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SOLUTION OF CONTAMINANT TRANSPORT WITH ADSORPTION
IN POROUS MEDIA BY THE METHOD OF CHARACTERISTICS
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Abstract. A new approximation scheme is presented for the mathematical model of convection-
diffusion and adsorption. The method is based on the relaxation method and the method of charac-
teristics. We prove the convergence of the method and present some numerical experiments in 1D.
The results can be applied to the model of contaminant transport in porous media with multi-site,
equilibrium and non-equilibrium type of adsorption.
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1. Introduction

We consider the mathematical model for solute transport in porous media, introduced in [21]. This is governed
by the differential equations

θ∂tu+ %1∂tΨ(u) + %2

∫
Λ

∂tv dλ+ q̄.∇u− div(D(t, x)∇u) = G (1)

in (t, x) ∈ I × Ω ≡ QT , I = (0, T ), T <∞,
and

∂tv = f(λ, u, v) in Λ×QT , (2)

along with the boundary conditions

(q̄u−D(t, x)∇u).ν̄ = g on I × ∂Ω1,
∇u.ν̄ = 0 on I × ∂Ω2,

(3)

(ν̄ is the unite outward normal vector to ∂Ω) and along with the initial conditions

u = u0 on {0} × Ω , v = v0 on {0} × (Λ× Ω). (4)
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adsorption.
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Here ∂Ω1, ∂Ω2 are open, non-overlapping subsets of the Lipschitz continuous boundary ∂Ω of the bounded
domain Ω ⊂ RN , with mesN−1∂Ω1 + mesN−1∂Ω2 = mesN−1∂Ω.

The contaminant dissoluted in the groundwater with concentration u is transported and adsorbed by the
porous media skeleton. A multiple site adsorption is considered. The mass of the porous media is subdivided
into two parts related to adsorption sites where the reaction is realized in equilibrium and nonequilibrium
modes, respectively. The equilibrium reaction is represented by Ψ(u) with a so called adsorption isotherm Ψ.
The adsorbed contaminant concentration due to the nonequilibrium reaction is represented by v = v(λ, x, t) for
λ ∈ Λ, where Λ characterizes chemically qualitatively different adsorption sites at the skeleton surfaces related
to a unit volume (representative control volume-REV) at the point x. The kinetics of the nonequilibrium
adsorption is governed by (2) where f is nonincreasing in v (at fixed λ, u).

We assume (Λ, µ) to be a measure space with µ ≥ 0 and µ(Λ) = 1 see [13]. Equation (1) represents the
conservation of the total mass of the contaminant. Here, it is implicitly assumed that the conservation of liquid
mass takes place:

∂tθ + divq̄ = 0 in I × Ω, q̄.ν̄ = h on I × ∂Ω (5)

for the volumetric water content θ and flux q̄.
The adsorption term in (1) reflects the heterogenity of the adsorbent surface grains (rescaled grain surface,

e.g. REV) and is a generalization of the adsorption process considered in [11]. There, the REV is subdivided
into m chemically different collections of adsorption sites, where λi (i ∈ {1, · · · ,m}) represents their relative
size in the REV and vi = v(λi, x, t) represents the adsorbed concentration of the i -th site. Then,

∑m
i=1 λi = 1

and v =
∑m
i=1 viλi , which is a discrete form of the adsorption model in (1),(2).

In transport models in porous media D takes the form

Dij = {Dmol + αT |q̄|}δij + (αL − αT )
qiqj
|q̄| , i, j = 1, . . . , N,

where Dmol is the molecular diffusivity of the contaminant in the fluid and αT , αL are the transversal and
longitudinal lengths, respectively – see [5]. Finally, the bulk densities ρ1, ρ2 correspond to the different kinds of
adsorption sites.

In [21] the uniqueness of the variational solution of (1–4) has been proved under rather general assumptions:

D ≡ D(x); 0 ≤ ρ1, ρ2 ∈ L∞(Ω);G ∈ L1(QT ); g ∈ L1(I × ∂Ω1);

h ∈ L1(I × ∂Ω); 0 ≤ θ ∈ L∞(QT ); q̄ ∈ [L2(QT )]N ; f(λ, x, u1, v1) ≥
f(λ, x, u2, v2) for u1 ≥ u2, v1 ≤ v2, λ ∈ Λ, x ∈ Ω;h ≥ 0 on I × ∂Ω2;

one of the following conditions is satisfied : Ψ is strictly increasing and either

ρ1 > 0 or θ > 0 or mesN−1∂Ω2 > 0; (5) is satisfied in a weak sense.

A typical example of chemical kinetics is

f(λ, x, u, v) := k(λ, x)(ϕ(λ, u) − v), (6)

with a rate parameter k and adsorption isotherm ϕ(λ, u). The function ϕ has similar properties as the sorption
isotherm Ψ. The equilibrium sorption process corresponds to (6) for k →∞, i.e., v = ψ(u). The most common
sorption isotherms are of Langmuir type: ψ(u) = k1u

1+k2u
, or Freundlich type: Ψ(u) = k3u

p, with 0 < p. If Ψ
is of Freundlich type with 0 < p < 1 , then the parabolic term in (1) degenerates since Ψ′(0) =∞ and in this
case the solutions of (1) exhibit similar properties as the solutions of the “porous medium equation”. In that
case the solution possesses a limited regularity at the boundary of its support (i.e., the interface). The interface
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propagates with finite speed. Moreover, the presence of the convective term (eventually dominant) gives rise to
sharp fronts at the interface. This makes the numerical treatment very difficult.

There are many papers discussing the existence, uniqueness, regularity, asymptotic behaviour and numerical
approximation of contaminant transport problems in porous media, which are special cases of (1–4), (q̄ and θ
are Lipschitz continuous, v is independent of λ, adsorption kinetics (6) is considered only, ρ1 or ρ2 vanishes
throughout Ω). See [2–4, 7–10, 13, 15, 19, 26], among others.

The main goal of this paper is to suggest an efficient numerical approximation based on the method of
relaxation (to control the degenerated parabolic term) and on the method of characteristics (to control the
eventually dominant convective term). We will prove the convergence of the suggested approximation scheme
for (1–4).

For the relaxation techniques we follow [15–17]. The method of characteristics has been initiated by [26], [12]
and is then intensively developed in the last two decades. Also in contaminant transport problems the method
of characteristics has been applied in [11] and [4], where %1 ≡ 0, and in [9], where %2 ≡ 0. There, the Lipschitz
continuity of θ and q̄ has been assumed. Here, we assume only the boundedness of θ and q̄ and the Lipschitz
continuity of θ in the t−variable. The velocity field (discharge) q̄ and the volumetric water content θ are usually
solutions of an underground water flow problem (modelled by the strongly nonlinear Richard’s equation) and
are not very smooth in x.

Our concept of approximation of (1–4) is as follows. We use a nonstandard time discretization where ui ≈
u(ti, x), vi ≈ v(ti, x) with ti = iτ, τ = T

n (time step), will be determined from the elliptic equation (7) below.
The method of characteristics will be implemented by approximated characteristics ϕi(x) = x−τωh ∗ q̄iθi on the

time interval t ∈ (ti−1, ti), where q̄i = q̄(ti, x), θi = θ(ti, x) and where ωh is a mollifier, e.g., ωh(x) =
1
hN

ω1

(x
h

)
,

with

ω1(x) =
1
κ


exp(

|x|2
|x|2 − 1

) |x| ≤ 1,

0, |x| ≥ 1

,

∫
RN

ω1(x) dx = 1

and
g ∗ z(x) =

∫
RN

g(x− ξ)z(ξ) dξ.
We will take h = τω with a fixed parameter ω ∈ (0, 1). At the time level t = ti we approximate the transport

part of the convection-diffusion-adsorption process by ui−1 ◦ϕi(x) ≡ ui−1(ϕi(x)), which represents the shifting
of the profile ui−1 along the approximated characteristics ϕi.

We determine ui from elliptic problems (containing diffusion and adsorption) in one of the following schemes.

Scheme I.

θi
ui − ui−1 ◦ ϕi

τ
+ %1µi

ui − ui−1

τ
+ %2

∫
Λ

f(λ, ui, vi−1)dλ− div(Di∇ui) = Gi in Ω,∫
Λ

vi − vi−1

τ
dλ =

∫
Λ

f(λ, ui, vi−1)dλ, a.e. x ∈ QT ,
(7)

along with the boundary conditions

(q̄iui −Diui).ν̄ = gi on ∂Ω1,
∇ui.ν̄ = 0 on ∂Ω2.

