EEδ
E = 0 in ΩE ,

(iv) div Eδ
E = 0 in ΩE ,

(v)
∫

B Eδ
E · n dS = 0

(vi) [Eδ × n] = 0 on B,

(vii) iδω[ε̂Eδ · n] + σCEδ
C · n = 0 on B,

(viii) Eδ × n = 0 on ∂Ω.

(16)

The magnetic field is then given by Hδ = i
ωµ curl Eδ in Ω.

2.2. Variational space and forms

We now propose a variational space suitable for a regularized formulation, and independent of δ, i.e. suitable
both for the Maxwell and eddy current problems. Let H0(curl ,Ω) be the standard space

H0(curl ,Ω) =
{
u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3, u× n = 0 on ∂Ω

} ·
Our variational space is Y(Ω) defined as

Y(Ω) =
{
u ∈ H0(curl ,Ω) : div uC ∈ L2(ΩC), div uE ∈ L2(ΩE),

∫
B

uE · n = 0
}

equipped with the norm

‖u‖2
Y(Ω)

= ‖u‖2
0,Ω + ‖ curl u‖2

0,Ω + ‖ divuC‖2
0,ΩC

+ ‖ divuE‖2
0,ΩE

.

The gradient fields belonging to Y(Ω) are associated with potentials ϕ in the space{
ϕ ∈ L2(Ω) : ϕC ∈ H1(ΩC), ϕE ∈ H1(ΩE),[

ϕ
]

= c1 on B, ϕ = 0 on ∂Ω, c1 ∈ C,

∆ϕC ∈ L2(ΩC), ∆ϕE ∈ L2(ΩE),
∫

B

∂nϕE dS = 0
}
· (17)

For such potentials, the associated field in Y(Ω) is the “broken” gradient field ∇̃ϕ ∈ L2(Ω)3 defined as

(∇̃ϕ)
∣∣
ΩC

= ∇ϕC and (∇̃ϕ)
∣∣
ΩE

= ∇ϕE .

The following result on potentials in the exterior part ΩE will be used several times. Note that B and ∂Ω
are the two components of the boundary ∂ΩE of ΩE .
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Lemma 2.1. For any f ∈ L2(ΩE), v ∈ H1/2(B) and b ∈ C, there exists a unique solution ϕ ∈ H1(ΩE) of the
following boundary value problem

∆ϕ = f in ΩE ,
ϕ = 0 on ∂Ω, ϕ = v + c on B for some c ∈ C,∫

B ∂nϕdS = b.
(18)

There is an estimate
‖ϕ‖1,ΩE

≤ C
(‖f‖0,ΩE

+ ‖v‖H1/2(B)/C
+ |b|). (19)

Proof. Let ϕ0 be the solution of the Dirichlet problem ∆ϕ0 = f in ΩE , ϕ0 = 0 on ∂Ω and ϕ0 = v on B.
Let q be the solution of the problem ∆q = 0 in ΩE , q = 0 on ∂Ω, q = constant on B and

∫
B
∂nq = 1 (compare

with [4, Prop. 3.18]).
With ` =

∫
B ∂nϕ0, the function ϕ := ϕ0 + (b− `)q is the solution of (18).

For the estimate (19), one notes that

‖ϕ0‖1,ΩE
+ |`| ≤ C1

(‖f‖0,ΩE
+ ‖v‖1/2,B

)
and hence

‖ϕ‖1,ΩE
≤ ‖ϕ0‖1,ΩE

+ (|`|+ |b|)‖q‖1,ΩE

≤ C2

(‖f‖0,ΩE
+ ‖v‖1/2,B + |b|)

with C2 = max{C1, C1‖q‖1,ΩE
, ‖q‖1,ΩE

}.
We can replace ‖v‖H1/2(B) by ‖v‖H1/2(B)/C

here because ϕ depends only on v modulo the constants. �
Let us further define the following bilinear form on Y(Ω): For u, v ∈ Y(Ω):

aδ(u,v) =
∫

Ω

(
µ−1 curl u · curl v − δω2ε̂u · v)

dx+ iω

∫
ΩC

σCu · v dx

and its regularized version

aδ
R(u,v) = aδ(u,v) +

∫
ΩC

div uC div vC dx +
∫

ΩE

div uE div vE dx.

Lemma 2.2. Let the positive constants µC , µE, ε̂C , ε̂E, σC and ω be fixed. Then there exists δ0 > 0 such that
for all δ ∈ [0, δ0], aδ

R is strongly coercive on Y(Ω): ∃α ∈ C, ∃c0 > 0, ∀δ ∈ [0, δ0], ∀u ∈ Y(Ω)

Re
(
αaδ

R(u,u)
) ≥ c0‖u‖2

Y(Ω)
. (20)

Proof. Since |aδ
R(u,u) − a0

R(u,u)| ≤ Cδ‖u‖2
0,Ω ≤ Cδ‖u‖2

Y(Ω), it is clearly enough to prove the coerciveness
property for δ = 0: We check that if the coerciveness estimate (16) holds for δ = 0 with the constant c0, then
it holds for any δ ∈ [0, δ0] with δ0 = c0/2C and with c0/2 instead of c0.
Let us take α = e−iπ/4. Then

Re
(
αa0

R(u,u)
)

& ‖ curl u‖2
0,Ω

+ ‖u‖2
0,ΩC

+ ‖ divu‖2
0,ΩC

+ ‖ divu‖2
0,ΩE

.

It remains to prove that the right hand side above is an upper bound for ‖u‖2
0,ΩE

.
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Let w ∈ H1(Ω)3 be such that curl w = curl u in Ω and w×n = 0 on ∂Ω. This exists according to [4, Lem. 3.5]
and can be chosen such that div w = 0 in Ω, with the estimate

‖w‖1,Ω . ‖ curl u‖0,Ω.

Since Ω is simply connected, there is ϕ ∈ H1
0 (Ω) such that

u = w +∇ϕ in Ω.

On ΩE , ϕ satisfies 
∆ϕ = div u in ΩE ,
ϕ = 0 on ∂Ω,∫

B
∂nϕdS =

∫
B

w · n dS.
According to Lemma 2.1, we have an estimate

‖ϕ‖1,ΩE
≤ C

(
‖ div u‖0,ΩE

+ ‖ϕ|B‖H1/2(B)/C
+ |

∫
B

w · n dS|
)
.

Because of
‖u‖0,ΩE

≤ ‖w‖0,ΩE
+ ‖∇ϕ‖0,ΩE

. ‖ curl u‖0,ΩE
+ ‖ϕ‖1,ΩE

,

it remains to bound ‖ϕ|B‖H1/2(B)/C
and | ∫B w · n dS|.

The latter clearly satisfies | ∫B w · n dS| . ‖w‖1,Ω . ‖ curl u‖0,Ω.
Finally (see [20] for the trace estimates)

‖ϕ|B‖H1/2(B)/C
≤ ‖n×∇ϕ‖−1/2,B ≤ ‖n× u‖−1/2,B + ‖n×w‖−1/2,B

. ‖u‖H(curl ,ΩC) + ‖w‖1,Ω

. ‖u‖0,ΩC
+ ‖ curl u‖0,ΩC

+ ‖ curl u‖0,Ω. �

2.3. Variational problems

For all δ ∈ [0, δ0], we consider the variational problem:

Find E ∈ Y(Ω) s. t. aδ
R(E,v) = −iω(j0,v)ΩC , ∀v ∈ Y(Ω), (21)

where (·, ·)D is the L2(D)3 hermitian inner product.

