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EXISTENCE, A PRIORI AND A POSTERIORI ERROR ESTIMATES
FOR A NONLINEAR THREE-FIELD PROBLEM

ARISING FROM OLDROYD-B VISCOELASTIC FLOWS ∗
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Abstract. In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without
convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is
proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin
Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates
are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived.
An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method is introduced. Numerical
results confirm the theoretical predictions.
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1. Introduction

Numerical simulation of viscoelastic flows is of great importance for industrial processes involving plastics,
paints or food. The modelling of viscoelastic flows generally consists in supplementing the mass and momentum
equations with a rheological constitutive equation relating the velocity and the non Newtonian part of the stress.

When solving viscoelastic flows with finite element methods, the following points should be addressed, see
for instance [1] for a review. Firstly, the finite element spaces used to approximate the velocity, pressure
and extra-stress fields cannot be chosen arbitrarily, an inf-sup condition has to be satisfied [12, 13, 15, 24, 25].
Secondly, due to the presence of convective terms in both momentum and constitutive equations, adequate
discretizations procedure must be used such as discontinuous finite elements, GLS stabilization procedures [5],
or the characteristics method. Thirdly, the presence of nonlinear terms prevents numerical methods to converge
at high Deborah numbers, this being consistent with theoretical [4,19,21,23,26] and experimental [22] studies.

In this paper, we focus on the first and last of these three points. In [6], a GLS method with continuous,
piecewise linear finite elements was proposed for solving a three fields Stokes’ problem. The method was stable
even when the solvent viscosity was small compared to the polymer viscosity. The link with the EVSS method
of [12] was proposed. The aim of this paper is to extend the work of [6] to a nonlinear model problem. Existence,
a priori and a posteriori error estimates are derived. Numerical results confirm the theoretical predictions. Even
though the model problem studied in this paper is simpler than those considered in [4,19,21,23,26], we believe
that our results are interesting for the following reasons. Firstly, assuming the calculation domain to be a convex
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polygon, we propose an original, but natural, variational setting in order to prove existence of the continuous
problem. More precisely, the velocity is in W 2,r, for some r > 2, whereas the pressure and the extra-stress are
in W 1,r. Secondly, we consider an original stabilized finite element method and we prove existence, a priori and
a posteriori error estimates. Finally, we present some numerical computations that i) confirm the optimality of
our theoretical predictions ii) show that the method fails when the computational domain is not convex, thus
suggesting that the problem is ill-posed.

The reader should note that the theoretical results presented in this paper can be seen as a first step towards
the justification of some numerical methods used to perform mesoscopic calculations [7, 8].

2. The model problem

Let Ω be a bounded domain of R
2 with Lipschitz boundary ∂Ω. We consider the following problem. Given

a force term f , constant solvent and polymer viscosities ηs > 0 and ηp > 0, a constant relaxation time λ, find
the velocity u, pressure p and extra-stress σ such that

−2ηs div ε(u) + ∇p− div σ = f ,

div u = 0,
1

2ηp
σ − λ

2ηp

(
(∇u)σ + σ(∇uT )

)
− ε(u) = 0,

(1)

in Ω, where the velocity u vanishes on ∂Ω. Here ε(u) = 1
2 (∇u + ∇uT ) is the rate of deformation tensor and

(∇u)σ is the the matrix product between ∇u and σ.
This model problem is a simplification of viscoelastic models for polymeric liquids. The first equation

corresponds to momentum conservation. The total stress is split into three contributions: the pressure −pI,
the stress due to the (Newtonian) solvent 2ηsε(u), and the extra-stress σ due to the non Newtonian part of
the fluid (for instance polymer chains). The third equation is a simplification of the Oldroyd-B constitutive
relationship between the extra-stress and the velocity field. For the sake of simplicity, the convective terms in
the first and last equations are removed. A future work should take these terms into account.

A theoretical result for Problem (1) with ηs = 0 and with convective terms in the first and last equation has
been obtained in [23]. Using an iterative procedure, the solution (u, p,σ) was proved to be in H3 ×H2 ×H2

provided f ∈ H1 was small enough and ∂Ω was sufficiently smooth. In this section, we shall prove that Problem
(1) has a solution in W 2,r ×W 1,r ×W 1,r for some r > 2, provided λ is small enough, when Ω is a convex
polygonal domain.

Let L2
0(Ω) be the space of L2(Ω) functions having zero mean, let L2

s(Ω)4 be the space of symmetric tensors
having L2(Ω) components. Given f ∈ H−1(Ω)2 and g ∈ L2

s(Ω)4, we first consider the following problem (we set
λ = 0 and add a source term in the third equation of (1)): find (u, p,σ) ∈ H1

0 (Ω)2 × L2
0(Ω) ×L2

s(Ω)4 such that

−2ηs div ε(u) + ∇p− div σ = f ,

div u = 0,
1

2ηp
σ − ε(u) = g.