(8)

Here, 0 ≤ µi ∈ L∞(Ω) is a relaxation function which has to satisfy the “convergence” condition∥∥∥∥µi − Ψn(ui)−Ψn(ui−1)
ui − ui−1

∥∥∥∥
∞
≤ τ, (9)
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‖.‖∞ being the L∞ -norm and Ψn being a regularization of Ψ, (Ψn → Ψ for n→∞), which we will specify in
the assumption H2) (Sect. 2).

Scheme II.

θi
ui − ui−1 ◦ ϕi

τ
+ %1µi

ui − ui−1

τ
+ %2

∫
Λ

f(λ, ui−1, vi−1)dλ− div(Di∇ui) = Gi in Ω,∫
Λ

vi − vi−1

τ
dλ =

∫
Λ

f(λ, ui−1, vi−1)dλ, a.e. x ∈ QT ,
(10)

along with the boundary conditions (8) and “convergence condition” (9). This scheme is explicit with respect
to the adsorption term, in contrast to Scheme I.

Approximation Schemes I and II are implicit, since ui, µi are coupled in (7, 9) and (9, 10), respectively. We
can modify Schemes I and II into an explicit form by means of an iteration-relaxation process with parameter
k = 1, ...

Scheme Ik.

θi
ui,k − ui−1 ◦ ϕi

τ
+ %1µi,k−1

ui,k − ui−1

τ
+ %2

∫
Λ

f(λ, ui,k−1, vi−1)dλ− div(Di∇ui,k) = Gi, (11)

along with the boundary conditions (8) for ui,k. Then, we put

µi,k :=
Ψn(ui,k)−Ψn(ui−1)

ui,k − ui−1
, µi,0 = Ψ′n(ui−1), k = 1, . . . . (12)

If ‖µi,k0 − µi,k0−1‖∞ < τ , then we take µi := µi,k0−1 and ui := ui,k0 .

A simple iteration process in (10) can be taken as follows:

Scheme IIk.

θi
ui,k − ui−1 ◦ ϕi

τ
+ %1µi,k−1

ui,k − ui−1

τ
+ %2

∫
Λ

f(λ, ui−1, vi−1)dλ− div(Di∇ui,k) = Gi in Ω, (13)

along with the BC’s (8) and along with (12).

Remark 1.1. Another, however numerically more costly, linearization can be considered when in (11) we
replace f(λ, ui,k−1, vi−1) by f(λ, ui,k−1, vi−1) + f ′u(λ, ui,k−1, vi−1)(ui,k − ui,k−1). The adsorption term can
also be included take in the iteration process, when replacing f(λ, ui,k−1, vi−1) by f(λ, ui,k−1, vi,k−1) and
f ′u(λ, ui,k−1, vi−1) by f ′u(λ, ui,k−1, vi,k−1), and when next defining vi,k by:∫

Λ

vi,k − vi−1

τ
dλ =

∫
Λ

f(λ, ui,k−1, vi,k−1) dλ, k = 1, . . .

This would correspond to an implicit scheme, where in (7) the term f(λ, ui, vi−1) is replaced by f(λ, ui, vi).
This type of approximation requires the Lipschitz continuity of f .

The approximations in Scheme Ik and Scheme IIk, respectively, reduce the original problem to solving a
sequence of linear elliptic problems.

In Section 2 we introduce the underlying assumptions and the variational formulation of (1–4) and of (7–8).
In Section 3 we discuss the convergence of the iterations in Scheme IIk with respect to k. The convergence of
the approximation Schemes I and II is proved in Section 4. In Section 5 some generalizations concerning the
structure of f are considered. We shortly discuss the full discretization scheme of (1–4) in Section 6. Some
simple numerical experiments are presented in Section 7.
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2. Assumptions and variational formulations

In the sequel, c denotes a generic positive constant, V denotes the Sobolev space W 1
2 (Ω) and V ∗ its dual space

with duality 〈w, u〉 for w ∈ V ∗, u ∈ V . We denote (u, v) :=
∫

Ω
uv dx for u, v ∈ L2 ≡ L2(Ω), (u, v)Γ :=

∫
Γ
uv dx

for u, v ∈ L2(∂Ω), (Γ ⊂ ∂Ω). By L2(I, V ), L2(I, L2) we denote functional spaces of abstract functions u : I →
V , resp. u : I → L2 – see [22]. We denote by ‖.‖0, ‖.‖, ‖.‖∗ and ‖.‖Γ the norms in the spaces L2, V, V

∗ and
L2(Γ), respectively. Finally, we denote

b(t, u) := θ(t, x)u + %1(x)Ψ(u).

Definition 2.1. u ∈ L2(I, V ), v ∈ L2(I, L2(Λ× Ω)) is a variational solution of (1–4) if
i) b(t, u) ∈ L1(I, L1(Ω)), ∂tb ∈ L2(I, V ∗), ∂tv ∈ L2(I, L2(Λ× Ω)),

ii) ∫
I

〈∂tb(t, u), w〉dt−
∫
I

(∂tθ u,w)dt+
∫
I

∫
Λ

(f(λ, u, v), w) dλ dt

+
∫
I

(q̄.∇u,w)dt+
∫
I

(D∇u,∇w)dt−
∫
I

(h,w)∂Ω1 dt+
∫
I

(g, w)∂Ω1 dt

=
∫
I

(G,w) dt ∀w ∈ L2(I, V )

and ∫
Λ

(∂tv, ξ) dλ =
∫

Λ

(f(λ, u, v), ξ) dλ ∀ξ ∈ L2(I, L2(Λ× Ω))

iii) ∫
I

〈∂tb(t, u), ξ)〉 dt = −
∫
I

∫
Ω

(b(t, u)− b(0, u0))∂tξ dx dt ∀ξ ∈ L2(I, V ),

with
∂tξ ∈ L∞(QT ) and ξ(x, T ) = 0.

In Definition 2.1, equation (5) is implicitly assumed to take place. This is a modification of the variational
solution in [21], which allows us to assume less regularity for θ and q in (5). In our notation the identity ii) is
considered in the form∫

I

〈∂tb(t, u), w〉 dt+
∫
I

∫
Λ

(f(λ, u, v), w) dλ dt−
∫
I

(q̄u−D∇u,∇w) dt

+
∫
I

(g, w)∂Ω1dt+
∫
I

(h,w)∂Ω2 dt =
∫
I

(G,w) dt,

which under (5) (with ∂tθ ∈ L∞(QT ),divq̄ ∈ L2(QT )) is equivalent with ii). The uniqueness result in [21]
for the variational solution is very important for the numerical analysis and we shall use it. The variational
formulation in Definition 1 is suitable for our concept of approximation applying the method of characteristics.

The solution in (7) is also understood in the variational form :

(θi
ui − ui−1 ◦ ϕi

τ
, w) + (%1µi

ui − ui−1

τ
, w) +

∫
Λ

(%2f(λ, ui, vi−1), w) dλ

−(h,w)∂Ω1 + (gi, w)∂Ω1 + (Di∇ui,∇w) = (Gi, w), ∀w ∈ V
(14)

provided that (7)2 holds for a.e. x ∈ QT . When using an explicit modification in the reaction term, we take

(θi
ui − ui−1 ◦ ϕi

τ
, w) + (%1µi

ui − ui−1

τ
, w) +

∫
Λ

(%2f(λ, ui−1, vi−1), w) dλ

−(h,w)∂Ω1 + (gi, w)∂Ω1 + (Di∇ui,∇w) = (Gi, w), ∀w ∈ V
(15)
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and in (7)2 we replace ui by ui−1. For q̄i, θi, gi, hi we can take the corresponding L2-average, e.g., q̄i =
1
τ

∫ ti
ti−1

q̄(s) ds and similarly for θi, gi, hi.

Assumptions. To guarantee the convergence of the approximation scheme (7–9) and of the scheme (8–10)
we shall assume
H1) θ(t, x) ≥ θ◦ > 0 is continuous in I × Ω and Lipschitz continuous in t ∈ I , i.e., |θ(t, x) − θ(t′, x)| ≤

c|t− t′|; q̄ ∈ L∞(QT ); h ∈ L∞(I × ∂Ω).
H2) D is continuous on Q̄T and satisfies

(Dξ, ξ) ≥ ce|ξ|2 ∀ξ ∈ RN .

H3) G is continuous on QT ; g is continuous on I × ∂Ω1; %1, %2 ∈ L∞(Ω) and %1, %2 ≥ 0.
H4) f(λ, x, u, v) is continuous and bounded on Λ×R×R and

−K ≤ f ′v(λ, x, u, v) ≤ 0 for (λ, x, s, p) ∈ Λ× Ω×R ×R.

H5) Ψ is nondecreasing (Ψ(0) = 0) and there exists Ψn(s) ∈ C1(R) such that Ψn(s)→ Ψ(s) locally uniformly
for s in a bounded set and such that

0 ≤ Ψ′n(s) ≤ cτ−α; Ψn(0) = 0; sup
n,|s|≤K

|Ψn(s)| ≤ C(K) <∞.

