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HYBRID MATRIX MODELS AND THEIR POPULATION DYNAMIC
CONSEQUENCES ∗

Sanyi Tang
1

Abstract. In this paper, the main purpose is to reveal what kind of qualitative dynamical changes a
continuous age-structured model may undergo as continuous reproduction is replaced with an annual
birth pulse. Using the discrete dynamical system determined by the stroboscopic map we obtain an
exact periodic solution of system with density-dependent fertility and obtain the threshold conditions
for its stability. We also present formal proofs of the supercritical flip bifurcation at the bifurcation as
well as extensive analysis of dynamics in unstable parameter regions. Above this threshold, there is a
characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that the dynamical
behavior of the single species model with birth pulses are very complex, including small-amplitude
annual oscillations, large-amplitude multi-annual cycles, and chaos. This suggests that birth pulse, in
effect, provides a natural period or cyclicity that allows for a period-doubling route to chaos. Finally, we
discuss the effects of generation delay on stability of positive equilibrium (or positive periodic solution),
and show that generation delay is found to act both as a destabilizing and a stabilizing effect.
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1. Introduction

For many animal species (crustacean, insects, amphibians, . . .), the individuals take on different morphological
shapes before reaching their final adult state. This multiplicity of developmental stages gives rise to individuals
with a complex life cycle. Copepods are small crustacean whose molting processes determine the succession of
the different stages. These different stages are characterized by different shapes, sizes and behaviors, that is, the
vital rates(rates of survival, development, and reproduction) almost always depend on age, size, or development
stage, but above all they play very different roles in marine ecosystems.

Stage structure models have received much attention in recent years [2,3,6,7,14,16,17,28,29,36,37]. This is
not only because they are much more simple than the models governed by partial differential equations but also
they can exhibit phenomena similar to those of partial differential models [5], and many important physiological
parameters can be incorporated.

Population models fall into two fundamental categories: discrete and continuous. In the discrete category,
Leslie matrix models constitute the basic class of age-structured models. Mckendrick partial differential equation
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models and nonlinear differential systems studied in [6,7] play the same role in the category of continuous models.
Many authors have studied the mathematical connections between these two famous classes of models [19,36,37].

These models have invariably assumed that the mature population reproduce throughout the year, whereas
it is often the case that births are seasonal or occur in regular pulses. The continuous reproduction of mature
population is then removed from the model, and replaced with an annual birth pulse. These models are subject
to short-term perturbations which are often assumed to be in the form of impulses in the modeling process.
Consequently, impulsive differential equations (hybrid dynamical systems) provide a natural description of such
systems [4,26]. Equations of this kind are found in almost every domain of applied sciences. Numerous examples
are given in Bainov’s and his collaborators’ books [4]. They generally describe phenomena which are subject
to steep and/or instantaneous changes. Some impulsive equations have been recently introduced in population
dynamics in relation to: vaccination [1, 35], and chemotherapeutic treatment of disease [25, 34]. The main
question which we consider here is to reveal what kind of qualitative dynamical changes a continuous age-
structured model will undergo as the continuous reproduction is replaced with an annual birth pulse. More
specific, we will answer the following interesting questions:

(1) What are main difference on dynamical behavior between the hybrid matrix models and the continuous
age-structured models described by a set of ordinary differential equations?

(2) What are the global dynamics of the hybrid matrix models depending on parameters?

(3) How do the generation delay and density-dependent fertility affect the dynamical behavior of hybrid
matrix models?

In order to realize these goals, we shall investigate the dynamical properties of hybrid matrix models derived
from the continuous age-structured models with birth pulse (i.e., the continuous reproduction of population is
replaced with an annual birth pulse). Further, we restrict our attention to the two-dimensional hybrid matrix
models(that is, the population is divided into immature and mature classes). In Section 4, we use the strobo-
scopic map, where the map determines the number of immature population and mature population, immediately
after each pulse birth at the discrete times m (m is a positive integer). When the birth rates of population
are influenced by the population density, the discrete dynamical system determined by the stroboscopic map
becomes nonlinear. The population in the pulsed birth time is characterized not by an exponential growth
rate, but by the existence and stability of equilibria, by the supercritical flip bifurcations that occur when
stability is lost, and by the patterns of dynamics (cycles, chaos) that follow the bifurcations. Further we focus
our attention on the relationships between the differential dynamical system with birth pulses and the discrete
dynamical system determined by the corresponding stroboscopic map. It is shown that dynamical behaviors
of models with birth pulses are very complex, and include small-amplitude annual oscillations, large amplitude
multi annual cycles, and chaos. That is, birth pulse, in effect, provides a natural period or cyclicity that allows
for a period-doubling route to chaos. In the end we discuss how the regions in which the periodic solution of
impulsive system is existent and stable change as parameters vary by using theoretical and numerical methods,
and then obtain that the generation time delay has both stabilizing and unstabilizing effects. The population
fluctuations associated with stage structure effects have been found by many authors [14, 32]. For Nicholson’s
Blowflies, the period of the cycles is 2-3 times the maturation time, and for the Lawton’s Plodia, the irregular
fluctuations have a dominant period close to the generation time.