Theorem 2.3. Let j0 satisfy

j0 ∈ L2(Ω), j0 = 0 in ΩE , div j0 = 0 in ΩC , j0 · n = 0 on B. (22)

Let the positive constants µC , µE, ε̂C, ε̂E, σC and ω be fixed. With δ0 given in Lemma 2.2, for all δ ∈ [0, δ0]:
(i) there exists a unique solution Eδ to problem (21);
(ii) the solution Eδ satisfies all equations in (16);
(iii) the norms of the Eδ in Y(Ω) are uniformly bounded:

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ‖Y(Ω) ≤ C;

(iv) as δ → 0, Eδ → E0 and we have the convergence estimate

∃C > 0, ∀δ ∈ [0, δ0], ‖Eδ −E0‖Y(Ω) ≤ Cδ.



814 M. COSTABEL ET AL.

Proof. (i) is a mere consequence of Lemma 2.2.
(ii) We first take as test functions v = ∇ϕ, with ϕC ∈ H1

0 (ΩC ,∆) (†) extended by zero outside ΩC . This yields∫
ΩC

(
(iωσ − δω2ε̂)E · ∇ϕ+ div E div∇ϕ)

dx = −iω
∫

ΩC

j0 · ∇ϕdx.

By Green’s formula and the properties of j0, we obtain∫
ΩC

div E
(
(−iωσ + δω2ε̂)ϕ+ ∆ϕ

)
dx = 0, ∀ϕ ∈ H1

0 (ΩC ,∆).

This yields (16) (ii) since (−iωσ + δω2ε̂)ϕ+ ∆ϕ runs through the whole L2(ΩC) for ϕ ∈ H1
0 (ΩC ,∆).

A similar argument in ΩE yields (16) (iv) since, as a consequence of Lemma 2.1, for δ small enough, the operator
ϕ 7→ δω2ε̂ϕ+ ∆ϕ is surjective from{

ϕ ∈ H1(ΩE) : ϕ|B = c, ϕ|∂Ω = 0,
∫

B

∂nϕdS = 0, ∆ϕ ∈ L2(ΩE)
}

onto L2(ΩE).
Next for any χ ∈ H1/2(B), we take v = ∇ϕ with ϕ in the space (17) such that ϕE is solution of the Dirichlet
problem ∆ϕE = 0 in ΩE and ϕE = χ+ c on B (we use once more Lem. 2.1). Using this test function in (21),
we get ∫

ΩC

(iδωε̂E + σE) · ∇ϕdx +
∫

ΩE

iδωε̂E · ∇ϕdx = −
∫

ΩC

j0 · ∇ϕdx.

Hence ∫
B

(iδω[ε̂E] + σE) · n χ dS − c

∫
B

iδωε̂EEE · n dS = 0.

Since
∫

B
EE · n = 0, we conclude that we have (16) (vii).

The other equations of (16) are then obtained in a standard way.

(iii) is a consequence of the uniform coerciveness proved in Lemma 2.2.

(iv) We have for all v ∈ Y(Ω):

a0
R(Eδ −E0,v) = a0

R(Eδ,v)− aδ(Eδ,v) = δ

∫
Ω

ω2ε̂Eδ · v dx.

Taking v = Eδ −E0 and using the uniform coerciveness estimate, we obtain

‖Eδ −E0‖2
Y(Ω)

≤ Cδ‖Eδ‖L2(Ω)‖Eδ −E0‖L2(Ω).

With the help of the continuous imbeddings Y(Ω) ⊂ L2(Ω)3 ⊂ Y′(Ω) we conclude, thanks to (iii). �

Remark 2.1. All results above extend to the case when B is not simply connected. Let Bi for i = 1, . . . , I be
the connected components of B. Let us prove that

(E,H) solution of (1)–(2) =⇒
∫

Bi

EE · n dS = 0, i = 1, . . . , I. (23)

(†)Here H1
0 (ΩC , ∆) is the subspace of the ϕ ∈ H1

0 (ΩC) such that ∆ϕC ∈ L2(ΩC).
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The equation div EC = 0 is not sufficient now to deduce (23). By [4, Lem. 3.5] we know that there exists a
vector potential J0 ∈ H1(curl ,ΩC) for j0: j0 = curl J0 in ΩC . Therefore equation (2) yields that

E = curl ψ with ψ = (iωεC + σC)−1(H− J0).

The proof goes as in [4, Lem. 3.5]: Let µi ∈ C∞0 (R3) such that µi ≡ 1 in a neighborhood of Bi and µi ≡ 0 in a
neighborhood of the other connected components of B. Then∫

Bi

EC ·n dS =
∫

ΩC

div{curl (µiψ)} dx = 0.

Then we deduce that
∫

Bi
EE ·n dS = 0 as before. The gauge conditions for the eddy current problem are now

div EE = 0 in ΩE and ∫
Bi

EE · n dS = 0, i = 1, . . . , I. (24)

In the definition of the space Y(Ω) the gauge conditions (24) are now present.
The modification of Lemma 2.1 is obvious: The boundary conditions on Bi are ϕ = v+ci and

∫
Bi
∂nϕ dS = bi

with bi given constants. The estimate (19) contains the term
∑

i |bi| instead of |b|. The proof relies on the
full [4, Prop. 3.18]. Lemma 2.2 and Theorem 2.3 are still valid under these assumptions. The extension of the
proofs is straightforward.

3. Singularities of the variational spaces

In this section, we investigate the splitting of the variational solutions of (21) into the sum of a regular field
w ∈ H1(Ω)3 and of a singular gradient ∇Φ, where Φ is not, in general, in H2(Ω).

3.1. General situation

The space Y(Ω) contains some of the essential boundary conditions appearing in (16), namely, (16) (vi)
and (viii). But the essential condition (16) (vii) depends on δ. On the other hand we do not impose the gauge
condition

∫
B

EE ·n dS = 0 for this analysis. Let us then set

X(Ω) =
{
u ∈ H0(curl ,Ω) : div uC ∈ L2(ΩC), div uE ∈ L2(ΩE)

}
and for δ ≥ 0:

Xδ(Ω) = {u ∈ X(Ω) : iδω[ε̂u · n] + σCuC · n = 0 on B}·
In fact, the solution of (21) belongs to Xδ(Ω). Note that the variational formulation could equivalently be set
in Xδ ∩ Y(Ω), but, in order to prove the convergence result as δ → 0 we preferred to use a space independent
of δ.