H6) u0 ∈ L2(Ω), v0 ∈ L2(Λ).
By ϕi , (ϕi(x) = x− τωh ∗ q̄iθi ), we map Ω into Ωi ⊂ Ω?, where Ω? ⊃ Ω̄ is a small neighborhood of Ω, provided

τ ≤ τ0. To apply the method of characteristics it is crucial that ϕi and its inverse ϕ−1
i are Lipschitz continuous

uniformly for n, (i = 1, . . . , n). If ϕi(x) does not belong to Ω, then we extend ui−1 ∈ V into ũi−1 ∈ W 1
2 (Ω∗)

and we replace ui−1 ◦ ϕi by ũi−1 ◦ ϕi. The prolongation of ui−1 can be realized in such a way that

‖ui−1‖W1
2 (Ω∗) ≤ c‖ui−1‖W1

2 (Ω) (c is independent on ui−1)

– see [24] (prolongation of Nikolskij).

Lemma 2.2. If ω ∈ (0, 1) then ϕi is one to one and it holds that

1
2
|x− y| ≤ |ϕi(x)− ϕi(y)| ≤ 2|x− y|, i = 1, . . . , n,

uniformly for x, y ∈ Ω, provided that τ ≤ τ0.

Proof. Since ϕi(x) = x− ωh ∗ q̄iθi and
∥∥∥ q̄iθi∥∥∥∞ ≤M <∞, for i = 1, . . . , n , we have

∥∥∥∥ωh ∗ q̄iθi
∥∥∥∥
∞
≤M and

∥∥∥∥∇xωh ∗ q̄iθi
∥∥∥∥
∞
≤ c

h

∥∥∥∥ q̄iθi
∥∥∥∥
∞
≤ cM

h
.

Since h = τω , we have

(1− τ1−ωcM)|x− y| ≤ ϕi(x)− ϕi(y)| ≤ (1 + τ1−ωcM)|x− y|, ∀x, y ∈ Ω,

which implies our assertion. �
The solution of (11) and (13), respectively, is understood in the variational sense. The existence and unique-

ness of the variational solution ui,k ∈ V of (13) is guaranteed by a Lax-Millgram argument. If, additionally to
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H4), f(λ, u, v) is nondecreasing in u then there exists a unique variational solution of (11) too, because of the
theory of monotone operators.

Under the “optimal” variational solution of (7–9) or of (8–10) we understand ui ∈ V such that µi =
Ψn(ui)−Ψn(ui−1)

ui−ui−1
. The existence of a unique (optimal) variational solution of (8–10) is again guaranteed by

the theory of monotone operators, since we replace µi
ui−ui−1

τ by Ψn(ui)−Ψn(ui−1)
τ with monotone Ψn. If f is

nondecreasing in u , then there exists a unique “optimal” variational solution of (7–9).
The convergence of (12–13) to an “optimal” variational solution of (9–10) is discussed, under additional

structural and regularity assumptions, in the next section.

3. Convergence of Scheme IIk

Let us denote by Pi , the Dirichlet boundary value problems (9, 10) with ui = w on ∂Ω. Likewise, Pi,k is the
Dirichlet problem (12, 13) with ui,k = w on ∂Ω. We consider the following restrictions:

(i) w is Lipschitz continuous on ∂Ω and there exists uw ∈W 1
2 (Ω)∩C0, 12 (Ω̄) (C0,β is the set of all β - Holder

continuous functions) such that uw |∂Ω≡ w;
(ii) Di ≡ D(x) is symmetric:

(iii) |Ψ′′n(s)‖ ≤ cτ−γ , γ ∈ (0, 1).
Following [17] we can prove

Lemma 3.1. Let H1)−H5) and (i−−iii) be satisfied. We assume that the variational solutions ui of Pi are
uniformly bounded in C0,α(Ω̄) for some α ∈ (0, 1). If α

2 − γ > 0, then there exists τ0 > 0 such that ui,k → ui

in C(Ω̄) for k →∞, where ui is an “optimal” variational solution of Pi (i.e, µi = Ψn(ui)−Ψn(ui−1)
ui−ui−1

is satisfied).
There exists k0 <∞ such that ui := ui,k0 , µi := ui,k0−1 satisfies Pi.

Proof. We put λ(v; z) := θ + %1µ(v; z) ≡ θ + %1
Ψn(v)−Ψn(z)

v−z and F := θ z−z◦ϕτ . We rewrite (10) in the form

λ(v;ui−1)(u− ui−1)− τ∇(D∇u) = τ(Gi + Fi), (16)

where
Fi = θi

ui−1 − ui−1 ◦ ϕi
τ

, v = ui,k−1, u = ui,k,

which is of the form (5.1) in [17]. An “optimal” solution of Pi is the solution of (16) with v = u. The results
in [17] (Lem. 5.2 and Th. 5.1) can be adapted in our case if the inequality τ‖fi‖∞ ≤ cτα/2 takes place (see the
proof of Lem. 5.2 in [17]). The assumption ui−1 ∈ C0,α and hypothesis H1) lead to the estimate

τ‖Fi‖∞ ≤ ‖ui−1‖C0,ατα/2‖ωh ∗
q̄i
θi
‖∞ ≤ cτα/2.

In our case the Lipschitz constant Lλ of λ(v; z) with respect to v is estimated by Lλ ≤ cτ−γ which follows from
(iii). Moreover, in our case λ is regular from below, i.e. λ(v; z) ≥ θ0 ≥ 0 and the corresponding parameter d
in [17] equals zero. Then, the result follows from Theorem 5.1 in [17]. �

Now we prove that under the assumptions of Lemma 3.1, the estimate ‖∇ui‖0 ≤ c, ∀n, (i = 1, . . . , n), holds
from which it follows that ‖ui‖C0,α(Ω̄) ≤ c in the 1D-case. For simplicity we denote

δui :=
ui − ui−1

τ

Lemma 3.2. Retain the assumptions H1) − H5) and (i − iii). Moreover, assume that u0 ∈ W 1
2 , ∂th ∈

L2(I, L2(∂Ω)) and ∂tg ∈ L2(I, L2(∂Ω1)). Then, the estimate ‖∇ui‖0 ≤ c holds for i = 1, . . . , n , for all n.
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Proof. We put w = uiτ in (15) where we replace f(λ, ui−1, vi−1) by δvi := vi−vi−1
τ . Then we sum up for

i = 1, . . . , j. We split ui − ui−1 ◦ ϕi = ui − ui−1 + ui−1 − ui−1 ◦ ϕi and we use

ui−1 − ui−1 ◦ ϕi
τ

=
∫ 1

0

∇ũi−1(x+ s(ϕi(x) − x)) ds. ωh ∗
q̄i
θi
, (17)

with
∥∥∥ωh ∗ q̄iθi∥∥∥∞ ≤ c. Due to the prolongation properties of ũi−1 and of Lemma 2.2 we have

∥∥∥∥ui−1 − ui−1 ◦ ϕi
τ

∥∥∥∥
0

≤ c‖∇ũi−1‖L2(Ω∗) ≤ c‖∇ui−1‖0. (18)

Then, we obtain

1
2

(‖uj‖20 − ‖u0‖20) +
j∑
i=1

‖∇ui‖20τ ≤ c
j∑
i=1

‖∇ui‖0‖ui‖τ +
j∑
i=1

(‖hi‖∂Ω1

+‖gi‖∂Ω1)‖ui‖τ +
j∑
i=1

c‖ui‖0τ +
j∑
i=1

‖Gi‖0‖ui‖0τ,

where (16), (18), the boundedness of f and the continuous imbedding V ↪→ L2(∂Ω) have been used. Young’s
inequality (ab ≤ ε2

2 a
2 + 1

2ε2 b
2) and Gronwall’s argument then lead to the a priori estimate

‖uj‖20 +
j∑
i=1

‖ui‖2 τ ≤ c uniformly for j, n. (19)

Next, we put w = ui−ui−1 in (14). In the surface integrals we apply Abel’s summation and obtain the estimate

θ0

j∑
i=1

‖δui‖20 τ +
1
2
ce(‖∇uj‖20 − ‖∇u0‖20) ≤ c

j∑
i=1

‖∇ui‖0‖δui‖0 τ + (hj , uj)∂Ω1 − (gj , uj)∂Ω1

+c
j∑
i=1

(‖δgi‖∂Ω1 + ‖δhi‖∂Ω1)‖ui‖ τ

+c
∫

Λ

j∑
i=1

‖δvi‖0‖δui‖0 τ dλ+
j∑
i=1

‖Gi‖0‖δui‖0 τ,

where we have again used the continuous imbedding V ↪→ L2(∂Ω). Furthermore, we have

|(hj , uj)∂Ω1 | ≤ ‖hj‖∂Ω‖uj‖∂Ω ≤ c1‖hj‖2∂Ω1
+ ε‖∇uj‖20 + cε‖uj‖20

on account of the inequality –see [24],

‖u‖2∂Ω ≤ ε‖∇u‖20 + cε‖u‖20 ∀u ∈ V, ε > 0 arbitrary small. (20)

Similarly, we estimate |(gj , uj)∂Ω1 |. Then, we apply (19) and Gronwall’s argument and obtain

‖∇uj‖20 ≤ c1 + c2

j∑
i=1

τ

∫
Λ

‖δvi‖20 dλ ≤ c,
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since f is bounded and since (10)2 implies that

‖
∫

Λ

δvi dλ‖0 ≤
∫

Λ

‖δvi‖0 dλ ≤ c.