(2)

Eliminating σ we obtain

−2(ηs + ηp)div ε(u) + ∇p = f + 2ηpdiv g,

div u = 0.
(3)

Since g ∈ L2
s(Ω)4, div g ∈ H−1(Ω), and Problem (3) is a classical Stokes problem with solution (u, p) ∈

H1
0 (Ω)2 × L2

0(Ω). Setting σ = 2ηp(ε(u) + g), then (u, p,σ) is solution of Problem (2). Thus we define the
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operator

T : H−1(Ω)2 × L2
s(Ω)4 −→H1

0 (Ω)2 × L2
s(Ω)4

(f ,g) −→T (f ,g) =
def.

(u,σ),

where (u,σ) is the solution of (2). Problem (1) can then be formally written as follows: find (u,σ) such that

(u,σ) = T

(
f ,

λ

2ηp

(
(∇u)σ + σ(∇u)T

))
. (4)

The question is now to find the correct spaces for the above problem. Indeed, since (u,σ) are a priori only in
H1

0 (Ω)2 × L2
s(Ω)4, then (∇u)σ + σ(∇u)T is only in L1(Ω), thus div ((∇u)σ + σ(∇u)T ) /∈ H−1(Ω) !

Let us recall some regularity properties of Stokes’ problem. Let µ > 0 and consider the solution (w, q) ∈
H1

0 (Ω)2 × L2
0(Ω) of

−2µdiv ε(w) + ∇q = f ,

div w = 0.

According to Proposition 2.3 of [27], if the boundary ∂Ω is C2 and if f ∈ Lr(Ω)2, then w ∈ W 2,r(Ω)2, for all
1 < r < ∞. According to Theorem 7.3.3.1 of [18] and Proposition 5.3 of [17], if Ω is a convex polygon, then
there exists r > 2 (r depends on the largest angle of the polygon) such that, if f ∈ Lr(Ω)2, then w ∈W 2,r(Ω)2

and ‖w‖W 2,r ≤ C‖f‖Lr . In the sequel, this being crucial for our analysis, we will assume that Ω is a
convex polygon and we will consider r as above.

We set
X = (W 2,r(Ω) ∩H1

0 (Ω))2 ×W 1,r
s (Ω)4,

where W 1,r
s (Ω)4 is the space of symmetric tensors having components in W 1,r(Ω). We know that W 1,r(Ω),

r > 2, is an algebra, namely if ϕ, ψ ∈W 1,r(Ω) then the product ϕψ ∈W 1,r(Ω) and there exists C such that

‖ϕψ‖W 1,r(Ω) ≤ C‖ϕ‖W 1,r(Ω)‖ψ‖W 1,r(Ω) ∀ϕ, ψ ∈W 1,r(Ω).

Therefore, if (u,σ) ∈ X then

g =
λ

2ηp

(
(∇u)σ + σ(∇u)T

)
∈W 1,r

s (Ω)4,

and div g ∈ Lr(Ω)2. Thus, if f ∈ Lr(Ω)2, then

T

(
f ,

λ

2ηp

(
(∇u)σ + σ(∇u)T

))
∈ X.

From now on, we will restrict T to Lr(Ω)2 ×W 1,r
s (Ω)4 that is

T : Lr(Ω)2 ×W 1,r
s (Ω)4 −→ X

(f ,g) −→ T (f ,g) =
def.

(u,σ), (5)

where (u,σ) is the solution of (2). The operator T is bounded since

‖T (f ,g)‖X ≤ C(‖f‖Lr + ‖g‖W 1,r ) ∀(f ,g) ∈ Lr(Ω)2 ×W 1,r
s (Ω)4.

Finally, going back to (4), we are looking for U = (u,σ) ∈ X such that

F (λ,U) = 0, (6)
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where F : R ×X → X is defined by

F (λ,U) = U − T
(
f , λS(U)

)
,

and S : X →W 1,r
s (Ω)4 by

S(U) =
1

2ηp

(
(∇u)σ + σ(∇u)T

)
. (7)

We have the following result.

Lemma 2.1. For all λ ≥ 0, the operator F (λ, ·) : X → X is C1, with Frechet derivative given by

DUF (λ,U)V = (v, τ ) − T

(
0,

λ

2ηp

(
(∇u)τ + τ (∇u)T + (∇v)σ + σ(∇v)T

))
,

for all U = (u,σ) ∈ X, V = (v, τ ) in X.

Proof. It suffices to note that the operator S : X →W 1,r
s (Ω)4 is C1 with Frechet derivative

DS(U)V = (∇u)τ + τ (∇u)T + (∇v)σ + σ(∇v)T .

We now observe that, when λ = 0, (6) reduces to a classical three fields Stokes’ problem. Thus, there is a
unique U0 = (u0,σ0) ∈ X such that F (0,U0) = 0. Using the implicit function theorem, we can then prove the
following result.

Theorem 2.2. There exists λ0 > 0 and δ > 0 such that, for all λ ≤ λ0, there exists a unique U(λ) =
(u(λ),σ(λ)) ∈ X such that F (λ,U(λ)) = 0 and ‖U(λ) − U0‖X ≤ δ. Moreover, the mapping λ ∈ [0, λ0] →
U(λ) ∈ X is continuous.

