We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size . In the second step, the problem is linearized by substituting into the non-linear term, the velocity computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size . This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of to the error analysis is measured in the norm in space and time, and thus, for the lowest-degree elements, is of the order of . Hence, an error of the order of can be recovered at the second step, provided .
Mots-clés : two grids, a priori estimates, duality
@article{M2AN_2001__35_5_945_0, author = {Girault, Vivette and Lions, Jacques-Louis}, title = {Two-grid finite-element schemes for the transient {Navier-Stokes} problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {945--980}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866277}, zbl = {1032.76032}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_5_945_0/} }
TY - JOUR AU - Girault, Vivette AU - Lions, Jacques-Louis TI - Two-grid finite-element schemes for the transient Navier-Stokes problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 945 EP - 980 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_5_945_0/ LA - en ID - M2AN_2001__35_5_945_0 ER -
%0 Journal Article %A Girault, Vivette %A Lions, Jacques-Louis %T Two-grid finite-element schemes for the transient Navier-Stokes problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 945-980 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_5_945_0/ %G en %F M2AN_2001__35_5_945_0
Girault, Vivette; Lions, Jacques-Louis. Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 945-980. http://www.numdam.org/item/M2AN_2001__35_5_945_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 62 (1994) 189-213. | Zbl
and ,[3] A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. | Zbl
, and ,[4] The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | EuDML | Zbl
,[5] The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR | Zbl
and ,[6] On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129-151. | EuDML | Numdam | Zbl
,[7] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[8] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. | Zbl
,[9] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR | Zbl
,[10] Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955). | MR | Zbl
and ,[11] Étude d'une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux équations de Navier-Stokes stationnaires, in Approximation et méthodes itératives de résolution d'inéquations variationnelles et de problèmes non linéaires, in IRIA, Cahier 12, Le Chesnay (1974) 139-244.
,[12] Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners. SIAM J. Math. Anal. 20 (1989) 74-97. | Zbl
,[13] Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34 (1980) 441-463. | Zbl
and ,[14] Modelization of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO Modél. Anal. Numér. 22 (1988) 93-114. | Numdam | Zbl
, and ,[15] Postprocessing the Galerkin method: the finite-element case. SIAM J. Numer. Anal. 37 (2000) 470-499. | Zbl
and ,[16] Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25-57. | Zbl
and ,[17] Finite Element Methods for the Navier-Stokes Equations, in Lecture Notes in Mathematics 749, Springer-Verlag, Berlin, Heidelberg, New York (1979). | MR | Zbl
and ,[18] Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York (1986). | MR | Zbl
and ,[19] Finite element methods for the numerical simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes equations. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam.
,[20] Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24, Pitman, Boston (1985). | MR | Zbl
,[21] The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980) 639-681. | Zbl
,[22] Finite element approximation of the nonstationnary Navier-Stokes problem. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. | Zbl
and ,[23] The Mathematical Theory of Viscous Incompressible Flow. In Russian (1961). First English translation, Gordon & Breach, Eds., New York (1963). | MR | Zbl
,[24] A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993) 33-38. | Zbl
,[25] Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Appl. Math. Comput. 69 (1995) 263-274. | Zbl
and ,[26] A Multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 17-30. | Zbl
and ,[27] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. | Numdam | Zbl
,[28] Essai sur des mouvements plans d'un liquide visqueux que limitent des parois. J. Math. Pures Appl. 13 (1934) 331-418. | JFM | Numdam
,[29] Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934) 193-248. | JFM
,[30] Équations différentielles opérationnelles 111. Springer-Verlag, Berlin, Heidelberg, New York (1961). | MR | Zbl
,[31] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
,[32] Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). | Zbl
and ,[33] Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Fluids. Oxford University Press, Oxford (1996). | MR | Zbl
,[34] Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Fluids. Oxford University Press, Oxford (1998). | MR | Zbl
,[35] On some challenging problems in nonlinear partial differential equations, in Mathematics: Frontiers and Perspectives; Amer. Math. Soc., Providence, RI (2000) 121-135. | Zbl
,[36] Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26 (1989) 1139-1157. | Zbl
and ,[37] Nonlinear Galerkin methods: the finite element case. Numer. Math. 57 (1990) 1-22. | Zbl
and ,[38] Navier-Stokes equations: theory and approximation, in Handbook of Numerical Analysis. Vol. VI, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam (1998) 503-688. | Zbl
and ,[39] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR
,[40] FE-approximation of unconstrained optimal control like problems. Report No. 70. University of Jyväskylä (1995). | Zbl
,[41] Finite Element Methods for Fluids. Wiley, Chichester (1989). | MR | Zbl
,[42] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl
and ,[43] Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979). | MR | Zbl
,[44] Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. | Numdam | Zbl
,[45] A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231-237. | Zbl
,[46] Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759-1777. | Zbl
,