Thus, the proof is complete. �

Remark 3.3. The estimate of ‖ui‖C0,α , (i = 1, . . . , n), uniformly for n is an open problem for N > 1.

4. Convergence of the Schemes I and II

First, we derive some a priori estimates for ui, vi and then we prove the convergence ūn(t)→ u(t), v̄n(t)→
v(t) for n→∞ in corresponding functional spaces, where

ūn(t) := ui for t ∈ (ti−1, ti), i = 1, . . . , n, ūn(0) = 0
and

un(t) := ui−1 + (t− ti−1)δui for t ∈ [ti−1, ti], i = 1, . . . , n
(21)

and similarly we define v̄n(t), vn(t). We denote Φn(s) := Ψn(s)s−
∫ s

0 Ψn(z) dz and similarly introduce Φ(s).

Lemma 4.1. Under the assumptions H1)−H6) the following estimates hold:

max
1≤i≤n

‖ui‖20 ≤ c, max1≤i≤n
∫

Ω
Φn(ui) dx ≤ c,

n∑
i=1

‖ui‖2 τ ≤ c, ‖vi‖0 ≤ c,
∫

Λ ‖δvi‖0 dλ ≤ c.

Proof. We put w = ui τ in (14) and sum up for i = 1, . . . , j. We denote the corresponding terms in the form∑6
l=1 Jl = J7. To estimate the term J1 we use the splitting

ui − ui−1 ◦ ϕi = ui − ui−1 + ui−1 − ui−1 ◦ ϕi

and in J2 we use

µi(ui − ui−1) = Ψn(ui)−Ψn(ui−1) + τ χi(ui − ui−1),

with ‖χi‖∞ ≤ c because of (11). Then using H1) and the monotonicity of Ψn and proceeding similarly as in
Lemma 3.2 we get

J1 + J2 ≥ 1
2 (‖θ1/2

j uj‖20 − ‖θ
1/2
0 u0‖20) +

∫
Ω

Φn(uj) dx−
∫

Ω
Φn(u0) dx

−c
j∑
i−1

‖ui‖20 τ −
j∑
i=1

(θi(ui−1 − ui−1 ◦ ϕi), ui),
(22)

since

j∑
i=1

(θi(ui − ui−1), ui) ≥
∫

Ω

1
2

(θiu2
i − θi−1u

2
i−1) dx+

1
2

j∑
i−1

∫
Ω

(θi − θi−1)u2
i−1 dx
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and

j∑
i−1

(Ψn(ui)−Ψn(ui−1), ui) ≥
∫

Ω

(Ψn(uj)uj −Ψn(u0)u0) dx−
j∑
i=1

∫
Ω

(Zn(ui)− Zn(ui−1)) dx (23)

≥
∫

Ω

Φn(uj) dx−
∫

Ω

Φn(u0) dx,

where
Zn(s) =

∫ s

0

Ψn(r) dr

(see [17]). The last term in (22) is estimated by means of (16) and (18). We get

|
j∑
i=1

(θi(ui − ui−1 ◦ ϕi), ui)| ≤ cε
j∑
i=1

‖ui‖20 τ

+ε
j∑
i=1

‖∇ũi−1‖2L2(Ω∗) τ ≤

ε

j∑
i=1

‖∇ui‖20 τ + cε

j∑
i=1

‖ui‖20 τ.

(24)

Using the boundedness of f we find

|J3| ≤ c1 + c2

j∑
i=1

‖ui‖20 τ. (25)

Due to H1) and (20) we have

|J4| ≤ c1
j∑
i=1

τ

∫
∂Ω

u2
i dx+ c2 ≤ ε

j∑
i=1

‖∇ui‖20

+cε
j∑
i=1

‖ui‖20 τ + c.

(26)

Similarly, we obtain

|J5| ≤ ε
j∑
i=1

‖ui‖20 τ + cε

j∑
i=1

‖ui‖20 τ. (27)

Furthermore, H2) leads to

J6 ≥ cε
j∑
i=1

‖ui‖20 τ. (28)

Finally, H4) implies that

|J7| ≤ c1 + c2

j∑
i=1

‖ui‖20 τ. (29)
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Combining (22–29) and again invoking Gronwall’s argument we arrive at the desired a priori estimates. �
Additional a priori estimates are found in the following lemma.

Lemma 4.2. The estimates

n−k∑
j−1

(b(tj+k, uj+k)− b(tj , uj), uj+k − uj)τ ≤ c kτ, 0 ≤ k < n,

hold uniformly for n.

Proof. We rewrite (14) in the form

(b(ti, ui)− b(ti−1, ui−1), w) = −(Di∇ui,∇w) τ

−(θi(ui−1 − ui−1 ◦ ϕi), w) + (ui−1(θi − θi−1), w) + (hiui, w)∂Ω1 τ

−(gi, w)∂Ω1 τ + (Gi, w) τ − τ(χi(ui − ui−1), w)

−τ
∫

Λ

(f(λ, ui, vi−1), w) dλ.

(30)

We sum up for i = j + 1, . . . , j + k. Then we put w = (uj+k − uj)τ and sum up for j = 1, . . . , n − k. In the
second term on R.H.S. we use (16) and (18). Applying the a priori estimates of Lemma 4.1 we successively
obtain the required estimate. �

Corollary 4.3. As a special case of Lemma 4.2 we have

n∑
i=1

(uj+k − uj, uj+k − uj) τ ≤ ckτ. (31)

Proof. For the proof we take into account the monotonicity of Ψn. We get

(Ψn(uj+k)−Ψn(uj), uj+k − uj) ≥ 0.

Moreover, the rearrangement

θj+kuj+k − θjuj = θj+k(uj+k − uj) + (θj+k − θj)uj

implies that

n−k∑
j=i

τ(θj+kuj+k − θjuj , uj+k − uj) ≥ c
n−k∑
j=1

‖uj+k − uj‖20 τ − τc
n−k∑
j=1

‖uj‖20 τ.

Then, from Lemmas 4.1 and 4.2 we obtain (31). �
The a priori estimates in Lemma 4.1 and (31) can be rewritten in the form

‖ūn(t)‖0 ≤ c,
∫
I

‖ūn‖2 dt ≤ c, max
t

∫
Ω

Φn(ūn(t)) dx ≤ c,∫
I

‖ūn(t+ z)− ūn(t)‖20 dt ≤ cz ∀0 < z ≤ z0,
(32)
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where kτ ≤ z ≤ (k + 1)τ , ūn(t+ z) = 0 for t+ z > T .
From (32)2 we obtain (see [24])∫

I

∫
Ω

(ūn(t, x+ y)− ūn(t, x))2 dxdt ≤ c|y|
∫
I

‖∇ūn‖20 dt ≤ c|y|. (33)

Then, due to Kolmogoroff compactness argument (see [24]) we have

Lemma 4.4. There exists u ∈ L2(I, V ) and a subsequence of {ūn} (we denote it again by {ūn} ) such that ūn →
u in L2(I, L2), ūn ⇀ u in L2(I, V ). Moreover, there exists v ∈ L2(I, L2(Λ×Ω) such that ∂tv ∈ L2(I, L2(Λ×Ω))
and v̄n → v in L2(I, L2(Λ× Ω)) for n→∞.

Proof. The convergence ūn → u in L2(I, L2(Ω)) follows from Kolmogoroff’s compactness argument (see [24]).
From the a priori estimate (32)2 we have that ūn ⇀ w in L2(I, V ) and also ūn ⇀ w in L2(I, L2). Consequently,
w ≡ u. The boundedness of f implies that∫

Λ

‖∂tτ v̄n‖0 dλ ≤ c where ∂t
τ v̄n :=

vi − vi−1

τ
for t ∈ (ti−1, ti), i = 1, . . . , n.

