The aim of this article is to give a regularization method for an unilateral obstacle problem with obstacle and second member , which generalizes the one established by the authors of [4] in case of null obstacle and a second member is equal to constant .
@article{M2AN_2001__35_5_935_0, author = {Addou, Ahmed and Mermri, E. Bekkaye and Zahi, Jamal}, title = {Regularization of an unilateral obstacle problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {935--943}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866276}, zbl = {0991.35038}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_5_935_0/} }
TY - JOUR AU - Addou, Ahmed AU - Mermri, E. Bekkaye AU - Zahi, Jamal TI - Regularization of an unilateral obstacle problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 935 EP - 943 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_5_935_0/ LA - en ID - M2AN_2001__35_5_935_0 ER -
%0 Journal Article %A Addou, Ahmed %A Mermri, E. Bekkaye %A Zahi, Jamal %T Regularization of an unilateral obstacle problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 935-943 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_5_935_0/ %G en %F M2AN_2001__35_5_935_0
Addou, Ahmed; Mermri, E. Bekkaye; Zahi, Jamal. Regularization of an unilateral obstacle problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 935-943. http://www.numdam.org/item/M2AN_2001__35_5_935_0/
[1] Sur une méthode de résolution d'un problème d'obstacle. Math-Recherche & Applications 2 (2000) 59-69.
and ,[2] Analyse convexe et problèmes variationnels. Gauthier-Villars, Eds., Paris, Brussels, Montreal (1974). | MR | Zbl
and ,[3] Numerical Analysis of Variational Inequalities. North-Holland Publishing Company, Amsterdam, New York, Oxford (1981). | MR | Zbl
, and ,[4] The regularisation method for an obstacle problem. Numer. Math. 69 (1994) 155-166. | Zbl
, and ,[5] An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR | Zbl
and ,