Let us recall more classical notations [15]: For a domain D

XN (D) = {u ∈ H0(curl , D) : div u ∈ L2(D)},

and
XT (D) = {u ∈ H(curl , D) : div u ∈ L2(D), u · n = 0 on ∂D}·

By a straightforward adaptation of the result [17, Th. 3.5] to the situation of complex coefficients, we obtain
the splitting result for the spaces Xδ(Ω) when δ > 0. In order to state it, we need the introduction of the
interface Laplacian ∆δ over H1

0 (Ω):

(
∆δ ϕ, ψ

)
Ω

=
∫

ΩC

(σC + iδωε̂C)∇ϕC · ∇ψC +
∫

ΩE

(iδωε̂E)∇ϕE · ∇ψE , (25)
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for any ϕ, ψ ∈ H1
0 (Ω). Then for δ > 0, under a technical condition (‡), any field v ∈ Xδ(Ω) admits a

decomposition
v = w +∇Φ, (26)

where w ∈ Xδ(Ω) is such that wC ∈ H1(ΩC)3, wE ∈ H1(ΩE)3 and Φ ∈ H1
0 (Ω) satisfies ∆δ Φ ∈ L2(Ω).

3.2. The eddy current case

The goal of this subsection is to describe the decomposition of vector fields from the eddy current variational
space X0(Ω) into regular fields and singular ones in the spirit of [5,7–9,15,17] (and even using some results from
these papers).

Theorem 3.1. Any field v ∈ X0(Ω) admits a decomposition

v = w +∇Φ, (27)

with w ∈ X0(Ω) such that wC ∈ H1(ΩC)3, wE ∈ H1(ΩE)3 and the potential Φ ∈ H1(Ω) satisfies

∆ΦC ∈ L2(ΩC), (28)
∂nΦC = 0 on B, (29)
∆ΦE ∈ L2(ΩE), (30)
ΦE = 0 on ∂Ω. (31)

Proof. We remark that the restriction vC of v to ΩC belongs to XT (ΩC). Therefore by Theorem 1.1 of [15]
(see also [7, 8] or Th. 3.5 of [17]), vC admits a decomposition

vC = wC +∇ΦC in ΩC , (32)

where wC ∈ H1(ΩC)3 ∩ XT (ΩC) and ΦC ∈ H1(ΩC) satisfies (28)–(29).
Now consider χ ∈ H1(ΩE) the unique weak solution of

∆χ = 0 in ΩE ,

χ = ΦC on B.

Denote by Φ̃C the function defined by

Φ̃C =
{

ΦC in ΩC ,
χ in ΩE .

By construction Φ̃C belongs to H1(Ω). Denote furthermore by w̃C an extension of wC to Ω which belongs
to H1(Ω)3 and is zero on ∂Ω. Let us now set

ṽC = w̃C +∇Φ̃C . (33)

Then by construction this is equal to vC in ΩC and it satisfies

[ṽC × n] = 0 on B.

These properties imply that uE defined in ΩE by

uE = vE − ṽC |ΩE
(34)

(‡)The interface Laplacian ∆δ has no edge exponent equal to 1 and no corner exponent equal to 1
2
. This condition is probably

not necessary.
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satisfies

uE × n = 0 on B,
curl uE = curl vE − curl w̃C |ΩE

∈ L2(ΩE)3,

div uE = div vE − div w̃C |ΩE
− div(∇χ) ∈ L2(ΩE).

This means that uE belongs to XN (ΩE). Again by Theorem 1.1 of [15] (see also [7, 8] or Th. 3.5 of [17])
uE admits a decomposition

uE = wRE +∇ϕE in ΩE , (35)

where wRE ∈ H1(ΩE)3 ∩ XN (ΩE) and ϕE belongs to H1(ΩE) and satisfies (30) and the Dirichlet boundary
condition

ϕE = 0 on B ∪ ∂Ω.

This decomposition (35) into the splitting (34) gives with the help of (33)

vE = wRE +∇ϕE + w̃C |ΩE
+∇χ in ΩE ,

or equivalently
vE = wE +∇ΦE in ΩE , (36)

once we set wE = wRE + w̃C |ΩE and ΦE = ϕE + χ. The conclusion follows from (32), (36) and the above
properties of wRE , w̃C , φE and χ. �

The relation between the general decomposition (26) and Theorem 3.1 in the limit when δ → 0 is not
straightforward and will be clarified later.

4. Laplace singularities for the potentials

The singularities of the Maxwell and eddy current problems are produced by the corners a and the edges e
of ΩC , – Note that the corners and edges are all part of the interface B. Concerning the Maxwell interface
problems (corresponding to δ > 0), these singularities are known [17] to derive from those of scalar problems
for potentials, namely ∆δ and ∆µ, where ∆δ is defined in (25) and the latter operator is defined as:

(
∆µϕ, ψ

)
Ω

=
∫

ΩC

µC∇ϕC · ∇ψC +
∫

ΩE

µE∇ϕE · ∇ψE ,

for any ϕ, ψ ∈ H1(Ω).
We will now recall the singularities of these two interface Laplacians ∆δ (electric) and ∆µ (magnetic). For

the sake of brevity we restrict ourselves to a minimal description and refer to [15,17,24,26–28] for more details.
Moreover, we describe the singularities of the coupled Neumann-Dirichlet problem (28)–(31) of the eddy current
problem. We show that their exponents (i.e. degrees of homogeneity) are the limit of the interface singularity
exponents of ∆δ as δ → 0. We give complements on the behavior of all singularities (scalar and Maxwell) in
the eddy current limit as δ → 0 in Section 7.

4.1. General definitions for Laplace singularities in cones and sectors

As we know from [23], the singularities (singular parts of solutions) of elliptic problems at a corner 0 are
obtained as non-zero quasi-homogeneous solutions of the same problem with zero right hand side in the infinite
cone (or sector) which coincides with the finite domain at this corner 0.
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Let Γ be an infinite cone in Rd for d = 3 or 2 (Γ is then a sector), centered in 0. Let (ρ, ϑ) be the polar
coordinates centered at 0. Let G be the intersection of Γ with the unit sphere. The singularities in Γ are
quasi-homogeneous functions: Let us set for λ ∈ C:

Sλ(Γ) =

{
Ψ(x) = ρλ

Q∑
q=0

(log ρ)qψq(ϑ) : ψq ∈ H1(G)

}
·

The singularities of an elliptic problem are the non-zero solutions in some Sλ(Γ) of the same problem with zero
right hand side. The corresponding λ are the exponents of singularities.

The set of exponents can be found by searching solutions in the subspace of homogeneous functions, Sλ(Γ) :={
Ψ(x) = ρλψ(ϑ) : ψ ∈ H1(G)

}·
4.1.1. Dirichlet problem.

We denote the set of exponents of the Dirichlet problem for ∆ on Γ by ΛDir(Γ), i.e. the λ for which there
exists a non-zero Ψ ∈ Sλ(Γ), solution of the problem

∆Ψ = 0 in Γ and Ψ = 0 on ∂Γ. (37)

For λ in this set, let Zλ
Dir(Γ) be the corresponding space of singularities.

Let L be the positive Laplace-Beltrami operator on the unit sphere (L = −∂2
ϑ if d = 2). For Ψ(x) = ρλψ(ϑ),

we have −∆Ψ = ρλ−2(Lψ − νψ) where

ν = λ2 if d = 2 and ν = λ(λ+ 1) if d = 3. (38)

Thus it is standard to prove that ΛDir(Γ) is the set λ such that ν in (38) is an eigenvalue of the Dirichlet problem
for L on G. Moreover Zλ

Dir(Γ) is the space of ρλψ(ϑ) with ψ an eigenvector associated with the eigenvalue ν
in (38).