Then, ∂tτ v̄n is bounded in L2(I, L2(Λ×Ω)) and hence there exists χ ∈ L2(I, L2(Λ×Ω)) so that ∂tτ v̄n ⇀ χ in
L2(I, L2(Λ× Ω)). We can write

vn(t) = v0 +
∫ t

0

f(λ, ūn(s), v̄nτ (s)) ds,

(v̄nτ := v̄n(t− τ) and v̄n = v0 for s ∈ (−τ, 0)). Using H4) we get∫
Λ

‖vn(t)− vm(t)‖20 dλ ≤
∫

Λ

∫ t
0 ‖f(λ, ūn, v̄nτ )− f(λ, ūm, v̄mτ )‖20 ds dλ

≤ c

∫
Λ

∫ t

0

(‖f(λ, ūn, v̄nτ )− f(λ, ūm, v̄nτ )‖20 + ‖f(λ, ūm, v̄nτ )− f(λ, ūm, v̄mτ )‖20) ds dλ.

Since −K ≤ f ′v(.) ≤ 0 we have∫
Λ

∫ t

0

‖f(λ, ūn, v̄nτ )− f(λ, ūn, v̄mτ )‖20 ds dλ ≤ K
∫

Λ

∫ t

0

‖v̄n − v̄m‖20 ds dλ.

The boundedness of ∂tvn in L∞(I × Λ × Ω) implies that ‖v̄n − v̄n‖0 ≤ c
n (see (21)). Consequently, from

Gronwall’s argument we deduce that∫
Λ

‖v̄n − v̄m‖20 dλ ≤ c
(∫ t

0

∫
Λ

‖f(λ, ūn, v̄nτ )− f(λ, ūm, v̄nτ )‖20 ds dλ+
1
n2

+
1
m2

)
ecK .

The R.H.S. converges to 0 for n,m→∞ since

|f(λ, x, sn, ξ)− f(λ, x, sm, ξ)| ≤ |f(λ, x, sn, ξ)− f(λ, x, s, ξ)| + |f(λ, x, sm, ξ)− f(λ, x, s, ξ)|

and since f(λ, x, sn, ξ)→ f(λ, s, ξ) uniformly with respect to ξ in bounded sets.
As v̄nτ is bounded and f is bounded, we obtain that v̄n → v in L2(I, L2(Λ×Ω)) (moreover in L∞(I, L2(Λ×Ω)))
because of Lebesgue dominated convergence theorem. From this fact and from ∂t

τ v̄n ⇀ χ it follows that ∂tv = χ
and Lemma 4.4 is proved. �

Now we can prove our main result. Let {n̄} denote a suitable subsequence of {n}.
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Theorem 4.5. Let the assumptions H1) − H6) be satisfied. Then {u, v} from Lemma 4.4 is a variational
solution of (1)-(4) in the sense of Definition 1. The approximate solution {ūn̄, v̄n̄} from (7–9), (resp. (10–9)),
converges to {u, v} : ūn̄ ⇀ u in L2(I, V ) and v̄n̄ → v in L∞(I, L2(Λ×Ω)). If, moreover, f is nondecreasing
in u and (5) is satisfied with div q̄ ∈ L∞(QT ), then this solution is unique and the original sequence {ūn, v̄n} is
convergent.

Proof. First we prove that u from Lemma 4.4 is a variational solution of (1–4). By the duality argument in (30)
and due to the a priori estimates (32) we obtain

‖δb(ti, ui)‖∗ = sup
‖w‖≤1

(δb(ti, ui), w) ≤ c1 + c2‖ui‖.

Consequently, ∂tτ bn(t, ūn) is bounded in L2(I, V ∗), where bn(t, ūn) := b(ti, ui) for t ∈ (ti−1, ti) , i = 1, . . . , n.
Thus ∂tτ bn(t, ūn) ⇀ χ in L2(I, V ∗). On the other hand ūn(t, x) → u(t, x) a.e. (t, x) ∈ QT . Due to the
properties of θ and Ψn (see H1) and H6) ) we obtain that Ψn(ūn)→ Ψ(u) and consequently bn(t, ūn)→ b(t, u)
for a.e. (t, x) ∈ QT . Moreover, the following estimate holds:

|Ψn(s)| ≤ δΦn(s) + cδ for any δ > 0, uniformly for s ∈ R, (34)

which can be obtained in the same way as (4.7) in [17]. From this estimate and from
∫

Ω Φn(ūn) dx ≤ c it follows
that Ψn(ūn)→ Ψ(u) in L1(QT ) and consequently that bn(t, ūn)→ b(t, u) in L1(QT ). From this fact we obtain
χ ≡ ∂tb(t, u). We rewrite (30) in the form∫
I

(∂tτbn(t, ūn), w) dt−
∫
I

(∂tτθūnτ , w) dt+
∫
I

(D̄n∇ūn,∇w) dt

+An −
∫
I

(h̄nūn, w)∂Ω1 dt+
∫
I

(ḡn, w)∂Ω1 dt+
∫
I

∫
Λ

(f(λ, ūn, v̄nτ ), w) dt

=
∫
I

(Ḡn, w) dt−
∫
I

(χ̄n(ūn − ūnτ ), w) dt, ∀w ∈ L2(I, V ), (35)

where

An =
∫
I

(θ̄n
1
τ

(ūnτ − ūnτ ◦ ϕn), w) dt,

D̄n = D(ti, x) for t ∈ (ti−1, ti), i = 1, . . . , n, and similarly for θ̄n, χ̄n, Ḡn, ḡn, h̄n, ϕ̄n.
Next we prove that An →

∫
I
(q̄.∇u,w) dt. For this purpose we use (16) and the convergence property

ωh ∗ q̄
n

θ̄n
→ q̄

θ for n→∞ in L2(QT ) and also pointwise a.e. in (t, x) ∈ QT . Moreover, we show that∫ 1

0

∇¯̃unτ (t, x+ s(ϕ̄n(x)− x)) ds ⇀ ∇u in L2(I, L2)

as a consequence of (see (18)) ∫
I

‖∇
∫ 1

0

¯̃un(.) ds‖20 dt ≤ c
∫
I

‖∇ūn‖20 dt ≤ c (36)

and ∫ 1

0

¯̃unτ (.) ds− ūnτ = τωh ∗
q̄n

θn
.

∫ 1

0

∫ 1

0

∇˜̄unτ (t, x+ sr(ϕ̄n(x)− x)) drds. (37)
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Notice that (36) implies that ∇
∫ 1

0
¯̃un ⇀ χ ≡ ∇u in L2(I, L2) since ūnτ → u and consequently

∫ 1

0
¯̃unτ (.) ds→ u

in L2(I, L2). The boundedness and pointwise convergence of ωh ∗ q̄
n

θn then guarantee that An →
∫
I(q̄.∇u,w) dt

for n → ∞ . From ūn → u in L2(I, L2) and ūn ⇀ u in L2(I, V ), it follows that ūn → u in L2(I, L2(∂Ω)) –
see [18].
Now, we can take the limit n →∞ in (35) and obtain the identity ii) in Definition 2.1. To prove identity iii)
we consider∫

I

〈b(t, u(t))− b(t− τ, u(t− τ))
τ

, ζ〉 dt =
1
τ

∫
I

(b(t, u(t))− b(t− τ, u(t− τ)), ζ) dt

= −
∫ T−τ

0

(b(t, u(t)),
ζ(t− τ)− ζ(t)

τ
) dt

− 1
τ

∫ T

T−τ
(b(t, u(t)), ζ(t)) dt− 1

τ

∫ τ

0

(b(0, u0), ζ(s)) ds,

where b(t, u(t)) ≡ b(0, u0) for t ∈ (−τ, 0). Next, we take the limit τ → 0 and use 1
τ {b(t, u(t) − b(t − τ, u(t −

τ))} → ∂tb(t, u) in L2(I, V ∗). We conclude that {u, v} from Lemma 4.4 is a variational solution of (1–4). The
convergence of the original sequences {ūn, v̄n} is a consequence of the uniqueness result in [21]. �

In fact, we can prove a stronger convergence ūn → u than in Theorem 4.5.

Theorem 4.6. Under the assumptions of Theorem 4.5 it holds that ūn → u in L2(I, V ).