Proof. When λ = 0 there is a unique U0 = (u0,σ0) ∈ X such that F (0,U0) = 0. Moreover, using Lemma 2.1,
we have DUF (0,U0) = I, which is an isomorphism onto X . The result is then an immediate consequence of
the implicit function theorem.

3. A Galerkin Least Square method

In [6], a GLS method with continuous, piecewise linear finite elements was studied for solving (1) in the
linear case, i.e. when λ = 0. The method was proved to be stable and convergent even when the solvent
viscosity ηs was small compared to the polymer viscosity ηp. A priori error estimates where derived in the
space W = H1

0 (Ω)2 × L2
0(Ω) × L2

s(Ω)4. Finally, this GLS method was shown to be equivalent to some EVSS
method. The aim of the paper is to extend these results to the nonlinear case, that is when λ 6= 0.

For any h > 0, let Th be a mesh of Ω into triangles K with diameters hK less than h. We assume that the
mesh satisfies the regularity and inverse assumptions in the sense of [10]. We consider Wh the finite dimensional
subspace of W consisting in continuous, piecewise linear velocities, pressures, and stresses on the mesh Th. More
precisely Wh ⊂W is defined by Wh = Vh ×Qh ×Mh where

Vh =
{
v ∈ C0(Ω)2;v|K ∈ (P1)2, ∀ K ∈ Th

}
∩H1

0 (Ω)2,

Qh =
{
q ∈ C0(Ω); q|K ∈ P1, ∀ K ∈ Th

}
∩ L2

0(Ω),

Mh =
{

τ ∈ C0(Ω)4; τ |K ∈ (P1)4, ∀ K ∈ Th

}
∩ L2

s(Ω)4.

(8)
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In order to approach the solution of (1) we consider the following problem: find (uh, ph,σh) ∈Wh such that

2ηs(ε(uh), ε(v)) − (ph, div v) + (σh, ε(v)) − (f ,v)

− (div uh, q) −
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(uh) + ∇ph − div σh − f ,∇q

)
K

−
(

1
2ηp

σh − λ

2ηp
(∇uhσh + σh∇uT

h ) − ε(uh), τ + 2ηpβε(v)
)

= 0,

(9)

for all (v, q, τ ) ∈Wh. Here (·, ·) denotes the L2(Ω) scalar product for scalars, vectors and tensors, for instance

(σ, τ ) =
2∑

i,j=1

∫
Ω

σij τij dx ∀σ, τ ∈ L2(Ω)4.

Also, α > 0 and 0 < β < 2 are dimensionless stabilization parameters. Note that, since the velocity is piecewise
linear, then div ε(uh) is zero in each of the mesh triangles.

In the next section, existence of a solution to (9) is proved, as well as a priori error estimates. In Section 5,
a posteriori error estimates based on the equation residual are derived. In Section 6, an EVSS method related
to the GLS method is presented. Numerical results on both GLS and EVSS schemes are reported in Section 7.

4. Existence and A PRIORI error estimates

Let us consider the discrete counterpart of the operator T , namely the operator

Th : L2(Ω)2 × L2
s(Ω)4 −→ H1

0 (Ω)2 × L2
s(Ω)4

(f ,g) −→ Th(f ,g) =
def.

(uh,σh) ∈ Vh ×Mh,
(10)

where (uh, ph,σh) ∈ Wh satisfies

2ηs(ε(uh), ε(v)) − (ph, div v) + (σh, ε(v)) − (f ,v)

− (div uh, q) −
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(uh) + ∇ph − div σh − f ,∇q

)
K

−
(

1
2ηp

σh − g − ε(uh), τ + 2ηpβε(v)
)

= 0,

(11)

for all (v, q, τ ) ∈Wh. We then have the following result.

Lemma 4.1. The operator Th is well defined and is uniformly bounded with respect to h. Moreover, there exists
h0 > 0 and C such that, for all (f ,g) ∈ Lr(Ω)2 ×W 1,r

s (Ω)4 we have

‖T (f ,g) − Th(f ,g)‖H1×L2 ≤ Ch
(
‖f‖Lr + ‖g‖W 1,r

)
∀h ≤ h0.

Proof. We introduce, as in [6], the bilinear form Bh(uh, ph,σh;v, q, τ ) corresponding to the left hand side of
the weak formulation (11) when f and g are zero. The operator Th is then defined by Th(f ,g) = (uh,σh) where
(uh, ph,σh) ∈ Wh satisfies

Bh(uh, ph,σh;v, q, τ ) = (f ,v) −
(
g, τ + 2ηpβε(v)

)
−
∑

K∈Th

αh2
K

2ηp
(f ,∇q)K
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for all (v, q, τ ) ∈ Wh. It is proved in [6] that Bh : Wh×Wh → R satisfies the uniform (with respect to h) inf-sup
condition in the norm ‖ · ‖H1×L2×L2 . Thus Th is well defined and we have, for all h > 0