2. Derivation of the model

Stage-structured models enter in the framework of these models for which qualitative behavior can be entirely
determined by the sign of the Jacobian matrix: the dynamics of stage i is the balance an input term in the stage
depending on the stage i − 1 (recruitment) and an output term (mortality, transfer to the next stage, dilution)
depending on the stage i. Hence, the dynamics of each variable only depend on the variable itself and on the
precedent one so that the system has a so-called loop structure [6, 17]. Some stages may have more complex
dynamics. For example in the classical models of age-structured populations of fishes, several stages of fish can



HYBRID MATRIX MODELS 435

spawn [24,28]. Such models, which are continuous Leslie models do not have a loop structure: the dynamics of
the eggs depend on all the mature stages.

In general, we assume that a population with overlapping generations is subdivided into n stages. All stages
can be fertile and contribute to the newborn class through the birth rates βj (if there are k juvenile classes,
then β1 = β2 = · · · = βk = 0). As time elapses, individuals in stage i die with µi and survivors move to the
next stage with transition rate or maturity rate mi. This leads to the set of ordinary differential equations




dA1(t)
dt

=
n∑

j=1

βjAj(t) − (m1 + µ1)A1(t),

dA2(t)
dt

= m1A1 − (m2 + µ2)A2(t),
...

dAn−1(t)
dt

= mn−2An−2 − (mn−1 + µn−1)An−1(t),

dAn(t)
dt

= mn−1An−1 − µnAn(t).

(2.1)

Where Ai(i = 1, 2, · · · , n) represent biomass or number in stage i. It is assumed that Aj(0) ≥ 0,
∑n

j=0 Aj(0) > 0,
and µj > 0, j = 1, 2, · · · , n. The birth rates βj , the transition rates mj , and the death rates µj can be time
dependent and density dependent in which case they become functions of one or more the class densities Ai.
Populations with density-dependent fertility or survival rates have been extensively analyzed [27–30].

If the continuous reproduction of mature population is replaced with an annual birth pulse, then we have
the following impulsive differential equations (2.2) and (2.3)




dA1(t)
dt

= −(m1 + µ1)A1(t),

dA2(t)
dt

= m1A1 − (m2 + µ2)A2(t),
...

dAn−1(t)
dt

= mn−2An−2 − (mn−1 + µn−1)An−1(t),

dAn(t)
dt

= mn−1An−1 − µnAn(t).

t �= k ∈ N, (2.2)




A1(k+) = A1(k) +
n∑

j=1

βjAj(k),

Ai(k+) = Ai(k), i = 2, 3, · · · , n,

t = k ∈ N. (2.3)

If we denote A = (A1, A2, · · · , An)T ,

M =




−m1 − µ1 0 0 · · · 0 0
m1 −m2 − µ2 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −mn−1 − µn−1 0
0 0 0 · · · mn−1 −µn



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and

I =




1 + β1 β2 β3 · · · βn−1 βn

0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1


 ,

then systems (2.2) and (2.3) become the following hybrid matrix models




dA(t)
dt

= MA(t), t �= k ∈ N,

A(k+) = IA(k), t = k ∈ N.
(2.4)

3. Positivity and stroboscopic map of system (2.4)

From a biological point of view, population size should not be negative, that is, Aj must be always nonneg-
ative. For the hybrid matrix model (2.4), we have the following result on the positivity of solutions.

Lemma 3.1. The set Ω = {0 < Aj < ∞, j = 1, 2, · · · , n} is positive invariant for system (2.4). That is, the
trajectories of (2.4) are always positive for all 0 < t < ∞ provided Aj(0) > 0 for all j.

Proof. Since

Aj(t) = exp
(
−

∫ t

0

(mj + µj)dr

) [
Aj(0) +

∫ t

0

mj−1Aj−1(s) exp
(∫ s

0

(mj + µj)du

)
ds

]
, j = 2, 3, · · · , n

where mn = 0. If there is a time t∗(j) > 0 such that Aj(t∗(j)) = 0 and Aj(t) > 0 for all t < t∗(j) and some j,
but Ai(t) > 0 for all t ≤ t∗(j) and all i > j, then there exists a time interval 0 < Tj−1 < T̄j−1 ≤ t∗(j) such that
Aj−1(t) < 0 for all t ∈ (Tj−1, T̄j−1). Hence, there is a time t∗(j−1) < t∗(j) such that Aj−1(t∗(j−1)) = 0. Continuing
in this manner, there is a time t∗1 > 0 such that A1(t∗1) = 0 and Ai(t) > 0 for all t ≤ t∗1, i ≥ 2. However, from
system (2.2) and (2.3) we have




dA1(t)
dt

= −(m1 + µ1)A1(t), t �= k ∈ N, 0 ≤ t ≤ t∗1,

A1(k+) ≥ A1(k) + β1A1(k), t = k ∈ N, 0 ≤ t ≤ t∗1.
(3.1)

By the impulsive differential inequality [4], we have

A1(t∗1) ≥ A1(0)
k1∏
1

(1 + β1) exp

(∫ t∗1

0

−(m1 + µ1)dr

)
> 0,

where k1 ∈ N such that t∗1 ∈ (k1, k1 + 1). This contradicts with A1(t∗1) = 0 and completes the proof. �

Remark. For stage-structured models, there may be no individuals in a life cycle stage or age class and the

population stilll not be extinct. In fact, if Aj(0) ≥ 0 and
n∑

j=0

Aj(0) > 0, then we have
n∑

j=0

Aj(t) > 0 for all t ≥ 0.