Proof. In the proof we essentially make use of the integration by parts formula – see [1, 17]∫ t

0

〈∂tb(t, u), u〉 dt =
∫

Ω
B(t, u(t)) dx−

∫
Ω
B(0, u0) dx

+
1
2

∫ t

0

∫
Ω

∂tθu
2 dx dt,

(38)

where B(t, u) = 1
2θu

2 + Φ(u) and ∇Φ = Ψ is from Section 3.
We note that

∫
Ω Φ(u(t)) dz ≤ c < ∞ follows from a priori estimates in Lemma 4.1 and from Fatou’s lemma

(Φ(s) ≥ 0 is convex). Moreover, we shall use

lim inf
∫ t

0

(∂tτ bn(t, ūn), ūn) dt ≥
∫

Ω

B(t, u(t)) dx−
∫

Ω

B(0, u0) dx+
1
2

∫ t

0

∫
Ω

∂tθu
2 dx dt, (39)

which we obtain from the following inequality (see (22, 23))

j∑
i=1

{(θiui − θi−1ui−1, ui) + (Ψn(ui)−Ψ(ui−1), ui)} ≥∫
Ω

{1
2
θju

2
j + Φn(uj)} dx−

∫
Ω

{1
2
θ0u

2
0 + Φn(u0)} dx+

1
2

j∑
i=1

τ

∫
Ω

θi − θi−1

τ
u2
i−1 dx

+
j∑
i=1

τ

∫
Ω

θi − θi−1

τ
(ui−1ui − u2

i−1) dx.

The last term converges to 0 for n→ ∞. This is seen as follows. Firstly, θi−θi−1
τ ≡ ∂tθ

n(t, x) for t ∈ (ti−1, ti)
is bounded and converges to ∂tθ(t, x) for n → ∞ for a.e. (t, x) ∈ QT . Secondly, ūnτ ūn − (ūnτ )2 → u2 − u2 = 0
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for a.e. (t, x) ∈ QT . In an analogous way we obtain

1
2

j∑
i=1

τ

∫
Ω

θi − θi−1

τ
u2
i−1 dx→ 1

2

∫ t

0

∫
Ω

∂tθu
2 dx dt for n→∞,

provided that tj ≡ tnj → t.
From (38) and (39) we deduce that

lim inf
∫ t

0

〈δτt bn(t, ūn), ūn − u〉 dt ≥ 0, (40)

since ∂tτbn(t, ūn) ⇀ ∂tb(t, u) in L2(I, V ∗) – see the proof of Theorem 4.5.
Next, we put w = ūn − u in (35) and we use (40) and the estimate∫ t

0

(D̄n∇ūn,∇(ūn − u)) dt =
∫ t

0

(D̄n∇(ūn − u),∇(ūn − u)) dt+
∫ t

0

(D̄n∇u,∇(ūn − u)) dt

≥ c

∫ t

0

‖∇(ūn − u)‖20 dt+ εn,

where

εn =
∫ t

0

(D̄n∇u,∇(ūn − u)) dt→ 0 for n→∞,

since ūn ⇀ u in L2(I, V ).
In the remaining terms of (35) we use the fact that ūn → u in L2(I, L2(Ω)) and ūn → u in L2(I, L2(∂Ω)).
Then, the required convergence result follows. �

5. Some generalizations

In this section we consider a more general case of reaction-adsorption term f . Instead of H4) we assume
H4)′ : f(λ, x, z, w) is continuous on Λ×R ×R and satisfies:

1) |f(λ, x, z, w)| ≤ c(1 + |z|+ |w|),
2) −K ≤ f ′w(λ, x, z, w) ≤ 0 for (λ, x, z, w) ∈ Λ× Ω× Ω×R and
3) if zn → z then f(λ, x, zn, ξ)→ f(λ, x, z, ξ) uniformly in λ ∈ Λ, ξ ∈ R

Assumption 3) is evidently satisfied for

f(λ, x, u, v) = k(λ, x)(ϕ(λ, u) − v),

with k(λ, x) ≤M . The uniform boundedness of k(λ, x) is implicitly included in 1).

Theorem 5.1. If we replace H4) by H4)′ then the results of Theorems 4.5 and 4.6 remain valid.

Proof. For the proof we must only include the analysis of the reactive term concerning f . In the proof of
Lemma 4.1 we estimate (we omit x in f )

|
j∑
i=1

(
∫

Λ

f(λ, ui, vi−1) dλ, ui) τ | ≤ c1 + c2

j∑
i=1

‖ui‖20 τ + c3

j∑
i=1

τ

∫
Λ

‖vi‖20 dλ. (41)

(see H4)′ ). For the last term we notice that

vi = vi−1 + τ{f(λ, x, ui−1, 0) + f ′v(λ, x, ui, ξi)vi−1} for a.e. λ ∈ Λ, x ∈ Ω,
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where ξi = ξi(x, λ) ∈ (0, vi−1). Consequently,

|vi| ≤ {1 + τf ′v(.)}vi−1 + |F (λ, ui, 0)| τ,

where 0 < qi := 1 + τf ′v(.) < 1 for τ ≤ τ0.
From this recurrent inequality we obtain

|vi| ≤ Q1v0 +
i∑
l=1

Qi−l|f(λ, x, ul, 0)|τ,

with Qi−l =
∏i
j=l qj . This leads to

∫
Λ

‖vi‖20 dλ ≤ c1 + c2

i∑
l=1

‖ul‖20 τ. (42)

We insert this estimate in (41) and obtain

|
j∑
i=1

(
∫

Λ

f(λ, ui, vi−1) dλ, ui) τ | ≤ c1 + c2

j∑
i=1

‖ui‖20 τ,

which will guarantee the a priori estimates of Lemma 4.1.
Consequently, from (42) we get

‖vi‖L2(Λ×Ω) ≤ c and ‖δvi‖L2(Λ×Ω) ≤ c, i = 1, . . . , n,

uniformly for n. The assertion of Lemma 4.2 remains unchanged. In the proof of Lemma 4.4 we can use the
same arguments because of the stronger assumption iii) in H4), since we cannot guarantee the L∞ boundedness
of vi. Then, along the same lines as in Section 4 we obtain that the Theorems 4.5 and 4.6 remain valid. �

The same results are obtained using the implicit approximation scheme (14), where we replace f(λ, ui, vi) by
f(λ, ui−1, vi) or by f(λ, ui−1, vi−1). In the first case we shall have

(1 + τf ′v(.))vi = vi−1 + τf(λ, ui, 0),

with (1 + τf ′v(.)) ≥ 1 (without the restriction τ ≤ τ0 ). Also in this case we obtain the estimate (42).

Remark 5.2. The convergence results can also be extended to the more general situation where 1) in H4)′ is
replaced by

1)′ |f(λ, x, z, w)| ≤ c(1 + F (z) + P (w)),

where F and P are nonnegative continuous functions. Indeed, in the case of a unique variational solution
(see [21]) we can use the truncation method, since the concentrations u and v satisfy 0 ≤ u, v ≤ 1. In that
case we use f̄ instead of f , where

f̄(λ, x, z, w) = f(λ, x, p(z), p(w)),

with

p(s) =

 s s ∈ [0, 1]
1 s ≥ 1
0 s ≤ 0.

Then, f̄ is bounded and the arguments of Section 4 can be used.
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6. Full discretization scheme

The convergence results obtained in Sections 4 and 5 remain valid for the full discretization scheme where (7),
respectively (10), is solved in a finite dimensional space, e.g. by a FEM. Then, we shall look for uγi ∈ Vγ ⊂ V ≡
W 1

2 (Ω), where dimVγ < ∞ and where Vγ → V for γ → 0 in canonical sense. We determine uγi ≡ uγ,δi from
(see (14))

(θi
uγi − u

γ
i−1 ◦ ϕi
τ

, w) + (%1µi
uγi − u

γ
i−1

τ
, w) +

Mδ∑
k=1

µ(Ek)(%2f(λk, u
γ
i , v

γ,k
i−1), w)

+(gi, w)∂Ω1 + (Di∇uγi ,∇w) = (Gi, w), ∀w ∈ Vγ ,
(43)

for i = 1, . . . , n , where

vγ,ki − vγ,ki−1

τ
= f(λk, u

γ
i , v

γ,k
i−1) for λk ∈ Ek ⊂ Λ, k = 1, . . . ,Mδ. (44)

We assume that {Ek}Mδ
1 are µ-measurable (Ek ≡ Eδk ) and that ∪Mδ

k=1Ek ∪ Λ0 = Λ, with µ(Λ0) = 0 and
Ek
⋂
El = ∅ for k 6= l.

We define
f̄ δ(λ, ξ, η) := f(λk, ξ, η) for λ ∈ Ek, k = 1, . . . ,Mδ.

Moreover, we assume that

f̄ δ(λ, ξ, η)→ f(λ, ξ, η) for δ → 0, µ− a.e. in Λ uniformly for (ξ, η) in bounded sets. (45)

Let α, α ≡ (τ, γ, δ), represents the discretization parameter corresponding to the discretization of I, Ω and Λ ,
respectively.
By means of uγ,δi and vγ,δi we define Rothe’s functions ūα(t) and v̄α for α = (τ, γ, δ)

ūα(t) := uγ,δi , v̄α := vki for t ∈ (ti−1, ti), i = 1, . . . , n, λ ∈ Ek,

where ūα is independent on λ. Generally, v̄α doesn’t belong to Vγ . Using the arguments from Section 4 we can
prove the convergences ūα → u and v̄α → v in corresponding functional spaces, where {u, v} is a variational
solution of (1–4).