‖uh, ph,σh‖H1×L2×L2 ≤ C‖f ,g‖L2×L2 ,

and thus
‖Th‖L(L2×L2,H1×L2) ≤ C,

where C does not depend on h. Moreover, if (f ,g) ∈ Lr(Ω)2 ×W 1,r
s (Ω)4, then we can introduce T (f ,g) =

(u,σ) ∈ X , where (u,σ) is the solution of (2) and where T is defined in (5). We have

‖T (f ,g) − Th(f ,g)‖H1×L2 = ‖u− uh,σ − σh‖H1×L2

≤ ‖u− rhu,σ − rhσ‖H1×L2 + ‖rhu− uh, rhσ − σh‖H1×L2 ,

where rh denotes Lagrange interpolant on scalars, vectors or tensors. Note that, considering rhu, rhp and rhσ
has a meaning since (u, p,σ) ∈ W 2,r(Ω)2 ×W 1,r(Ω) ×W 1,r

s (Ω)4, and thus u, p and σ are continuous on Ω.
Using classical interpolation results [10] together with the well posedness of the operator T , we have

‖u− rhu,σ − rhσ‖H1×L2 ≤ Ch
(
|u|H2 + |σ|H1∩C0

)
≤ Ch

(
‖u‖W 2,r + ‖σ‖W 1,r

)
≤ Ch

(
‖f‖Lr + ‖g‖W 1,r

)
.

(12)

On the other side, using the fact that Bh satisfies the uniform inf-sup condition on Wh, there is a constant C
independent of h such that

‖rhu − uh, rhσ − σh‖H1×L2 ≤ C sup
0 6=(v,q,τ)∈Wh

Bh(rhu − uh, rhp− ph, rhσ − σh;v, q, τ )
‖v, q, τ‖H1×L2×L2

· (13)

The scheme (11) is consistent in the sense of [14], that is

Bh(u − uh, p− ph,σ − σh;v, q, τ ) = 0 ∀(v, q, τ ) ∈Wh,

and thus

‖rhu− uh, rhσ − σh‖H1×L2 ≤ C sup
0 6=(v,q,τ)∈Wh

Bh(u − rhu, p− rhp,σ − rhσ;v, q, τ )
‖v, q, τ‖H1×L2×L2

·

From the definition of Bh we have, for all (v, q, τ ) ∈Wh,

Bh(u− rhu, p− rhp,σ − rhσ;v, q, τ )

= 2(ηs + ηpβ)(ε(u − rhu), ε(v))

− (p− rhp, div v) + (1 − β)(σ − rhσ, ε(v))

− ( div(u − rhu), q) −
∑

K∈Th

αh2
K

2ηp
(f −∇rhp+ div rhσ,∇q)K

− 1
2ηp

(σ − rhσ, τ ) + (ε(u − rhu), τ ).
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Using Cauchy-Schwarz and Young inequalities, there is a constant C independent of h such that

|Bh(u−rhu, p− rhp,σ − rhσ;v, q, τ )|

≤ C

(
‖u− rhu, p− rhp,σ − rhσ‖H1×L2×L2 ‖v, q, τ‖H1×L2×L2

+
∑

K∈Th

h2
K

(
‖f‖L2(K) + ‖rhp‖H1(K) + ‖rhσ‖H1(K)

)
‖∇q‖L2(K)

)
.

We now use the inverse inequality hK‖∇q‖L2(K) ≤ C‖q‖L2(K), the fact that

‖rhp‖H1 ≤ C‖rhp‖W 1,r ≤ C̃‖p‖W 1,r

‖rhσ‖H1 ≤ C‖rhσ‖W 1,r ≤ C̃‖σ‖W 1,r ,

for h sufficiently small, and standard interpolation estimates [10] to obtain

|Bh(u−rhu, p− rhp,σ − rhσ;v, q, τ )|

≤ Ch

(
‖u, p,σ‖W 2,r×W 1,r×W 1,r ‖v, q, τ‖H1×L2×L2

+
(
‖f‖Lr + ‖p‖W 1,r + ‖σ‖W 1,r

)
‖q‖L2

)
.

Using the well posedness of the operator T we obtain

|Bh(u − rhu, p− rhp,σ − rhσ;v, q, τ )| ≤ Ch
(
‖f‖Lr + ‖g‖W 1,r

)
‖v, q, τ‖H1×L2×L2 ,

for all (v, q, τ ) ∈Wh. The above inequality in (13), together with (12) finally yields

‖u− uh,σ − σh‖H1×L2 ≤ Ch
(
‖f‖Lr + ‖g‖W 1,r

)
,

which is the desired result.

We now would like to rewrite the nonlinear GLS scheme (9) in an abstract framework, as we did in (6) for
the continuous Problem (1). We now introduce Xh = Vh ×Mh equipped with the ‖ · ‖H1×L2 norm and we want
to rewrite the nonlinear GLS scheme (9) as

Fh(λ,Uh) = 0 with Uh = (uh,σh). (14)

Here Fh : R ×Xh → Xh is defined by

Fh(λ,Uh) = Uh − Th

(
f , λS(Uh)

)
,

where S is still formally defined by

S(Uh) = S(uh,σh) =
1

2ηp

(
(∇uh)σh + σh(∇uh)T

)
.