4.1.2. Neumann problem.

The set ΛNeu(Γ) of Neumann exponents is similarly defined as the λ for which there exists a non-zero
Ψ ∈ Sλ(Γ), solution of

∆Ψ = 0 in Γ and ∂nΨ = 0 on ∂Γ. (39)

The space Zλ
Neu(Γ) is defined analogously and the Neumann eigenpairs of L on G yield the singularities as

above.

4.1.3. Interface problems.

The interface problems that we consider in most of this paper are of simple type. They correspond to
the separation of the whole space Γ = R

2 or R3 into two conical regions ΓC and ΓE , i.e. Γ = ΓC ∪ ΓE and
ΓC ∩ ΓE = ∅. We note that

Sλ(Γ) =
{
Ψ : ΨC ∈ Sλ(ΓC), ΨE ∈ Sλ(ΓE), ΨC = ΨE on I := ∂ΓC = ∂ΓE

}·
Let α be a piecewise constant function, equal to αC ∈ C in ΓC and to αE ∈ C in ΓE . The set of exponents of
the interface problem associated with the operator

(Φ,Ψ) 7−→
∫

ΓC

αC∇ΦC · ∇ΨC +
∫

ΓE

αE∇ΦE · ∇ΨE , (40)
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is the set Λα(Γ) of the λ for which there exists a non-zero Ψ ∈ Sλ(Γ), solution of (see, e.g., [19,24,25,29])
(i) ∆ΨC = 0 in ΓC ,

(ii) ∆ΨE = 0 in ΓE ,

(iii) αC∂nCΨC + αE∂nEΨE = 0 on I .

(41)

For λ in this set, let Zλ(Γ;α) be the corresponding space of singularities. Then the λ ∈ Λα(Γ) are such that ν
in (38) are the eigenvalues of the problem

ψ ∈ H1(Sd−1), ∀ϕ ∈ H1(Sd−1),
∫

Sd−1
α∇ψ · ∇ϕ = ν

∫
Sd−1

αψϕ. (42)

When α > 0, the space Zλ(Γ;α) contains only homogeneous functions of the form ρλψ(ϑ) with ψ solution
of (42).

4.2. The eddy current limit for potentials

For δ > 0, the singularities of the electric transmission Laplacian ∆δ are the non-zero Ψ ∈ Sλ(Γ) solution of
the problem (41) with α = αδ where

αδ
C = σC + iδωε̂C and αδ

E = iδωε̂E. (43)

Going back to problem (28)–(31) for the eddy current potentials, we see that its singularities are the solutions
Ψ ∈ Sλ(Γ) of the problem (41) with α = α0, where α0

C = σC and α0
E = 0. Inserting Ψ(x) = ρλψ(ϑ) in (41)

with α = α0 we obtain the eigenvalue problem:
(i) LψC = νψC in GC ,

(ii) LψE = νψE in GE ,

(iii) ∂nCψC = 0 on J := ∂GC = ∂GE .

(44)

We are going to exhibit a common variational formulation for problems (42) and (44), and deduce that the
spectrum of (42) for α = αδ tends to the spectrum of (44) as δ → 0.

Let us divide equation (42) for α = αδ by σC + iδωε̂C and let us set

η =
iδωε̂E

σC + iδωε̂C
· (45)

Then the eigenvalue problem (42) with α = αδ becomes
Find ψ ∈ H1(Sd−1), ψ 6= 0, ∀ϕ ∈ H1(Sd−1):∫

GC

∇ψC · ∇ϕC + η

∫
GE

∇ψE · ∇ϕE = ν

{∫
GC

ψC ϕC + η

∫
GE

ψE ϕE

}
· (46)

Let us denote by PE the harmonic extension from GC into GE : For ψC in H1(GC), PEψC is the solution of
Lϕ = 0 in GE and ϕ = ψC on ∂GE = ∂GC . Consequently there holds

∀ϕ0 ∈ H1
0 (GE),

∫
GE

∇(PEψC) · ∇ϕ0 = 0. (47)

For any ψ ∈ H1(Sd−1), we have

ψE = PEψC + ψ0, where ψ0 ∈ H1
0 (GE).
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We write similarly ϕE = PEϕC + ϕ0, with ϕ0 ∈ H1
0 (GE). Inserting this in (46) and using (47), we obtain

∀ϕC ∈ H1(GC) and ∀ϕ0 ∈ H1
0 (GE):∫

GC

∇ψC · ∇ϕC + η

∫
GE

(∇PEψC · ∇PEϕC +∇ψ0 · ∇ϕ0

)
=

ν

{∫
GC

ψC ϕC + η

∫
GE

(
PEψC PEϕC + PEψC ϕ0 + ψ0 PEϕC + ψ0 ϕ0

)}
,

i.e.

∀ϕC ∈ H1(GC),
∫

GC

∇ψC · ∇ϕC + η

∫
GE

∇PEψC · ∇PEϕC = (48)

ν

{∫
GC

ψC ϕC + η

∫
GE

(
PEψC PEϕC + ψ0 PEϕC

)}
and

∀ϕ0 ∈ H1
0 (GE),

∫
GE

∇ψ0 · ∇ϕ0 = ν

∫
GE

(
PEψC ϕ0 + ψ0 ϕ0

)
. (49)

For η = 0, equation (48) becomes

∀ϕC ∈ H1(GC),
∫

GC

∇ψC · ∇ϕC = ν

∫
GC

ψC ϕC . (50)

The solutions of the system (49)–(50) are the solutions of system (44). Thus we have written the eigenprob-
lems (42) for α = αδ and (44) using the unified variational formulation (48)–(49), which has the form
Find (ψC , ψ0) ∈ H1(GC)×H1

0 (GE), ∀(ϕC , ϕ0) ∈ H1(GC)×H1
0 (GE):

aη(ψC , ψ0 ; ϕC , ϕ0) = νbη(ψC , ψ0 ; ϕC , ϕ0)

where aη and bη depend continuously on η ∈ [0, η0].
As a consequence of the analysis above, we have proved the following:

Proposition 4.1.
(i) For η = 0, the set of eigenvalues ν of the system (49)–(50) is the union of the set of Neumann eigenvalues
in GC and the set of Dirichlet eigenvalues in GE .
(ii) When η → 0, the eigenvalues of the system (48)–(49) tend to the eigenvalues of the system (49)–(50).

4.3. Corner singularities

Now, we go back to the specific description of the singularities of the interface Laplacians ∆δ (and prob-
lem (28)–(31) for δ = 0) and ∆µ at the corners of ΩC . Note that the external Dirichlet or Neumann boundary
conditions hold on the external smooth boundary ∂Ω and do not influence the interface singularities.

Fix a corner a ∈ B. There exist infinite polyhedral cones ΓC,a and ΓE,a with vertex a and such that for
ρ0 > 0 small enough

ΩC ∩ B(a, ρ0) = ΓC, a ∩ B(a, ρ0) and ΩE ∩ B(a, ρ0) = ΓE, a ∩ B(a, ρ0).