Theorem 6.1. Under the assumptions of Theorem 4.5 the assumption (45) and the convergence Vγ → V for
γ → 0 (in the canonical sense) it holds that ūᾱ → u in L2(I, V ), v̄ᾱ → v in L2(I, L2(Λ× Ω)) for ᾱ→ 0, where
{u, v} is a variational solution of (1–4) (ᾱ is a suitable subsequence of α). If f is nondecreasing in u , then the
original sequences {ūα} and {v̄α} are convergent.

Proof. We follow the arguments of Section 4 –see the proof of Theorem 4.5. The term

Mδ∑
k=1

µ(Ek)(%2f(λk, u
γ
i , v

γ,k
i−1), w)

can be rewritten as ∫
Λ

(%2f̄
δ(λ, uγi , v̄

γ,δ
i−1), w) dλ,

where vγ,δi−1(λ) := vγ,ki−1 for λ ∈ Ek, k = 1, . . . ,Mδ. Without substantial changes we obtain similar a priori
estimates as in Lemma 4.1, since we have formally the same mathematical model (just projected on Vγ ). Also
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Lemmas 4.2 and 4.4 are obtained along the same lines. Unlike in Section 4 we do not have the boundedness of
∂τt bn(t, ūα) in L2(I, V ∗), but only

‖∂τt bn(t, ūα)‖L2(I,V ∗γ ) ≤ c.
In this case we can extend the functional ∂τt bn(t, ūα) ∈ L2(I, V ∗γ ) to Fn ∈ L2(I, V ∗) by the following definition,
(see [16]) ∫

I

〈Fn, w〉 dt :=
∫
I

〈∂τt bn(t, ūα), Pγw̄α〉 dt

=
∫
I

∫
Ω

∂τt bn(t, ūα)Pγw dx dt,

where Pγ : V → Vγ is a projector. Then, Fn ⇀ F in L2(I, V ∗), since ‖Fn‖L2(I,V ∗) ≤ c. Next, bn(t, ūα)→ b(t, u)
in L1(QT ) implies that F ≡ ∂tb(t, u).
To prove that {u, v} (from Th. 4.5) is a variational solution we use a test function w̄α ∈ L2(I, Vγ) in the
approximate equation (see (35)), where w̄α → w in L2(I, V ) for α→ 0. Then, taking the limit α→ 0 we get∫ t

0

〈∂τt bn(t, ūα), w̄α〉 dt =
∫ t

0

〈Fn, Pγw̄α〉 dt →
∫ t

0

〈F,w〉 dt =
∫ t

0

〈∂tb(t, u), w〉 dt. (46)

In the reaction term we use the continuity of f in its variables and the convergence f̄ δ(λ, ūα, v̄ατ ) → f(λ, u, v)
for a.e. {λ, (t, x)} in Λ×QT (with respect to the product measure µ× dx dt – see [13]).

To prove that ūα → u in L2(I, V ) we use (38) and (39) (where we replace ūn by ūα) and (46), such that

lim inf
∫ t

0

∫
Ω

∂t
τ bn(t, ūα)(ūα − w̄α) dx dt = lim inf

∫ t

0

〈∂tτ bn(t, ūα), ūα − w̄α〉 dt ≥ 0, (47)

provided that w̄α ∈ L2(I, Vγ), with w̄α → u in L2(I, V ). We can put w = ūα − w̄α in (35) where we replace ūn

by ūα and take lim inf for α→ 0. We proceed as in the proof of Theorem 4.5. Due to (47) and the convergences
ūα → u in L2(I, L2), ūα → u in L2(I, L2(∂Ω)), (see [18]), we deduce that ūα → u in L2(I, V ), which implies
the required result. �

7. Numerical implementation

Our concept of numerical approximation of (1–4) takes into account the following facts: the degeneracy of the
parabolic term ∂tΨ(u); non-equilibrium adsorption in (2), with eventually non-Lipschitz continuity of f with
respect to u; dominance of the convective term represented by q̄; and non-smoothness (in the space variables)
of θ and q̄.

The crucial problem represents the dominant convective term. We treat it by the method of characteristics,
which suffers with the preservation of mass balance as mentioned in the introduction. Moreover, when applying
a FEM, we have to evaluate the integrals

(ui−1 ◦ ϕi,Φj) =
∫

Ω

ui−1 ◦ ϕi Φj dx (48)

where Φj are the basis functions , (j = 1, . . . ,K), and

ui−1(x) =
∑
j

U ji−1Φj(x).

Here, U ji−1 represents the value of the function ui−1(x) at the nodal point xj . The errors in the evaluation of
this inner product is a source of numerical instabilities. To evaluate the integrals (48) we follow the concept of
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Bermejo [6] and [7] (initiated by Morton et al., see [23]). That concept of evaluation, based on back-tracing, is
unconditionally stable – see [6, 7].

We sketch the basic principles of the numerical implementation. The idea has emerged from noticing that the
integral involving the product of two bilinear polynomials (in 2D) in different grid is equivalent to cubic spline
interpolation at the knots of the displaced grid along the characteristic curves (when using C◦ finite elements
with affine linear basis functions). Let ϕji = ϕi(xj), ϕ

j
i = (ϕ1,p

i , ϕ2,q
i ), represents the displacement of the point

xj along the characteristics, where p (1 ≤ L and q (1 ≤ P denote the index of the center point in the displaced
element such that j = (p− 1)L+ q and 1 ≤ j ≤ K(≡ P.L). The integral (48) is denoted by R. Then, as shown
by Bermejo in [7], R is the value of a bicubic spline at the point ϕji , which is of the form

R(ϕ1,p
i , ϕ2,q

i ) =
L∑
s=1

P∑
r=1

ur,1i−1Kr(ϕ
1,p
i )Ks(ϕ

2,q
i ) ≡ (ui−1 ◦ ϕi,Φj), j = 1, . . . ,K, (49)

where p and q determine j and Kr(ϕ
1,p
i ) and Ks(ϕ

2,q
i ) are the values of the piecewise cubic polynomials in

ϕ1,p
i and ϕ2,q

i , respectively, and where ui−1 is the solution at time level t = ti−1. If we move ϕji back to
xj = (x1,p, x2,q) then

R(xj) = [A Ui−1 ]j , j = 1, . . . ,K, (50)

where A ≡ (al,k) is the matrix defined by

al,k =
∫

Ω

ΦlΦk dx for l, k = 1, . . . ,K,

and [A Ui−1 ]j denotes the j−th component of [A Ui−1].
Now we can express R(xj) in terms of bicubic B-splines

R(x) =
∑
j

νji−1Bj(x),

where Bj = B1,j ⊗B2,j is the Cartesian product of the natural cubic splines B1,j and B2,j corresponding to x1

and x2, respectively. The coefficients νji−1 can be determined from the algebraic system (50). Then, we obtain

(ui−1 ◦ ϕi,Φj) = R(ϕ1,p
i , ϕ2,q

i ) for j = 1, . . . , P,

where j ↔ (p, q).
The degeneracy of the parabolic term is controlled by the relaxation scheme leading to the iterations (13–12).

Remark 7.1. In our numerical experiments we consider the non-equilibrium adsorption term in the form (6),
where Λ ≡ {∅, E} with µ(∅) = 0, µ(E) = 1. We assume that

ϕ(λ, u) ≡ ϕ(u) = cuq, 0 < q < 1.

In that case we can integrate the ODE (2) and obtain

v(t) = v0 exp(−at) +
∫ t

0

exp(−a(t− s))ϕ(u(s)) ds, a ≡ k(x).

Then, we substitute ∂tv in (1) by the expression

s(t) := −v0a exp(−at) + ϕ(u(t)) − a
∫ t

0

exp(−a(t− s))ϕ(u(s)) ds (= ∂tv).



1000 J. KACUR AND R. VAN KEER

This expression is approximated in the following way – see [19]. In (7) we omit the non-equilibrium term
(integral over λ). Moreover, in the R.H.S., Gi is replaced by

G′i = Gi + v0a exp(−ati) + ϕ(ui−1) + si,

where

si = a
i−1∑
j=1

αijϕ(ui)τ with αij :=
1
τ

∫ tj

tj−1

exp(−a(t− z)) dz.

This corresponds to the approximation of u(t) by the piecewise constant function ūn(t). We can also approximate
the memory term by using a piecewise linear approximation, when replacing ūn(t) by un(t).