However, since Xh 6⊂ X , we have to extend S on W 1,r
0 (Ω)2 ×W 1,r

s (Ω)4, and since W 1,r
s (Ω)4 ⊂ C0(Ω), we can

consider S : W 1,r
0 (Ω)2 ×W 1,r

s (Ω)4 → Lr
s(Ω)4. Clearly, this operator S is C1.

We have the following result.
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Lemma 4.2. Let U(λ), 0 ≤ λ ≤ λ0, be given by Theorem 2.2. There exists C such that, for all h > 0, for all
λ ≤ λ0 we have

‖Fh(λ, rhU(λ))‖H1×L2 ≤ Ch, (15)

‖DUFh(λ, rhU(λ)) −DUFh(λ,V)‖L(Xh) ≤ C
λ

h
‖rhU(λ) − V‖H1×L2 , (16)

for all V ∈ Xh.

Proof. From the definition of Fh and since F (λ,U(λ)) = 0, we have

Fh(λ, rhU(λ)) = rhU(λ) − U(λ) − Th

(
f , λS(rhU(λ))

)
+ T

(
f , λS(U(λ))

)
,

so that

‖Fh(λ, rhU(λ))‖H1×L2

≤ ‖U(λ) − rhU(λ)‖H1×L2 +
∥∥∥(T − Th)

(
f , λS(U(λ))

)∥∥∥
H1×L2

+
∥∥∥Th

(
0, λ[S(U(λ)) − S(rhU(λ))]

)∥∥∥
H1×L2

.

Using Lemma 4.1 for the second and third terms in the right hand side of the above inequality together with
interpolation results, we obtain

‖Fh(λ, rhU(λ))‖H1×L2

≤ Ch‖U(λ)‖X + Ch
(
‖f‖Lr + λ‖S(U(λ))‖W 1,r

)
+ Cλ‖S(U(λ)) − S(rhU(λ))‖L2 ,

(17)

C being independent of h and λ ∈ [0, λ0]. A simple calculation shows that

‖S(U(λ))‖W 1,r ≤ C‖U(λ)‖2
X , (18)

C being independent of h and λ ∈ [0, λ0]. On the other hand, we also have

2ηp

(
S(U) − S(rhU)

)
= ∇uσ + σ∇uT − (∇rhu)rhσ − rhσ(∇rhu)T

= ∇(u − rhu)σ + (∇rhu)(σ − rhσ) + σ∇(u − rhu)T + (σ − rhσ)(∇rhu)T ,

so that

‖S(U(λ)) − S(rhU(λ))‖L2 ≤ C‖U(λ) − rhU(λ)‖H1×L2‖U(λ)‖X

≤ Ch‖U(λ)‖2
X ,

(19)

C being independent of h and λ. Finally (19) and (18) in (17) yields (15) for λ ∈ [0, λ0].
Let us now prove (16). For all V = (v, τ ) ∈ Xh, for all W = (w,γ) ∈ Xh, we have

(
DUFh(λ, rhU(λ)) −DUFh(λ,V)

)
W = −Th

(
0, λ

[
DS(rhU(λ))W −DS(V)W

])
.
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Using Lemma 4.1 we obtain∥∥∥(DUFh(λ, rhU(λ)) −DUFh(λ,V)
)
W
∥∥∥

H1×L2
≤ Cλ

∥∥∥(DS(rhU(λ)) −DS(V)
)
W
∥∥∥

L2
.

We have ∥∥∥(DS(rhU) −DS(V)
)
W
∥∥∥

L2

=
1

2ηp
‖∇(rhu − v)γ + γ∇(rhu− v)T + ∇w(rhσ − τ ) + (rhσ − τ )∇wT ‖L2

≤ 1
ηp

(
‖∇(rhu − v)‖Lr‖γ‖Lq + ‖∇w‖Lr‖rhσ − τ‖Lq

)
,

with q = 2r
r−2 . For p > 2, the following inverse inequalities hold

‖v‖Lp ≤ C

h
p−2

p

‖v‖L2 , ‖∇v‖Lp ≤ C

h
p−2

p

‖∇v‖L2 ,

for all continuous, piecewise linear function v, see [10]. This yields∥∥∥(DS(rhU) −DS(V)
)
W
∥∥∥

L2
≤ C

1
h
‖rhU − V‖H1×L2‖W‖H1×L2 ,

C being independent of λ and h. This last inequality yields (16).

Before proving existence of a solution to (14) we still need to check that DUFh is invertible is the neighbour-
hood of U(λ).

Lemma 4.3. Let U(λ), 0 ≤ λ ≤ λ0, be given by Theorem 2.2. There exists 0 < λ1 ≤ λ0 such that, for all
λ ≤ λ1 and for all h we have

‖DUFh(λ, rhU(λ))−1‖L(Xh) ≤ 2.