In the rest of this paper, we assume that mi, µi are constants. To this end of this section, we will obtain the
analytical solutions of system (2.2) between the pulses which will be used to deduce the stroboscopic map of
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hybrid matrix models (2.4). System (2.2) can be written as the general form of a linear equation between the
pulses

dAi(t)
dt

+ (mi + µi)Ai(t) = mi−1Ai−1(t), i = 1, 2, · · · , n, t ∈ [k, k + 1), (3.2)

where m0 = mn = 0.
Equation (3.2) is solved by multiplying both sides by an integrating factor

φ(t) = e(mi+µi)(t−k), k ≤ t < k + 1.

The solution is

Ai(t) = mi−1e−(mi+µi)(t−k)

∫ t

k

Ai−1(s)e(mi+µi)(s−k)ds + Ai(k)e−(mi+µi)(t−k). (3.3)

We use integration by parts to evaluate the integral∫ t

k

Ai−1(s)e(mi+µi)(s−k)ds =
[
e(mi+µi)(t−k)

mi + µi
Ai−1(t) − Ai−1(k)

mi + µi

]
−

∫ t

k

e(mi+µi)(s−k)

mi + µi

dAi−1(s)
ds

ds,

using (3.2) to substitute the derivative on the right-hand side

∫ t

k

Ai−1(s)e(mi+µi)(s−k)ds =
[
e(mi+µi)(t−k)

mi + µi
Ai−1(t) − Ai−1(k)

mi + µi

]

−
∫ t

k

e(mi+µi)(s−k)

mi + µi
[mi−2Ai−2(s) − (mi−1 + µi−1)Ai−1(s)]ds,

leading to a recurrence relation for the integral

∫ t

k

Ai−1(s)e(mi+µi)(s−k)ds =

1
(mi + µi) − (mi−1 + µi−1)

[
e(mi+µi)(t−k)Ai−1(t) − Ai−1(k) − mi−2

∫ t

k

Ai−2(s)e(mi+µi)(s−k)ds

]
.

Substituting into (3.3)

Ai(t) =
mi−1

(mi + µi) − (mi−1 + µi−1)

[
Ai−1(t) − Ai−1(k)e−(mi+µi)(t−k)

]
− mi−1

(mi + µi) − (mi−1 + µi−1)
mi−2

(mi + µi) − (mi−2 + µi−2)

[
Ai−2(t) − Ai−2(k)e−(mi+µi)(t−k)

]

+ · · · + (−1)i
i−1∏
j=1

mi−j

(mi + µi) − (mi−j + µi−j)
A1(t) − A1(k)e−(mi+µi)(t−k)]

+ Ai(k)e−(mi+µi)(t−k),

or, in a more compact form

Ai(t) =
i−1∑
l=1




l∏
j=1

(−1)l+1 mi−j

(mi + µi) − (mi−j + µi−j)

[
Ai−l(t) − e−(mi+µi)(t−k)Ai−l(k)

]


+ Ai(k)e−(mi+µi)(t−k), i = 1, 2, · · · , n. (3.4)
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The equation of (3.4) shows that the proportion of individuals at time t ∈ [k, k + 1) in class i is thus given by
the term Ai(k)e−(mi+µi)(t−k), representing the decay of the proportion since the time of birth pulse before t,
Ai(k), plus a dynamical term representing the contribution of class i− l to class i(the factor in square brackets),
weighted by a quotient of outflow rates.

Since equation (3.4) holds between pulses. At each successive pulse, more class A1 is added. If we denote

Āi(k) .=
i−1∑
l=1




l∏
j=1

(−1)l+1 mi−j

(mi + µi) − (mi−j + µi−j)

[
Āi−l(k) − e−(mi+µi)Ai−l(k)

]


+ Ai(k)e−(mi+µi), i = 1, 2, · · · , n, (3.5)

then we can obtain the following stroboscopic map for hybrid matrix model (2.4), i.e.,




A1(k + 1) = A1(k)e−(µ1+m1) +
n∑

i=1

βiĀi(k),

Aj(k + 1) = Āj(k), j = 2, 3, · · · , n.

(3.6)

Example. If n = 2, (3.4) gives

{
A1(t) = A1(k)e−(m1+µ1)(t−k),

A2(t) =
m1

µ2 − (m1 + µ1)
[
A1(t) − A1(k)e−µ2(t−k)

]
+ A2(k)e−µ2(t−k), k ≤ t < k + 1. (3.7)

Then we have

{
Ā1(k) = A1(k)e−(m1+µ1),

Ā2(k) =
m1

µ2 − (m1 + µ1)
[
Ā1(k) − A1(k)e−µ2

]
+ A2(k)e−µ2 . (3.8)

Therefore, by (3.5), we obtain the following stroboscopic map for two-dimensional hybrid matrix model.




A1(k + 1) = A1(k)e−(µ1+m1) +
2∑

i=1

βiĀi(k),

A2(k + 1) = Ā2(k).