Note that ΓC,a ∪ ΓE, a is the full space Γ = R3. We refer to this conical partition of R3 associated with a by
the notation Γa.

Then we denote by Λδ(Γa) the set of the exponents determined by problem (41) with α = αδ, see (43), for
δ ≥ 0, and with ΓC = ΓC, a and ΓE = ΓE,a. We denote similarly the spaces of singularities by Zλ(Γa, δ). As a
consequence of Proposition 4.1, we obtain
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Lemma 4.2. For δ = 0, the set of singular exponents satisfies

Λ0(Γa) = ΛNeu(ΓC, a) ∪ ΛDir(ΓE, a).

When δ → 0, the set Λδ(Γa) tends to Λ0(Γa).

The exponents and singular spaces associated with ∆µ are denoted by Λµ(Γa) and Zλ(Γa, µ), according to
Section 4.2 (iii).

4.4. Edge singularities

Let e ⊂ B be an edge of ∂ΩC . There exist two plane sectors ΓC, e and ΓE, e such that for any point x ∈ e
there exists a neighborhood B of x and a Cartesian system of coordinates such that

ΩC ∩ B = (ΓC, e × R) ∩ B and ΩE ∩ B = (ΓE, e × R) ∩ B.

Let ωC,e and ωE, e be the opening of ΓC, e and ΓE, e respectively. Of course we have ωC, e + ωE, e = 2π. We
refer to this partition of R2 into two sectors associated with e by the notation Γe.

Like for corners, we denote by Λδ(Γe) the set of the exponents determined by problem (41) with α = αδ,
see (43), for δ ≥ 0, and with ΓC = ΓC, e and ΓE = ΓE, e. We denote similarly the spaces of singularities
by Zλ(Γe, δ). As a consequence of Proposition 4.1, we obtain

Lemma 4.3. For δ = 0, the set of singular exponents satisfies

Λ0(Γe) =
{

kπ

ωC,e
: k ∈ Z

}
∪

{
kπ

ωE,e
: k ∈ Z \ {0}

}
·

For δ > 0, Λδ(Γe) is the set of λ =
√
ν with ν solution in C of the equation

(1 + η) sin νπ = ±(1− η) sin ν(π − ωC, e), with η given in (45).

When δ → 0, the set Λδ(Γe) tends to Λ0(Γe).

The exponents and singular spaces associated with ∆µ are denoted by Λµ(Γe) and Zλ(Γe, µ), according to
Section 4.2 (iii).

5. Corner and edge singularities of the eddy current problem

The singularities of the solution Eδ of problem (16) for δ > 0 are those of a Maxwell transmission problem,
very similar to that investigated in [17]. Here, we concentrate on the solution of the eddy current problem
E = E0, which is also the solution of the regularized variational formulation (21) for δ = 0, i.e.

Find E ∈ Y(Ω) s. t. a0
R(E,v) = −iω(j0,v)ΩC , ∀v ∈ Y(Ω). (51)

In this section we describe the corner and edge singularities of problem (51). These singularities are obtained
as in [15, 17] with the necessary adaptations.

5.1. Corner singularities

Fix a corner a of ΩC and denote by (ρa, ϑa) the spherical coordinates centered at a. Denote furthermore
by ΓC, a (resp. ΓE, a) the infinite polyhedral cone which coincides with ΩC (resp. ΩE) near a. Like in Section 4.3,
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we denote by Γa the space R3 when we refer to its partition into ΓC, a and ΓE, a. For shortness we now drop
the index a. As usual we are looking for solutions of the homogeneous eddy current problem in the space

Sλ(Γ) =

{
u ∈ Xloc(Γ) :div uC ∈ H1

loc(ΓC), div uE ∈ H1
loc(ΓE),

u(x) = ρλ

Q∑
q=0

(log ρ)qUq(ϑ)

}
,

the index loc meaning that the properties hold in all bounded domains far from a. This means that we look for
a non-polynomial solution u ∈ Sλ(Γ) of (the last two boundary conditions may be justified by taking arbitrary
right-hand sides f ∈ L2(Ω) in (51), using arguments as in Th. 1.1 of [17])

curl (µ−1
C curl u)−∇div u = 0 in ΓC ,

curl (µ−1
E curl u)−∇div u = 0 in ΓE ,

uC · n = 0 on I := ∂ΓC = ∂ΓE ,
[u× n] = 0 on I,
[µ−1 curl u× n] = 0, [curl u · n] = 0 on I,
∂n(div uC) = 0 on I,
div uE = 0 on I.

(52)

If a nontrivial solution exists then we say that λ is an eddy current corner exponent.
For the sake of simplicity we assume that ΓC and ΓE are simply connected, the general case can be treated

as in [15] and simply yields additional “topological” singular exponents.
As in [15, 17], this problem is split up into three subproblems by introducing the auxiliary unknowns

ψ = µ−1 curl u

and

q =
{

div vC in ΓC ,
div vE in ΓE .

With these notations, problem (52) is equivalent to looking for q,ψ,u, successive solutions of
∆q = 0 in ΓC ,
∆q = 0 in ΓE ,
∂nqC = 0 on I,
qE = 0 on I,

(53)


curl ψ = ∇q, div(µCψ) = 0 in ΓC ,
curl ψ = ∇q, div(µEψ) = 0 in ΓE ,
[ψ × n] = 0, [µψ · n] = 0 on I,

(54)


curl u = µCψ, div u = q in ΓC ,
curl u = µEψ, div u = q in ΓE ,
uC · n = 0 on I,
[u× n] = 0 on I.

(55)

This means that we have three types of singularities:
Type 1: q = 0, ψ = 0 and u is a general solution of (55);
Type 2: q = 0, ψ is a general solution of (54) and u a particular solution of (55);
Type 3: q is a general solution of (53), ψ a particular solution of (54) and u a particular solution of (55).
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These three types of singularities may be described with the help of the corner singularities of the Neumann
problem in ΓC , of the Dirichlet problem in ΓE and of the transmission operator ∆µ.

Since for our problem (51), div EC and div EE are regular, we do not describe the singularities of type 3
since they cannot occur for any solution of (51).

Let us start with the singularity of type 1:

Lemma 5.1. Assume that λ 6= −1. Then u ∈ Sλ(Γ) is a singularity of type 1 if and only if (i) or (ii) below
holds.
(i) λ+ 1 belongs to ΛNeu(ΓC), u = ∇Φ, with ΦC ∈ Zλ+1

Neu (ΓC) and ΦE ∈ Sλ+1(ΓE) solution of{
∆ΦE = 0 in ΓE ,
ΦE = ΦC on I.

(56)

(ii) λ+ 1 belongs to ΛDir(ΓE), u = ∇Φ, with ΦC = 0 and ΦE ∈ Zλ+1
Dir (ΓE).

Proof. As

curl uC = 0 in ΓC ,

curl uE = 0 in ΓE ,

there exists ΦC ∈ Sλ+1(ΓC) and ΦE ∈ Sλ+1(ΓE) such that

uC = ∇ΦC in ΓC ,

uE = ∇ΦE in ΓE .