In our special case of non-equilibrium adsorption we can use the recurrence relation – see [19]

si+1 = si exp(−aτ) + αi+1,iϕ(ui) for i = 1, . . . , n.

This substantially simplifies the evaluation of the memory term, since we don’t need to storage u0, . . . , ui−1 for
the evaluation of si.

Numerical experiments in 1D

We present only 1D numerical experiments supporting our concept of approximation; however this concept can
also be used in the more dimensional case. We consider

∂tu+ %1∂tu
p + %2∂tv + w∇u−D∆u = 0 in x ∈ (0, L), t > 0,

∂tv = κ(uq − v), (51)

with constant %1, %2, q, D = 0.05, w = 6, along with the Dirichlet boundary conditions

u(0, t) = u(L, t) = 0.

The initial profile u0(x) is given in pulse form, piecewise linear, with u0(0) = 0, u0(0.2) = u0(0.4) = 1 and
u0(x) = 0 for x ≥ 0.5. We consider v(x, 0) ≡ 0. In the following examples 1–4 we use as discretization
parameters: ∆x = 0.01, ∆t = 0.005, k = 3.

For simplicity, we eliminate the kinetic equation in (51) as described in Remark 7.1 and the first governing
equation of (51) is considered with the corresponding memory term.

The concentration profile u(x) at t = 1, 2 and 6 is depicted in Figures 1–3 below for the following choices of
%1, %2 and parameters p, q, κ:

example 1: %1 ≡ 1, %2 ≡ 0; with the parameter p = 0.6: dotted line, p = 1: full line and p = 1.2: dashed
line.

example 2: %1 ≡ 0, %2 ≡ 1; with the parameter κ = 5 and with the parameter q = 0.6: dotted line, q = 1:
full line and q = 1.2: dashed line.

example 3: %1 ≡ %2 ≡ 1; with the parameters κ = 5, q = 0.6 and with the parameter p = 0.6: dotted
line, p = 1: full line and p = 1.2: dashed line.

example 4: %1 ≡ %2 ≡ 0.

In the last example the concentration and speed of propagation is higher then that in the cases with adsorption.

Construction of the analytic solution to a model problem

To demonstrate the effectiveness of our numerical scheme, we will compare the numerical solution with the
analytical one for a problem where the latter can be constructed in an heuristic way. We shall consider the
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Figure 1. Example 1: concentration profiles at t = 1, 2 and 6.

following model problem:

∂t(u+ u1/2) + ∂xu−D∂2
xu = 0, x > 0, t > 0,

u(0, t) = u0ψ(t), u(x, 0) = 0, x > 0,
(52)

where ψ is a smooth increasing function with ψ(0) = 0 and ψ(t)→ 1 for t→∞. We shall specify it later. The
existence of a unique solution is guaranteed in [21,25].

Notice that (52) is a special case of (51), where adsorption in equilibrium mode is considered only.
We can expect the existence of a traveling wave type solution, since the adsorption (represented by u1/2) is
strong and implies the solution to have a finite support.

We are looking for the solution of the form u(x, t) = f(x− vt), where we have to find the constant v and the
wave profile f = f(ξ). We expect f(ξ) to be decreasing from u0 to 0, with f(ξ)→ u0 for ξ → −∞ and f(ξ) = 0
for ξ ∈ (L,∞) (finite support). Then ψ(t) = 1

u0
f(−vt).
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Figure 2. Example 2: concentration profiles at t = 1, 2 and 6.

For f we obtain the following ODE

f ′[1− v − 1
2
vf−1/2] = Df

′′
.

We are looking for W = W (f) satisfying W (f) = f ′. The governing ODE for W is

W ′ =
1
D

[1− v − 1
2
vf−1/2].

We can put f = z2, z > 0, and u(z) = W (f). Then,

u′ =
2
D

[(1− v)z − 1
2
v].
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Figure 3. Example 3 and 4: concentration profiles at t = 1, 2 and 6.

and, consequently,

u(z) =
2
D

[
1− v

2
z2 − 1

2
vz] + C1.

We take C1 = 0. From the definitions of u and W in terms of f , it follows that∫
df

1−v
2 f − 1

2vf
1/2

=
2
D

∫
dξ

and hence

ln |1− v
2

f1/2 − 1
2
v| = 1

2D
(1− v)ξ + C̃2.
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Consequently,

f(ξ) =
(

v

1− v + C2 exp(
1

2D
(1− v)ξ)

)2

.

To guarantee that f(ξ) → u0 for ξ → −∞, we have to put v =
√
u0

1+
√
u0

. To guarantee that f(ξ) has a positive
root (in view of the construction of a solution with finite support), we take C2 < 0. More specifically, we require
that ψ(0) = f(0) = 0, which implies C2 = − v

1−v .
From these considerations we conclude that

u(x, t) =
{
u0(1− exp ( 1

2D
1

1+
√
u0
ξ))2, ξ < 0,

0, ξ > 0,
(53)

with

ξ = x− vt, v =
√
u0

1 +
√
u0
,

constitutes a formal traveling wave solution to the BVP (52), where we have taken ψ(t) = 1
u0
f(−vt). This

formal solution is readily verified.
In our numerical experiments we take u0 = 1 and hence v = 1

2 and ψ(t) = (1− exp (− t
8D ))2. Since D is small,

ψ(t) is very close to 1 for t > δ > 0 with small δ.

Comparison of numerical with exact solutions

For the model problem above we use approximation Scheme Ik, which coincides with Scheme IIk, due to the
absence of an adsorption term in the non-equilibrium mode. The considered adsorption in the equilibrium mode
causes the presence of sharp fronts in the solution. This is captured by means of the relaxation iterations (in k)
and by the method of characteristics included in Schemes Ik and IIk. Our type of approximation can be seen
to be efficient in the following experiments, graphically presented in Figure 4 and Figure 5.
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Figure 4. Comparison with exact solution for example 5 at t = 2 and t = 6.

example 5: We use the data u0 = 1.0, D = 0.01, with the discretization and iteration parameters listed in
Table 1. In Figure 4 we present the exact and numerical solutions with the corresponding discretization
parameters for t = 2 and t = 6. In this case the Courant number equals 1.

example 6: We consider a more regular case with stronger diffusion. We take u0 = 1, D = 0.1, with the
discretization and iteration parameters in Table 2. Less iteration steps have been used due to the higher
regularity of the solution. The comparison with the exact solution is depicted in Figure 5 for t = 2 and
t = 6. The real velocity (retarded) of contaminant transport equals 1

2 , while the water velocity w = 1.
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Figure 5. Comparison with exact solution for example 6 at t = 2 and t = 6.

Table 1. Discretization and iteration parameters for example 5.

Solution Number of iterations (k) Time Time step Space step
1 3 t = 2 ∆t = 1/10 ∆x = 1/10
2 3 t = 2 ∆t = 1/20 ∆x = 1/20
3 3 t = 2 ∆t = 1/50 ∆x = 1/50
1 5 t = 6 ∆t = 1/10 ∆x = 1/10
2 5 t = 6 ∆t = 1/20 ∆x = 1/20
3 5 t = 6 ∆t = 1/50 ∆x = 1/50

Table 2. Discretization and iteration parameters for example 6.

Solution Number of iterations k Time Time step Space step
1 3 t = 2 ∆t = 1/10 ∆x = 1/10
2 3 t = 2 ∆t = 1/5 ∆x = 1/10
3 3 t = 2 ∆t = 1/2 ∆x = 1/10
1 3 t = 6 ∆t = 1/10 ∆x = 1/10
2 3 t = 6 ∆t = 1/5 ∆x = 1/10
3 3 t = 6 ∆t = 1/2 ∆x = 1/10

The approximate solutions 2 and 3 correspond to the discretization parameters with the Courant number
larger then 1.

Remark 7.2. The convergence of the relaxation scheme with respect to the iteration parameter k is analyzed
in [17], where an equilibrium type adsorption term has been considered only. A similar situation occurs when
also a non-equilibrium term is present – see Scheme IIk. A Newton type approximation of the equilibrium type
adsorption term requires a smaller time step then in our relaxation concept. For large time steps the Newton
type approximation can fail. For a sufficiently small time step the Newton type approximation converges more
quickly. In our numerical experiments it was sufficient to take k between 3 and 7. Due to the used method
of characteristics we observe numerical stability also for discretization parameters with Courant number larger
then 1. In our numerical experiments we have approximated the non-equilibrium type adsorption term as
explained in Remark 7.1. In a similar way as in Schemes Ik and IIk also more general adsorption terms e.g. of
competitive type can be approximated . In that case in each time step (after transport and diffusion) we have
to solve some algebraic nonlinear system. The convergence analysis in this case is an open question.
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