(3.9)

4. Dynamical behavior for two generation case

The results of our two-dimensional analysis are presented in two separate parts. In the first parts, 4.1,
we study the effects of density-dependent fertility without generation delay on the stroboscopic map which
determined the state after a pulse in terms of the state after the previous pulse. Further, we discuss the
relationships between the impulsive differential dynamical system and the discrete dynamical system determined
by the corresponding stroboscopic map. In the second, 4.2, the combined effect of density-dependent fertility and
generation delay are investigated. In each case, we assume that βi (i = 1, 2) are density-dependent in which the
density dependence is through a dependence on a weighted total population size, that is, βi = bie−(A1(t)+A2(t))

where bi (i = 1, 2) are constants.
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4.1. The case of no reproductive delay

In this section we study the two-dimensional hybrid matrix model


dA1(t)
dt

= −(m1 + µ1)A1(t),

dA2(t)
dt

= m1A1(t) − µ2A2(t), t �= k ∈ N,

A1(k+) = A1(k) + [b1A1(k) + b2A2(k)]e−(A1(k)+A2(k)),
A2(k+) = A2(k), t = k ∈ N.

(4.1)

For the simplicity, we assume µ1 = µ2 = µ and b1 = b2 = b. From (3.7), we have Ā1(k) + Ā2(k) = e−µ(A1(k) +
A2(k)), and by (3.8), the following stroboscopic map of (4.1) is obtained.

{
A1(k + 1) = bp[A1(k) + A2(k)]e−p(A1(k)+A2(k)) + pqA1(k),
A2(k + 1) = p(1 − q)A1(k) + pA2(k).

(4.2)

where p = e−µ, q = e−m1 .
Let x = pA1, y = pA2, then system (4.2) becomes as follows

{
xk+1 = bp[xk + yk]e−(xk+yk) + pqxk,
yk+1 = p(1 − q)xk + pyk.

(4.3)

The dynamics of the nonlinear model (4.3) can be studied as a function of any of the parameters. We will
focus here on b and document the changes in the qualitative dynamics of the model (4.3) as b varies. First,
the trivial equilibrium E0(0, 0) is always a solution to equation (4.3). When b is small enough, this solution
is locally stable, and the species cannot increase when rare or invade a habitat from which it is absent. Our
first concern will be with the conditions under which E0(0, 0) becomes unstable, permitting colonization of
the population. Second, the destabilization of E0 with increasing b is always accompanied by the appearance
of a stable positive equilibrium E∗. As b is increased further, this equilibrium in turn becomes unstable.
A supercritical flip bifurcation occurs and the equilibrium loses stability to a stable two-cycle. Finally, as b
is increased still further, there is a characteristic sequence of bifurcations, leading, in most cases, to chaotic
dynamics.

4.2. Bifurcations of (x, y) = (0, 0)

In the neighborhood of (x, y) = (0, 0), the dynamics of equation (4.3) is controlled by the linearization

Xm+1 = BXm, (4.4)

with B as in the linear counterpart of (4.3) and X = (x, y). X = 0 is stable when the eigenvalues of B are less
than one in magnitude. This is true only when B satisfies the three Jury conditions [21]:

1 − tr B + detB > 0, (4.5a)

1 + tr B + detB > 0, (4.5b)

1 − detB >0. (4.5c)

These three conditions correspond to the three ways that an eigenvalue may exit the unit circle in the complex
plane. If inequality (4.5a) is violated, then one of the eigenvalues of B is larger than 1. If inequality (4.5b) is
violated, then one of the eigenvalues of B is less than −1. Finally, If inequality (4.5c) is violated, then B has a
complex-conjugate pair of eigenvalues lying outside the unit circle.
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With B defined in model (4.3), it can be shown that inequalities (4.5b) and (4.5c) are always satisfied, and
that as b increases, inequality (4.5a) is violated at a critical point b0. In terms of the model parameters, and
after a bit of rearranging, inequality (4.5a) defined by system (4.3) reads

b <
1 − p

p
≡ b0. (4.6)

Thus b must be larger than b0 in order for small population to increase from X = 0.
For the difference equation (4.3) we can also define the intrinsic net reproductive number [10] R0(the average

number of offspring that an individuals produces over the course of its lifetime), i.e.,

R0 =
bp

1 − p
·

Inequality (4.6) can be rewritten as R0 < 1. That is, if on average, individuals don’t replace themselves before
they die then the population is doomed.

4.3. Bifurcations of the positive equilibrium E∗(x∗, y∗)

The positive equilibrium solution of (4.3) is given as

E∗ = (x∗, y∗) =
(
− 1 − p

1 − pq
ln

(
1 − p

bp

)
,−p(1 − p)

1 − pq
ln

(
1 − p

bp

))
,

with R0 > 1 as a necessary and sufficient condition for a nontrivial equilibrium.
The eigenvalue equation of B at equilibrium E∗ is

λ2 −
[
1 + pq + (1 − p) ln

(
1

R0

)]
λ + pq

[
1 + (1 − p) ln

(
1

R0

)]
· (4.7)

It is easy to see that λ2 = pq and λ1 = 1 + (1 − p) ln( 1
R0

) and λ2 is less than one in magnitude. If λ1 = −1
we obtain 2 + (1 − p) ln( 1

R0
) = 0. From this we can conclude that when condition (4.5b) fails, the fixed point

becomes unstable through a flip bifurcation at b = bc = 1−p
p e

2
1−p . Then the main results at the bifurcation may

be summarized in the following theorem.