Proof. By definition of Fh, we have

DUFh(λ, rhU(λ)) = I − Th

(
0, λDS(rhU(λ))

)
,

where DS(rhU(λ)) is such that

DS(rhU)V =
1

2ηp

(
∇(rhu)τ + τ∇(rhu)T + ∇v(rhσ) + (rhσ)∇vT

)
,

for all V = (v, τ ) ∈ Xh. Thus we can write

DUFh(λ, rhU(λ)) = I −Gh with Gh = Th(0, λDS(rhU(λ))).

If we prove that ‖Gh‖L(Xh) ≤ 1/2 for sufficiently small values of λ, then DUFh(λ, rhU(λ)) is invertible and
‖DUFh(λ, rhU(λ))−1‖L(Xh) ≤ 2. Using Lemma 4.1, it suffices to prove that DS(rhU(λ)) : Xh → L2(Ω)4 is
uniformly bounded with respect to h. Proceeding as in the proof of the previous Lemma we have

‖DS(rhU)V‖L2 =
1

2ηp

∥∥∥∇(rhu)τ + τ∇(rhu)T + ∇v(rhσ) + (rhσ)∇vT
∥∥∥

L2

≤ C
(
‖∇u‖L∞‖τ‖L2 + ‖∇v‖L2‖σ‖L∞

)
≤ C̃

(
‖u‖W 2,r‖τ‖L2 + ‖∇v‖L2‖σ‖W 1,r

)
,
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C, C̃ being independent of λ and h. In other words we have

‖DS(rhU(λ))V‖L2 ≤ C‖U(λ)‖X‖V‖H1×L2 ,

and, going back to Gh we obtain

‖Gh(V)‖H1×L2 ≤ C̃λ‖U(λ)‖X‖V‖H1×L2 .

Finally, for λ sufficiently small we obtain ‖Gh‖L(Xh) ≤ 1/2 and the result follows.

We are now in position to state the main result of the section

Theorem 4.4. Let U(λ), 0 ≤ λ ≤ λ0, be given by Theorem 2.2. There exists 0 < λ ≤ λ0, h and δ > 0 such
that, for all 0 ≤ λ ≤ λ, for all 0 < h ≤ h, there exists a unique Uh(λ) in the ball of Xh centered at rhU(λ) with
radius δh in the norm H1 × L2, satisfying

Fh(λ,Uh(λ)) = 0.

Moreover, the mapping λ ∈ [0, λ] → Uh(λ) ∈ Xh is continuous and there exists C > 0 such that the following
a priori error estimate holds

‖U(λ) − Uh(λ)‖H1×L2 ≤ Ch ∀λ ≤ λ ∀h ≤ h.

Remark 4.5. The statement of the above existence result is similar (although not the same) to those of [4,21],
in which the convective term in the extra-stress constitutive equation are considered (see also [26] for analogous
results on a second-grade fluid). However, a different technique is used in this paper, allowing a priori and
a posteriori error estimates to be obtained more easily, with other assumptions.

In order to prove this theorem, we use the following abstract result.

Theorem 4.6 (Th. 2.1 of [9]). Let Y and Z be two real Banach spaces with norms ‖·‖Y and ‖·‖Z respectively.
Let G : Y → Z be a C1 mapping and v ∈ Y be such that DG(v) ∈ L(Y ;Z) is an isomorphism. We introduce
the notations

ε = ‖G(v)‖Z ,

γ = ‖DG(v)−1‖L(Z;Y ),

L(α) = sup
x∈B(v,α)

‖DG(v) −DG(x)‖L(Y ;Z),

with B(v, α) = {y ∈ Y ; ‖v − y‖Y ≤ α},

and we are interested in finding u ∈ Y such that

G(u) = 0. (20)

We assume that 2γL(2γε) ≤ 1. Then Problem (20) has a unique solution u in the ball B(v, 2γε) and, for all
x ∈ B(v, 2γε), we have

‖x− u‖Y ≤ 2γ‖G(x)‖Z . (21)

Proof of Theorem 4.4. We apply Theorem 4.6 with Y = Xh, Z = Xh, G = Fh, v = rhU(λ) and the norm
‖ · ‖H1×L2 in Xh. The mapping G : Y → Z is C1 and, according to Lemma 4.2, for λ sufficiently small there is a
constant C1 independent of λ and h such that ε ≤ C1h. According to Lemma 4.3, for λ sufficiently small γ ≤ 2.
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According to Lemma 4.2, there is a constant C2 independent of λ and h such that L(α) ≤ C2αλ/h. Thus, we
have

2γL(2γε) ≤ 2.2C2(2.2.C1h)
λ

h
= 16C1C2λ.

Thus, for λ sufficiently small 2γL(2γε) ≤ 1 and Theorem 4.6 applies. There exists a unique Uh(λ) in the ball
B(v, 2γε) such that Fh(λ,Uh(λ)) = 0 and we have

‖rhU(λ) − Uh(λ)‖H1×L2 ≤ 4C1h.