From (55) we deduce that 
∆ΦC = 0 in ΓC ,
∆ΦE = 0 in ΓE ,
∂nΦC = 0 on I,
ΦC = ΦE on I.

Then either ΦC is not zero and we are in the case (i) or ΦC = 0 and we are in the case (ii). �

Lemma 5.2. Assume that λ > 0. Then u ∈ Sλ(Γ) is a singularity of type 2 if and only if λ belongs to Λµ(Γ),
ψ = ∇Ψ, with Ψ ∈ Zλ(Γ, µ) and u given by

u =
1

λ+ 1
(µ(∇Ψ × x) +∇r) , (57)

where rC ∈ Sλ+1(ΓC), rE ∈ Sλ+1(ΓE) are solutions of
∆rC = 0 in ΓC ,
∆rE = 0 in ΓE ,
∂nrC = −µC(∇ΨC × x) · n on I,
rC = rE on I.

(58)

Proof. As

curl ψC = 0 in ΓC ,

curl ψE = 0 in ΓE ,
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there exists ΨC ∈ Sλ(ΓC) and ΨE ∈ Sλ(ΓE) such that

ψC = ∇ΨC in ΓC ,

ψE = ∇ΨE in ΓE .

From (54) we deduce that 
div(µC∇ΨC) = 0 in ΓC ,
div(µE∇ΨE) = 0 in ΓE ,
[Ψ] = 0, [µ∂nΨ] = 0 on I.

This means that Ψ ∈ Zλ(Γ, µ).
Now we readily check that u in the form (57) is solution of (55) if and only if r is solution of (58), whose

solution exists by Theorem 4.14 of [26]. �

Lemma 5.3. (i) λ = −1 is not a corner singularity of type 1.
(ii) λ = 0 is not a corner singularity of type 2.

Proof.
(i) If u is a singularity of type 1 for λ = −1, then uC is a singularity of type 1 for λ = −1 for the Maxwell
system in ΓC with the boundary condition uC · n = 0 on I. Therefore by Lemma 7.8 of [15] uC = 0. With this
information, uE is now a singularity of type 1 for λ = −1 for the Maxwell system in ΓE with the boundary
condition uE × n = 0 on I. Again by Lemma 7.8 of [15] we get uE = 0.
(ii) If u is a singularity of type 2 for λ = 0, then ψ = µ−1 curl uC is a singularity of type 1 for λ = −1 for the
Maxwell interface system in R3 with the parameter µ. Therefore by Lemma 5.4 of [17] we get ψ = 0. �

Since the singularities of our problem (51) have to be locally in X(Γ) with a piecewise smooth divergence,
among the singular exponents described above, we select the subset Λa of λ > − 3

2 such that there exists
u ∈ Sλ(Γ) solution of (52) such that

χu ∈ X(Γ),

where χ is a cut-off function equal to 1 near a. This last condition implies the following constraints for our two
types of singularities (see [17]):
Type 1: λ+ 1 ∈ ΛNeu(ΓC) or λ+ 1 ∈ ΛDir(ΓE) and since ΛDir(ΓE)∩ [−1, 0] and ΛNeu(ΓC)∩ [−1, 0] are empty,
by Lemma 5.3 we get λ > −1;
Type 2: λ ∈ Λµ(Γ) and by the condition curl (χu) ∈ [L2(R3)]3, we get λ > − 1

2 . By Lemma 5.3 and the fact
that Λµ(Γ) ∩ [−1, 0] is empty, we get λ > 0.

In conclusion we have

Λa = {λ > −1 : λ+ 1 ∈ ΛNeu(ΓC)} ∪ {λ > −1 : λ+ 1 ∈ ΛDir(ΓE)}
∪ {λ > 0 : λ ∈ Λµ(Γ)}·

5.2. Edge singularities

Fix an edge e of ΩC and denote by ΓC × R (resp. ΓE × R) the infinite polyhedral cone which coincides
with ΩC (resp. ΩE) near e (ΓC and ΓE are then two-dimensional sectors). Denote by (r, θ, z) the cylindrical
coordinates along e. As before we are looking for solutions of the homogeneous eddy current problem (52) in
ΓC×R and ΓE×R. Now Γ refers to R2 with its partition into the two sectors ΓC and ΓE , cf Section 4.4. Writing
u = (v, w), where v are the first two components of u in the Cartesian coordinates (x1, x2, x3) (according to the
above notation, the x3-axis contains the edge e), the system (52) is split up into the following two independent
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problems in R2: 

curl (µ−1
C curlv)−∇div v = 0 in ΓC ,

curl (µ−1
E curlv)−∇div v = 0 in ΓE ,

vC · n = 0 on I := ∂ΓC = ∂ΓE ,
[v × n] = 0 on I,
[µ−1 curlv × n] = 0 on I,
∂n(div vC) = 0 on I,
div vE = 0 on I.

(59)


div(µ−1

C ∇wC) = 0 in ΓC ,
div(µ−1

E ∇wE) = 0 in ΓE ,
[w] = 0, [µ−1∂nw] = 0 on I.

(60)

Problem (60) is a standard transmission problem whose set of singularities Λµ−1(Γ) = Λµ(Γ) (see Lem. 6.2 of [17])
were described in Section 4. Problem (59) is a two-dimensional eddy current problem whose singularities may
be described as in 3D, by introducing the auxiliary unknowns ψ = µ−1 curlv and

q =
{

div v in ΓC ,
div v in ΓE .

As before, singularities of type 1, 2 and 3 then appear. We can show that singularities of type 2 do not exist
(compare with [15,17]), singularities of type 3 are not studied for the same reason as before, while singularities
of type 1 are analyzed exactly as in Lemma 5.1.

In conclusion we can state the following result.

Lemma 5.4. The set Λe of edge exponents associated with e is given by

Λe = {λ > −1 : λ+ 1 ∈ ΛNeu(ΓC)} ∪ {λ > −1 : λ+ 1 ∈ ΛDir(ΓE)}
∪ {λ > 0 : λ ∈ Λµ(Γ)}·

If λ 6∈ N \ {0}, then the associated singular function u = (v, w) is as follows:

• If λ+ 1 ∈ ΛNeu(ΓC), then w = 0,

vC = ∇ (
rλ+1ϕC

)
,

with ϕC(θ) = cos((λ+1)θ) (the half-lines θ = 0 and θ = ωC are assumed to be the interfaces between ΓC

and ΓE, the interior opening of ΓC (resp. ΓE) is then ωC (resp. ωE = 2π − ωC)), and if ωE

ωC
is not a

rational number, then

vE = ∇ (
rλ+1ϕE

)
,

with ϕE(θ) = c1 cos((λ + 1)θ) + c2 sin((λ + 1)θ), for some (explicit) constants c1 and c2. If ωE

ωC
is a

rational number, then a logarithmic term possibly appears in the expression of vE;
• if λ+ 1 ∈ ΛDir(ΓE), then w = 0, vC = 0 and

vE = ∇ (
rλ+1ϕE

)
,

with ϕE(θ) = sin((λ+ 1)(θ − ωC));
• if λ ∈ Λµ(Γ), then v = 0 and w = rλϕ, with ϕ an eigenvector of problem (42) for α = µ, associated

with the eigenvalue ν = λ2.
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6. Regularity and singularity results for the eddy current problem

We describe the regularity as well as singular decompositions of any solution E of the regularized problem (51)
with a source current density j0 such that

div j0 = 0, supp j0 ⊂ ΩC , j0 ∈ [Hs−1(ΩC)]3 for s ≥ 1. (61)

These results are based on the knowledge of corner and edge singularities described in the previous section and
rely on the application of Mellin techniques as in [15, 17].