Theorem 4.1. For each fixed p, q, 0 < p < 1, 0 < q < 1, E0(0, 0) will undergo a transcritical bifurcation when

b = b0 =
1 − p

p
(or R0 = 1)

and E∗ = (x∗, y∗) will undergo a supercritical flip bifurcation when

b = bc =
1 − p

p
e

2
1−p . (4.8)

Proof. According to the discussion of above, we only need to prove the flip is supercritical. For this purpose,
we notice that the Jacobian DE∗ may be written as

DE∗ =


 (1 − p)

(
1 + ln

(
1

R0

))
+ pq (1 − p)

(
1 + ln

(
1

R0

))
p(1 − q) q


 . (4.9)
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Next, we define the matrix

T =


 λ1 − p

p(1 − q)
−1

1 1




which columns are the eigenvectors corresponding to the eigenvalues λ1, λ2 of (4.9), and we have

T−1 =




p(1 − q)
λ1 − pq

p(1 − q)
λ1 − pq

−p(1 − q)
λ1 − pq

λ1 − p

λ1 − pq


 .

Then after expanding the first component of the model (4.3) up to third order, applying the change of coordinates
(x̄, ȳ) = (x − x∗, y − y∗)(in order to translate the bifurcation to the origin) together with the transformations

(
x̄
ȳ

)
= T

(
u
v

)
,

(
u
v

)
= T−1

(
x̄
ȳ

)
,

we can obtain 


uk+1 = λ1uk +
1

a11

[
−1

2
(λ1 + 1) + p

]
u2

k +
1

6a2
11

[λ1 + 2 − 3p]u3
k + o(4),

vk+1 = λ2vk − 1
a11

[
−1

2
(λ1 + 1) + p

]
u2

k − 1
6a2

11

[λ1 + 2 − 3p]u3
k + o(4),

(4.10)

where a11 = p(1−q)
λ1−pq . In the following we consider the map

(u, v) → (λ1u + g(u, v), λ2v + h(u, v)), (4.11)

here λ1 = 1 + (1 − p) ln
(

1
R0

)
(= −1 at the bifurcation), λ2 = pq, and

g(u, v) =
1

a11

[
−1

2
(λ1 + 1) + p

]
u2 +

1
6a2

11

[λ1 + 2 − 3p]u3

h(u, v) = −g(u, v).

The next step involves the restriction of (4.11) to the center manifold. Since g(u, v) is independent on v. Then,
following Guchenheimer and Holmes [12], the center manifold (up to third order) should be

u → F (u) = λ1u +
1

a11

[
−1

2
(λ1 + 1) + p

]
u2 +

1
6a2

11

[λ1 + 2 − 3p]u3.

According to Theorem 3.5.1 (Guchenheimer and Holmes [12]), the bifurcation will be supercritical if the relations

∂F

∂b

∂2F

∂u2
+ 2

∂2F

∂u∂b
=

∂F

∂b

∂2F

∂u2
−

(
∂F

∂u
− 1

)
∂2F

∂u∂b
�= 0, (4.12)

1
2

(
∂2F

∂u2

)2

+
1
3

(
∂3F

∂u3

)
> 0, (4.13)

hold at the bifurcation.
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Figure 1. Bifurcation diagrams of equation (4.3) for total population. Showing the effect of
parameter q on the dynamical behavior of system (4.3). Other parameters are µ = 0.7, m1 = 0.2
in (a) and µ = 0.7, m1 = 0.8 in (b).

To this end it is easy to show that the left-hand side of the nondegeneracy condition (4.12) equals

− p

1 − p
e−

2
1−p < 0,

and that (4.13) equals

(1 + pq)2

p2(1 − q)2

(
2p2 − p +

1
3

)
> 0,

which obviously is valid for all parameters because we have 2p2 − p + 1
3 = 2

(
p − 1

4

)2 + 5
24 > 0. Consequently,

the flip is supercritical. �

Let us first comment on the flip case. Just beyond the stability threshold (b > bc) there are stable orbits
of period 2, and as shown by numerical experiments. Further increase of b leads through new bifurcations to
orbits of period 4, 8, and so on until an accumulation value ba is reached. It should be emphasized that ba is a
rather large number compared to bc indeed. If we fix µ = 0.7, m1 = 0.2 (that is p = e−0.7, q = e−0.2), (x∗, y∗)
undergoes the first flip when b = bc = 53.867, the 4-periodic orbit emerges as b reaches the value 179.85 and the
point of accumulation is found to be as high as ba ≈ 278.11. This is demonstrated in the bifurcation diagram,
Figure 1a.

Remark. From the expressions of b0, bc and Figures. 1a,b we note that the parameter q(0 < q < 1) does not
affect the dynamical behavior of system (4.3).