It suffices to use the triangle inequality

‖U(λ) − Uh(λ)‖H1×L2 ≤ ‖U(λ) − rhU(λ)‖H1×L2 + ‖rhU(λ) − Uh(λ)‖H1×L2 ,

and standard interpolation [10] results to obtain the a priori estimates. The fact that the mapping λ→ Uh(λ)
is continuous is a direct consequence of the implicit function theorem.

5. A POSTERIORI error estimates

Let us consider again the operator

Th : L2(Ω)2 × L2
s(Ω)4 −→ H1

0 (Ω)2 × L2
s(Ω)4

(f ,g) −→ Th(f ,g) =
def.

(uh,σh) ∈ Vh ×Mh,

where (uh, ph,σh) ∈Wh satisfies (11). We now introduce a residual based error estimator for Th. The notations
are those of [2]. For any triangle K of the triangulation Th, let EK be the set of its three edges. For each interior
edge ` of Th, let us choose an arbitrary normal direction n, let [·]` denote the jump across edge `. For each
edge ` of Th lying on the boundary ∂Ω, we set [·]` = 0. The local error estimator corresponding to (11) is then
defined by

µ2
K(f ,g) =

1
ηs + ηp

(
h2

K ‖−2ηs div ε(uh) + ∇ph − div σh − f‖2
L2(K)

+
1
2

∑
`∈EK

|`| ‖[2ηsε(uh)n]`‖2
L2(`)

)
+ (ηs + ηp)‖div uh‖2

L2(K)

+ ηp

∥∥∥∥ 1
2ηp

σh − g − ε(uh)
∥∥∥∥

2

L2(K)

.

We have the following a posteriori error estimate for operator T − Th.

Lemma 5.1. There exists C and h0 > 0 such that, for all (f ,g) ∈ Lr(Ω)2 ×W 1,r
s (Ω)4 we have

‖T (f ,g) − Th(f ,g)‖H1×L2 ≤ C

( ∑
K∈Th

µ2
K(f ,g)

)1/2

∀h ≤ h0.

Proof. We set T (f ,g) = (u,σ) where (u, p,σ) is the solution of (2), we also set Th(f ,g) = (uh,σh) where
(uh, ph,σh) is the solution of (11). We recall that W = H1

0 (Ω)2 ×L2
0(Ω)×L2

s(Ω)4. Let B : W ×W → R be the
bilinear form corresponding to the weak formulation of (2), namely

B(u, p,σ;v, q, τ ) = 2ηs(ε(u), ε(v)) − (p, div v) + (σ, ε(v))

− (div u, q) − 1
2ηp

(σ, τ ) + (ε(u), τ ),
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for all (u, p,σ) and (v, q, τ ) in W . In Lemma 2 of [6], it is proved that B satisfies an inf-sup condition, therefore
we have

‖u− uh, p− ph,σ − σh‖H1×L2×L2 ≤ C sup
0 6=(v,q,τ)∈W

B(u − uh, p− ph,σ − σh;v, q, τ )
‖v, q, τ‖H1×L2×L2

,

C being independent of h. For all (v, q, τ ) ∈ W we have

B(u − uh, p− ph,σ − σh;v, q, τ ) = (f ,v) − (g, τ ) −B(uh, ph,σh;v, q, τ ).

Introducing Bh : Wh ×Wh → R as in the proof of Lemma 4.1, we have

B(u − uh, p− ph,σ − σh;v, q, τ ) = (f ,v − vh) − (g, τ − τ h) −B(uh, ph,σh;v − vh, q − qh, τ − τh)

+ (Bh −B)(uh, ph,σh;vh, qh, τh),

for all (vh, qh, τh) ∈Wh, that is:

B(u− uh, p− ph,σ − σh;v, q, τ )

= −2ηs(ε(uh), ε(v − vh)) + (ph, div (v − vh)) − (σh, ε(v − vh)) + (f ,v − vh)

+ (div uh, q − qh) −
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(uh) + ∇ph − div σh − f ,∇qh

)
K

+
(

1
2ηp

σh − g − ε(uh), τ − τh − 2ηpβε(vh)
)
.

We then proceed as in [3,28], integrate by parts on each triangle K ∈ Th the first three terms in the right hand
side of the above equation, and choose vh = Rhv (where Rh is Clément’s interpolant [11]), qh = 0, τh = 0 to
conclude.

We are now in position to state a posteriori error estimates for the solution to (9). Let us briefly recall the
notations. Problem (1) is written as F (λ,U) = 0 with U = (u,σ) ∈ X and F (λ,U) = U − T (f , λS(U)), the
operators T and S being defined in (5) and (7). Problem (9) is written as Fh(λ,Uh) = 0 with Uh = (uh,σh) ∈
Xh 6⊂ X and Fh(λ,Uh) = Uh − Th(f , λS(Uh)), the operator Th being defined in (10). According to Theorem
2.2, for λ sufficiently small, there is a unique U(λ) such that F (λ,U(λ)) = 0. According to Theorem 4.4, for
h and λ sufficiently small, there exists a unique Uh(λ) in a neighbourhood of rhU(λ) depending on h (in the
norm ‖ · ‖H1×L2) such that Fh(λ,Uh(λ)) = 0. Moreover, when h goes to zero, Uh(λ) converges to U(λ) in the
norm ‖ · ‖H1×L2 .