6.1. Regularity

For any corner a in the interface B introduce

λNeu
C, a = min{λ > 0 : λ ∈ ΛNeu(ΓC, a)},
λDir

E, a = min{λ > 0 : λ ∈ ΛDir(ΓE, a)},
λµ, a = min{λ > 0 : λ ∈ Λµ(Γa)},

where Λµ(Γa) is defined in Section 4.3 for the subdivision of R3 into ΓC,a and ΓE, a. Similarly for any edge
e ⊂ B define

λµ,e = min{λ > 0 : λ ∈ Λµ(Γe)}·
Now we can set

τ (1)
e := min

(
π

ωC, e
,

π

ωE, e

)
,

τ (1)
a := min

(
λNeu

C, a , λ
Dir
E, a

)
,

τ (1) := min
(

min
e
τ (1)
e ,

1
2

+ min
a
τ (1)
a

)
,

τ
(1)
C := min

(
min

e

π

ωC, e
,

1
2

+ min
a
λNeu

C, a

)
,

τ (2) := min
(

min
e
λµ,e ,

1
2

+ min
a
λµ,a

)
,

when ωC, e is the opening of ΩC along e and ωE, e = 2π − ωC, e is the opening of ΩE along e.
Then we have

Theorem 6.1. Let E ∈ Y(Ω) be a solution of problem (51) with j0 satisfying (61) for s ≥ 1. Then we have

EC ∈ Hτ
C (ΩC), ∀τC < min

(
τ

(1)
C , τ (2) + 1, s+ 1

)
,

EE ∈ Hτ
E (ΩE), ∀τE < min

(
τ (1), τ (2) + 1, s+ 1

)
.

6.2. Singularities

We start with a general result and then restrict ourselves to a particular case where there remain only
singularities of type 1.

The general result is proved exactly as in [15, 17] and can be stated as follows:

Theorem 6.2. Assume that s ≥ 1 such that for all corners a, s− 1
2 does not belong to Λa and for all edges e,

s does not belong to Λe. Assume furthermore that the edge exponents in [−1, s] are contained in an interval of
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length < 1. Let E ∈ Y(Ω) be a solution of problem (51) with j0 satisfying (61) for this regularity exponent s.
Then E admits the decomposition

E = E(R) + E(S), (62)
where the regular part satisfies

E(R)
C ∈ Hs+1(ΩC) and E(R)

E ∈ Hs+1(ΩE).

On the other hand the singular part E(S) has the standard structure

E(S) =
∑
a

∑
λ∈Λa∩ [− 3

2 ,s− 1
2 ]

∑
p

γλ,p
a χa(ρa)uλ,p

a (ρa, ϑa) (63)

+
∑
e

∑
λ∈Λe∩ [−1,s]

∑
p

K[γλ,p
e ]χe(ρe)uλ,p

e (ρe, θe), (64)

where uλ,p
a (resp. uλ,p

e ) are the corner (resp. edge) singularities of type 1 or 2 described in the previous section,
χa (resp. χe) is a smooth cut-off function equal to 1 near ρ = 0, ρe = red

−1
e when de is a smooth function

which is equivalent to the distance of the endpoints of e, K is a convolution operator (cf. [15, 17, 18]) and γλ,p
a

(resp. γλ,p
e ) are real constant (resp. functions defined in the edge e and belonging to some weighted Sobolev

spaces).

Exactly as in [15, 17], if one wants to eliminate the singularities of type 2, we introduce a parameter τ ≤ s
satisfying

τ < min{τ (1), τ (2)}. (65)
Using Lemmas 4.11 and 4.13 of [15], we obtain

Theorem 6.3. Let E ∈ Y(Ω) be a solution of problem (51) with j0 as in the introduction and the regularity
j0 ∈ [Hs−1(ΩC)]3 with s ≥ 1. Let τ ≤ s satisfy (65) and such that the edge exponents in [−1, τ ] are contained
in an interval of length < 1. Then E admits the decomposition

E = E(R) +∇Φ,

where the regular part satisfies

E(R)
C ∈ Hτ+1(ΩC) and E(R)

E ∈ Hτ+1(ΩE),

while Φ ∈ H1(Ω) satisfies

∆ΦC ∈ Hτ (ΩC)

∂nΦC = 0 on B,

and

∆ΦE ∈ Hτ (ΩE),

ΦE = ΦC on B.

If τ = 0 the above theorem reduces to Theorem 3.1. For τ not necessarily equal to zero, as in that theorem,
ΦC has the singularities of the interior Neumann problem, while ΦE has induced exterior singularities as well
as exterior Dirichlet ones.
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7. Continuity of the singular functions in the eddy current limit

If we put together:
(1) the result of Section 4.2 which yields the continuity of the singular exponents with respect to δ for the

associated scalar problem;
(2) the common structure of Maxwell and eddy current singularities of type 1 (as gradients of scalar singu-

larities);
(3) the similar structure of Maxwell and eddy current singularities of type 2 (compare our Lem. 5.2

with [17, Lem. 5.2]);
we may wonder whether it is possible to define a basis of singular fields uλ,p

a [δ] and uλ,p
e [δ] for the eddy current

problem (51), δ = 0, and the Maxwell problem (21), δ > 0, which should be regular with respect to δ ∈ [0, δ0]
and so that a decomposition like that of Theorem 6.2 holds with coefficients depending smoothly on δ.

In this paper, we will not address this question in its full complexity, but show that it is possible to choose
bases of singular functions in a regular way with respect to δ, up to the limit δ = 0. This means that we have
mainly to investigate the behavior of all singularities (i.e. in Sλ(Γ)) of the scalar problems (40) when α = αδ

given by (43), as δ → 0. Similar questions are addressed in [13, 14, 27]. Since the direct application of these
references is not straightforward, we are going to state the main steps of a relevant construction.

In the general case, we cannot exclude any of the phenomena such as “crossing” and “branching” that appear
for singularity problems depending on a parameter. Since, in our situation, the coefficients are non-real, we
may expect singularity exponents that have algebraic branch points for certain values of δ, even for δ = 0, i.e.
in the eddy current limit. We also can have changes of multiplicities, even for δ = 0, for example in the case
where a singular exponent for the Neumann problem in ΓC coincides with a singular exponent for the Dirichlet
problem in ΓE .

In both these situations, any individual singular function of the transmission problem ∆δ of the form ρλδψδ(ϑ)
will converge to a singular function ρλ0ψ0(ϑ) of the limit problem, but the coefficients of a such singular function
may be non-regular with respect to δ or even blow up for δ → 0. Clustering several singular functions together
and choosing a basis depending analytically on δ as explained below in Section 7.2 will avoid such pathologies.