The bifurcation diagrams (Fig. 2) of model (4.3) reveals another interesting phenomenon. As pointed out
above, all of the diagrams are characterized by an alteration of apparently chaotic dynamics and low-period
cycles as b increases. Notice that if the cycles to the left of a given chaotic window are of period k, then the cycles
to the right are of period k+1. These so-called “period-adding” sequences have been observed in chemical reac-
tions [11, 18] and electrical circuits [20], and have been studied in one-dimensional difference equations [22, 23].
Period-adding is also present in a delay-difference equation population model with density-dependent reproduc-
tion [8], and in the density-dependent age-structured model studied by Guckenheimer et al. [13].
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Figure 2. Bifurcation diagrams of equation (4.3) for total population. Showing the period-
adding phenomenon. Other parameters are µ = 0.6, m1 = 0.3.

4.4. The relationships between system (4.1) and equation (4.3)

In Sections 4.1 and 4.2, we presented the dynamics of system (4.1) using the stroboscopic map. This is
a special case of the Poincaré map for periodically forced system or periodically pulsed system; the system
trajectory is not recorded continuously in time but once every period of the forcing term or pulsing term (for
example, the annual birth pulse period). Long-term solutions of system (4.1) will then appear as follows.

(i) Fixed points of the stroboscopic map (corresponding to periodic solutions having the same period as
the pulsing term).

(ii) Periodic points of the stroboscopic map, of period k (corresponding to entrained periodic solutions hav-
ing exactly k times the period of the pulsing, often called subharmonic periodic solutions or subharmonic
period k′s).

(iii) Invariant circles (corresponding to quasi-periodic solutions, tori T 2 for the original system of impulsive
differential equations).

(iv) Possibly chaotic(strange) attractors.
In the following, we show that the solutions of system (4.1) behave like the above three cases ((i), (ii), (iv)).

For b < b0 (i.e., R0 < 1), equilibrium E0(0, 0) is stable. For this range of b, trajectories of model (4.1)
approach the origin, that is, species goes extinction.

For b0 < b < bc, the equilibrium E∗ is stable. For this range of b, trajectories of model (4.1) approach the
periodic solution (A1p(t), A2p(t)) with period 1,


A1p(t) = − 1 − p

p(1 − pq)
ln

(
1−p
bp

)
e−(m1+µ)(t−k),

A2p(t) = − 1 − p

1 − pq
ln

(
1 − p

bp

)
e−µ(t−k)

[
1 − e−m1(t−k)

]− 1 − p

p(1 − pq)
ln

(
1−p
bp

)
e−µ(t−k),

(4.14)

where k ≤ t < k+1, p = e−µ, q = e−m1 . That is, periodic solution (4.14) of system (4.1) is locally asymptotically
stable. Right at b = b0, there is a transcritical bifurcation of periodic solutions as (0, 0) and (A1p(t), A2p(t)) pass
through each other and exchange stability. Right at b = bc, there is a supercritical bifurcation of period-one
solution and period-two solution pass through each other and exchange stability. We note in passing that A1p(t)
is discontinuous for t a multiple of k (see Fig. 3).

Corresponding to the bifurcation diagrams in Figure 1a, Figures 3 and 4 illustrate the relationships between
model (4.1) and model (4.3) and shows that birth pulse provides a natural period or cyclicity that allows for a
period-doubling route to chaos. Figure 3 illustrates a simple cycle of period 1. Increasing b leads to a cascade of
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Figure 3. Periodic coexistence of the immature and the mature population with b = 35,
µ = 0.7, m1 = 0.2. (a) period 1 solution; (b) time series for period 1 solution of the immature
population.

period-doubling bifurcations (Figs. 4a,b, (a) a 2-period cycle; (b) a 4-period cycle) and finally to the appearance
of chaotic strange attractors. Figure 4c captures one such strange attractor, that is, increasing b is destabilizing:
annual oscillations yield to multi-annual cycles of increasing period and amplitude as this parameter is increased
(Figs. 3 and 4).

4.5. The one-generation delay case b1 = 0, b2 = b �= 0

In this section we assume that only mature population can reproduce and study the two-dimensional hybrid
matrix model 



dA1(t)
dt

= −(m1 + µ1)A1(t),

dA2(t)
dt

= m1A1(t) − µ2A2(t), t �= k ∈ N,

A1(k+) = A1(k) + bA2(k)e−(A1(k)+A2(k)),
A2(k+) = A2(k), t = k ∈ N.

(4.15)

For the simplicity, we assume µ1 = µ2 = µ. Similar to system (4.1), we have the following stroboscopic map for
system (4.15). {

A1(k + 1) = bp[A2(k) + (1 − q)A1(k)]e−p(A1(k)+A2(k)) + pqA1(k),
A2(k + 1) = p(1 − q)A1(k) + pA2(k),

(4.16)

where p = e−µ, q = e−m1 .
Let x = pA1, y = pA2, then system (4.16) becomes as follows

{
xk+1 = bp[yk + (1 − q)xk]e−(xk+yk) + pqxk,
yk+1 = p(1 − q)xk + pyk.

