An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 921-934.

In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.

Classification : 74B20, 74S05
Mots-clés : finite-well non-convex functionals, finite element approximations
@article{M2AN_2001__35_5_921_0,
     author = {Lorent, Andrew},
     title = {An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {921--934},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {5},
     year = {2001},
     mrnumber = {1866275},
     zbl = {1017.74067},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_5_921_0/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2001
SP  - 921
EP  - 934
VL  - 35
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_2001__35_5_921_0/
LA  - en
ID  - M2AN_2001__35_5_921_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2001
%P 921-934
%V 35
%N 5
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_2001__35_5_921_0/
%G en
%F M2AN_2001__35_5_921_0
Lorent, Andrew. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 921-934. http://www.numdam.org/item/M2AN_2001__35_5_921_0/

[1] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl

[2] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. | Zbl

[3] M. Chipot, The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83 (1999) 325-352. | Zbl

[4] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237-277. | Zbl

[5] G. Dolzmann, Personal communication.

[6] M. Luskin, On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. | Zbl

[7] M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems. Variations of domain and free-boundary problems in solid mechanics, in Solid Mech. Appl. 66, P. Argoul, M. Fremond and Q.S. Nguyen, Eds., Paris (1997) 317-325; Kluwer Acad. Publ., Dordrecht (1999).

[8] Variational models for microstructure and phase transitions. MPI Lecture Note 2 (1998). Also available at: www.mis.mpg.de/cgi-bin/lecturenotes.pl

[9] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, in Cambridge Studies in Advanced Mathematics, Cambridge (1995). | MR | Zbl

[10] V. Šverák, On the problem of two wells. Microstructure and phase transitions. IMA J. Appl. Math. 54, D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen, Eds., Springer, Berlin (1993) 183-189. | Zbl