7.1. Mellin symbols

It is known from [23] that the corner singularities solution of (41) are produced by the poles of the associated
Mellin symbol: Let us recall that the Mellin symbol of an operator A homogeneous of degree m with constant
coefficients is λ 7→ A(λ) where

A(∂x) = ρ−mA(ϑ; ρ∂ρ, ∂ϑ) and A(λ) := A(ϑ;λ, ∂ϑ).

Let us consider the situation of threedimensional cones (d = 3). The symbol associated with the operator (40)
– see also (41), is

ψ 7−→


LψC − λ(λ + 1)ψC in GC ,

LψE − λ(λ + 1)ψE in GE ,

αC∂nCψC + αE∂nEψE on J := ∂GC = ∂GE .

(66)

Let us denote by Mα(λ) the operator (66) acting between function spaces:

Mα(λ) : Z(GC , GE) −→ L2(GC)× L2(GE)×H−1/2(J) ,

where the source space Z(GC , GE) is defined as

Z(GC , GE) =
{
ϕ ∈ H1(S2) : ∆ϕC ∈ L2(GC), ∆ϕE ∈ L2(GE)

}·
When α = αδ is given by (43), we denote Mα(λ) by Mδ(λ).
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We are going to prove that for all δ ∈ [0, δ0] there exists λ such that Mδ(λ) is invertible. Let (fC , fE , g)
belong to L2(GC)× L2(GE)×H−1/2(J) and let us fix λ such that −λ(λ+ 1) > 0.

• If δ = 0, we first solve the Neumann problem(
L− λ(λ + 1)

)
ψC = fC in GC ,

αC∂nCψC = g on J

and then the Dirichlet problem(
L− λ(λ + 1)

)
ψE = fE in GE ,

ψE = ψC

∣∣
J

on J.

• If δ > 0, we use a variational formulation as in (42): ∀ϕ ∈ H1(Sd−1),∫
Sd−1

α∇ψ · ∇ϕ− λ(λ + 1)
∫

Sd−1
αψϕ =

∫
GC

fCϕC +
∫

GE

fEϕE +
∫

J

gψ.

Since the right hand side is clearly in H−1(Sd−1), the coerciveness yields a unique solution.

The analytic Fredholm theorem yields that for all δ ∈ [0, δ0], λ 7→ Mδ(λ)−1 is meromorphic. As the
dependency of the symbol on δ is analytic, such is also the case for its inverse.

7.2. Stable bases for singularities

Let δ ∈ [0, δ0] be fixed. We recall that we have denoted by Λδ(Γ) the set of the singular exponents of the
operator ∆δ (transmission or coupling).

The singular exponents in Λδ(Γ) coincide with the poles λ0 of Mδ(λ)−1. Moreover the corresponding space
of singularities Zλ0(Γ; δ) (the space of solutions in Sλ0(Γ) of (41) for α = αδ) is also given by a Cauchy residue
formula:

Zλ0(Γ; δ) =
{

Ψ : ∃F ∈ O(D(λ0)), Ψ =
1

2iπ

∫
∂D(λ0)

ρλMδ(λ)−1F (λ) dλ
}

where

• D(λ0) is a disc in the complex plane centered in λ0 and not containing any other pole of Mδ(λ)−1;
• The notation F ∈ O(D(λ0)) means that λ 7→ F (λ) is holomorphic in a neighborhood of D(λ0) with

values in the target space L2(GC)× L2(GE)×H−1/2(J).

Note that if D contains several elements of Λδ(Γ), but ∂D ∩ Λδ(Γ) is empty, then{
Ψ : ∃F ∈ O(D), Ψ =

1
2iπ

∫
∂D

ρλMδ(λ)−1F (λ) dλ
}

=
⊕

λ∈Λδ(Γ)∩D

Zλ(Γ; δ).

The smooth dependency on δ of Mδ(λ)−1 implies the principle of smooth dependency of the singular spaces
Zλ(Γ; δ) on δ in the following sense: Since we are interested in the eddy current limit let us consider a pole λ0

of M0(λ)−1 and a disc D = D(λ0) such that λ0 is the only pole of M0(λ)−1 in D. There exists δ(λ0) such that
for all δ ∈ [0, δ(λ0)] the symbols Mδ(λ)−1 are invertible on ∂D. Then the spaces{

Ψ : ∃F ∈ O(D), Ψ =
1

2iπ

∫
∂D

ρλMδ(λ)−1F (λ) dλ
}
, (67)
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depend smoothly on δ up to the limit δ = 0. In other words⊕
λ∈Λδ(Γ)∩D

Zλ(Γ; δ) −→
δ→0

Zλ0(Γ; 0).

Indeed, this statement shows the necessity of keeping together some clusters of poles.
We obtain easily a basis depending smoothly on δ: Choose F 1, . . . , Fm in O(D) such that

Ψn
0 (ρ, ϑ) :=

1
2iπ

∫
∂D

ρλM0(λ)−1Fn(λ) dλ, n = 1, . . . ,m

is a basis of Zλ0(Γ; 0). Then, for δ small enough the functions

Ψn
δ (ρ, ϑ) :=

1
2iπ

∫
∂D

ρλMδ(λ)−1Fn(λ) dλ, n = 1, . . . ,m

are a basis of
⊕

λ∈Λδ(Γ)∩D Zλ(Γ; δ). The mappings δ 7→ Ψn
δ are analytic with respect to δ ∈ [0, δ0].

7.3. Simple singularities

If the dimension of Zλ0(Γ; 0) is 1, or more generally if δ = 0 is not a point of crossing or branching for the
singularities, then the behavior of individual singular functions is very simple indeed. Let us consider the two
typical situations where this happens:

(1) if λ0 ∈ ΛDir(ΓE) is a simple eigenvalue and such that λ0 6∈ ΛNeu(ΓC), then we can find a unique
λδ ∈ Λδ(Γ) such that δ 7→ λδ is analytic for δ in a neighborhood of 0. If we fix a ρλ0ψ0 in the singular
space Zλ0

Dir(ΓE), then we find a generator ρλδψδ of Zλ(Γ; δ) such that δ 7→ ψδ is analytic for δ small
enough. Then ψδ,C → 0 on GC in H1(GC) and ψδ,E → ψ0,E on GE in H1(GE);

(2) if λ0 ∈ ΛNeu(ΓC) \ ΛDir(ΓE), we have a singular function ρλδψδ with δ 7→ λδ and δ 7→ ψδ analytic.
Here ρλ0ψ0,C is a singular function of the Neumann problem in ΓC and ψ0,E is the harmonic extension
of ψ0,C to S2.

Situation 1, resp. 2, occurs for the first corner singularity of the eddy current problem where ΩC has a corner
like a cube, resp. like the exterior of a cube.

Situation 1 or 2 always occurs for the first edge singularity where the exponent is

λ = min
{
π

ωC
,
π

ωE

}
− 1,

because π/ωC and π/ωE = π/(2π − ωC) never coincide. Although unpredictable in general, the simplicity of
limiting exponents of singularity is generic.
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