(4.17)

System (4.17) have two equilibria Ē0(0, 0), Ē∗(x̄∗, ȳ∗) with

x̄∗ = − 1 − p

1 − pq
ln

(
(1 − pq)(1 − p)

bp(1 − q)

)
, ȳ∗ = −p(1 − p)

1 − pq
ln

(
(1 − pq)(1 − p)

bp(1 − q)

)
·



HYBRID MATRIX MODELS 445

Figure 4. Period-doubling cascade to chaos. (a) a 2-periodic solution, (a)′, Time series for
a 2-periodic solution of immature population; (b) a 4-periodic solution, (b)′, Time series for
a 4-periodic solution of immature population; (c) a strange attractor, (c)′, Time series for a
strange attractor of immature population. Other parameters are µ = 0.7, m1 = 0.2.
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Define R̄0 = bp(1−p)
(1−p)(1−pq) , b̄0 = (1−p)(1−pq)

p(1−q) and b̄c = (1−p)(1−pq)
p(1−q) e

2+2p2q
(1−p)(1+pq) . For system (4.17) we have the same

results as those in system (4.3), that is, we have the following theorem

Theorem 4.2. For each fixed p, q, 0 < p < 1, 0 < q < 1, Ē0 = (0, 0) will undergo a transcritical bifurcation
when

b = b̄0 =
(1 − p)(1 − pq)

p(1 − q)
(or R̄0 = 1), (4.18)

and Ē∗ = (x̄∗, ȳ∗) will undergo a supercritical flip bifurcation when

b = b̄c =
(1 − p)(1 − pq)

p(1 − q)
e

2+2p2q
(1−p)(1+pq) . (4.19)

Proof. We omit the proof of Theorem 4.2 which is similar to the proof of Theorem 4.1. �
In the rest of this section, we discuss how the generation delay affects the stability of systems (4.3) and (4.17).

For system (4.3), we note that the parameter q does not affect the stability of positive equilibrium E∗ of
system (4.3). Further, from Figures 1a and 1b we know that parameter q does not affect the complexes of
system (4.3) either. For this purpose, we shall discuss how parameters(p, q) affect the stability of system in
terms of the length (bc − b0 and b̄c − b̄0) of the intervals in which the unique positive equilibria of system (4.3)
and (4.17) are stable.

Denote
D(p) = bc − b0 = b0

[
e2/(1−p) − 1

]
,

D̄(p, q) = b̄c − b̄0 = b̄0

[
e

2(1+p2q)
(1−p)(1+pq) − 1

]
.

Since

lim
q→0

b̄0 = lim
q→0

(1 − p)(1 − pq)
p(1 − q)

= 1−p
p = b0,

lim
q→0

b̄c = lim
q→0

(1 − p)(1 − pq)
p(1 − q)

e
2(1+p2q)

(1−p)(1+pq) = bc,

then we have
lim
q→0

D̄(p, q) = bc − b0 = D(p),

which implies that the stability of the positive equilibria E∗ and Ē∗ is uniform as q → 0.
On the other hand, we have

∂D̄(p, q)
∂q

=
1 − p

1 − q

[
1 − p

p(1 − q)

(
e

2(1+p2q)
(1−p)(1+pq) − 1

)
− 2(1 − pq)

(1 + pq)2
e

2(1+p2q)
(1−p)(1+pq)

]
. (4.20)

Let

f(q) =
1 − p

p(1 − q)

(
e

2(1+p2q)
(1−p)(1+pq) − 1

)
− 2(1 − pq)

(1 + pq)2
e

2(1+p2q)
(1−p)(1+pq) . (4.21)

Then

lim
q→0

f(q) =
1 − 3p

p
e

2
1−p − 1 − p

p

.= g(p), (4.22)

and
lim
q→1

f(q) = +∞. (4.23)

It is easy to see that the function g(p) satisfies the following property:
(A) There exists p∗ ∈ (0, 1

3 ) such that g(p) > 0 for p ∈ (0, p∗), and g(p) < 0 for p ∈ (p∗, 1) (see Fig. 5a).
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Figure 5. The graphes of functions g(p) and f(q). (a) the graph of g(p) for p ∈ (1/20, 2/3);
(b) the graph of f(q) for p = 1/6, q ∈ (0, 8/9); (c) the graph of f(q) for p = 2/3, q ∈ (0, 8/9).

Figure 6. The effect of parameter q or m1 on the stability of positive equilibrium. (a) µ = 0.7,
m1 = 1.7, D̄(p, q) = 49.61; (b) µ = 0.7, m1 = 0.2, D̄(p, q) = 95.60; (c) µ = 0.7, m1 = 0.01,
D̄(p, q) = 1371.77.

From Figures 5b and 5c we know that f(q) is strictly increased function for any p ∈ (0, 1). By properties (A)
and (4.23), we have the following

(1) If p ∈ (0, p∗), then f(q) > 0 for all q ∈ (0, 1) (see Fig. 5b);
(2) If p ∈ (p∗, 1), there exists q∗ ∈ (0, 1) such that f(q) < 0 for q ∈ (0, q∗), and f(q) > 0 for q ∈ (q∗, 1) (see

Fig. 5c).
Together with properties (A), (1) and (2) we have the following results on stability of system (4.3) and (4.17).

Result 1. When p ∈ (0, p∗), we have D̄(p, q) > D(p) for all q ∈ (0, 1) (in this case, we say the stability of
equilibrium E∗ of system (4.3) is weaker than that of system (4.17), i.e., the generation delay strengthens the
stability of system).

Result 2. When p ∈ (p∗, 1), there exists q∗ ∈ (0, 1) such that D̄(p, q) < D(p) for all q ∈ (0, q∗) (in this case,
we say the stability of equilibrium E∗ of system (4.3) is stronger than that of system (4.17), i.e., the generation
delay weakens the stability of system), and D̄(p, q) > D(p) for all q ∈ (q∗, 1) (in this case, we say the stability of
equilibrium E∗ of system (4.3) is weaker than that of system (4.17), i.e., the generation delay also strengthens
the stability of system).

To illuminate the above results, we give some numerical simulations. In Figure 6, fix µ = 0.7, i.e., p ≈
0.4965 ∈ (p∗, 1). Then D(0.4965) = 52.85. Let m1 = 1.7, 0.2, 0.01 (i.e., q ≈ 0.1827, 0.8187, 0.99) respectively.
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We have D̄(0.4965, 0.1827) = 49.61 < D(0.4965) (see Fig. 6a), D̄(0.4965, 0.8187) = 95.60 > D(0.4965) (see
Fig. 6b) and D̄(0.4965, 0.99) = 1371.77 	 D(0.4965) (see Fig. 6c).

5. Discussion

We have analyzed what can be considered to be the simplest realistic single species continuous ecosystem
models with stage structure subject to periodic birth pulses. Firstly, we have derived our hybrid matrix models
from the classical continuous Leslie models, and shown that the trajectories of system are positive invariant. For
calculating convenience of the stroboscopic map we have given the analytical solution of system (2.4) between
the pulses. In order to understand the dynamical behavior of hybrid matrix models with density-dependent
fertility, we restrict our attention to the two-dimensional hybrid matrix models. By using the stroboscopic map
and the relationship between the stroboscopic map and hybrid matrix models, we have obtained the complete
expression for the periodic solution with period-one and obtained the threshold conditions for its stability.
We have presented formal proofs of the supercritical flip bifurcation at the critical value. As the parameter b
increases, the solution may pass from a stabilize period-one (annual) cycle to a stabilize period-two cycle to a
period-four (multi-annual cycle), etc., tending to a Feigenbaum transition to chaotic behavior, which show that
the dynamical behavior of hybrid matrix models are very complex as parameters varies.

Comparing systems (4.1) and (4.15) with corresponding to continuous age-structured models (that is, sys-
tems (4.1) and (4.15) do not have impulsive effects), we can conclude that continuous age-structured models are,
as we have known, dominated by its equilibria [10,28,31]. It possesses two equilibria, corresponding to washout
of population and coexistence. These equilibria are the only feasible attractors. Systems (4.1) and (4.15), in
contrast, are dominated by periodic and by chaotic dynamics. So we can conclude that the periodic birth pulsing
of the population (a) destroys equilibria, (b) introduces subharmonic synchronization, and (c) initiates chaos.
So we can conclude that pulsing, in effect, provides a natural period of cyclicity that allows for a period-doubling
route to chaos.

One of the most significant results obtained from the previous section was that the generation delay may act
as both a stabilizing and a destabilizing effect. In fact, our results are as follows. If the death rate of population
satisfies µ ∈ (− ln(p∗), 1) (where p∗ ∈ (0, 1/3)), then the generation delay strengthens the stability of period-1
solution, at the same time the maturation rate does not affect the stability of period-1 solution when the death
rate is relatively high. If µ ∈ (0,− ln(p∗)), we find a critical value of maturation rate m∗

1 = − ln(q∗)(q∗ ∈
(0, 1)) such that the ganeration delay weakens the stability of period-1 solution as m1 ∈ (− ln(q∗), 1), while it
strengthens the stability of periodic solution as m1 ∈ (0,− ln(q∗)). This shows the effect of generation delay on
the stability of period-1 solution is dependent on the maturation rate when the death rate is relatively small.

Another aspect which also should be mentioned is when the density-dependent fertility is considered into
the models, the discrete dynamical system determined by the stroboscopic map becomes nonlinear, then the
population in the pulsed birth time is characterized by the existence and stability of equilibria, by the bifurcations
that occur when stability is lost, and by the patterns of dynamics (cycles, chaos) that follow the bifurcations,
which imply that the density-dependent fertility make the hybrid matrix models more complex than those of
the continuous age-structured models [6, 7, 9, 10].

Many authors have made experiments in order to investigate how stage structure influences the popula-
tion fluctuations. Laboratory insect cultures in which the critical controlling factor is the supply of larval
food [32, 33] often display large quasi-cyclic population fluctuations which the period of the cycles is 2-3 times
the maturation time. The experiments by Lawton on populations of Indian meal moth Plodia interpunctella [14]
have reemphasized that cycles with periods close to the generation time are also possible. Our theoretical results
in this paper show that periodic birth pulses make single species model with stage structure occur with varies
kinds of periodic fluctuations, such as annual cycles and multi-annual cycles, which are in accord with the above
experiments. This suggests that it is more in line with reality from a biological point of view when we consider
the mature population with an annual birth pulse.

From [10], we note that it is easy to obtain the conditions under which species for n-dimensional discrete
Leslie matrix models go to extinction or persistence. However, it is very difficult for us to obtain the conditions
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under which guarantee the extinction or persisitence of species for n-dimensional hybrid matrix models (2.4),
even if we assume all parameters are constants, which need further exploration.
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