Theorem 5.2. There exists λ0, h0 and C > 0 such that, for all λ ≤ λ0, for all h ≤ h0,

‖U(λ) − Uh(λ)‖H1×L2 ≤ C

( ∑
K∈Th

µ2
K

(
f , λS(Uh(λ))

))1/2

. (22)

Proof. Using the definition of F and Fh we have

U − Uh = T
(
f , λS(U)

)
− Th

(
f , λS(Uh)

)
= T

(
0, λ

(
S(U) − S(Uh)

))
+ (T − Th)

(
f , λS(Uh)

)
.

(23)
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We now bound the first term in the right hand side of (23). If V = (v, τ ) is defined by

V = T

(
0, λ

(
S(U) − S(Uh)

))
,

then there exists q ∈ L2
0(Ω) such that (v, q) ∈ H1

0 (Ω)2 × L2
0(Ω) satisfies

−2(ηs + ηp)div ε(v) + ∇q = λdiv
(
S(U) − S(Uh)

)
,

div v = 0.

We then have the following estimates

‖V‖H1×L2 = ‖v, q‖H1×L2 ≤ Cλ
∥∥∥div

(
S(U) − S(Uh)

)∥∥∥
H−1

≤ C̃λ‖S(U) − S(Uh)‖L2 .

Now we have

2ηp

(
S(U) − S(Uh)

)
= ∇uσ + σ∇uT − (∇uh)σh − σh(∇uh)T

= ∇(u − uh)σ + (∇uh)(σ − σh) + σ∇(u − uh)T + (σ − σh)(∇uh)T ,

so that

‖S(U) − S(Uh)‖L2 ≤ 1
ηp

(
‖∇(u− uh)‖L2‖σ‖L∞ + ‖σ − σh‖L2‖∇uh‖L∞

)
.

We now bound the last term of the above inequality. We have

‖∇uh‖L∞ ≤ ‖∇(u− uh)‖L∞ + ‖∇u‖L∞

≤ ‖∇(u− rhu)‖L∞ + ‖∇(rhu − uh)‖L∞ + ‖∇u‖L∞ .

We then use standard interpolation estimates [10], an inverse estimate, and a Sobolev imbedding theorem to
obtain

‖∇uh‖L∞ ≤ C
(
‖u‖W 2,r +

1
h
‖∇(rhu− uh)‖L2 + ‖u‖W 2,r

)
,

with C independent of λ and h. Finally, applying Theorem 4.4 to the above estimate we have, for h ≤ h and
λ ≤ λ, ‖∇uh‖L∞ ≤ C so that

‖S(U) − S(Uh)‖L2 ≤ C‖U− Uh‖H1×L2 ,

C being independent of h and λ ∈ [0, λ]. Thus, we have shown that

∥∥∥∥T
(
0, λ

(
S(U) − S(Uh)

))∥∥∥∥
H1×L2

≤ Cλ‖U − Uh‖H1×L2 , (24)

where C does not depend on h and λ ∈ [0, λ].
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In order to bound the second term in the right hand side of (23), we use Lemma 5.1. There is a constant C
independent of h and λ such that we have, for h sufficiently small

∥∥∥(T − Th)
(
f , λS(Uh)

)∥∥∥
H1×L2

≤ C

( ∑
K∈Th

µ2
K

(
f , λS(Uh)

))1/2

. (25)

Finally, estimates (24) and (25) in (23) yield the result provided λ is small enough.

Remark 5.3. Proceeding as in [2, 28], we can prove a lower bound similar to the upper bound of Lemma 5.1.
Then, we can also prove a lower bound similar to the upper bound of Theorem 5.2. Thus, the error estimator is
equivalent to the true error. We did not include such a result in this paper in order to shorten the presentation.

Remark 5.4. We can show a sharper estimate than (22). Indeed, let us introduce as in [6] the norm ‖ · ‖W

defined, for all (v, q, τ ) ∈W , by

‖v, q, τ‖2
W = 2(ηs + ηp)‖ε(v)‖2 +

1
2(ηs + ηp)

‖q‖2 +
1

2ηp
‖τ‖2. (26)

Then, the following estimate also holds

‖u− uh, p− ph,σ − σh‖W ≤ C

( ∑
K∈Th

µ2
K

(
f , λS(uh,σh)

))1/2

,

where C is independent of λ, h and ηs, ηp. Here (u, p,σ) is the solution of (1), (uh, ph,σh) is the solution of (9).
Thus, our a posteriori error estimates also hold when the solvent viscosity is small.

6. Link with an EVSS formulation

The Elastic Viscous Split Stress (EVSS) formulation corresponding to (9) is obtained from the following
differential problem: find the velocity u, pressure p, extra-stresses σ and D such that

−2(ηs + ηp)div ε(u) + ∇p− div (σ − 2ηpD) = f ,

div u = 0,
1

2ηp
σ − λ

2ηp

(
(∇u)σ + σ(∇uT )

)
− ε(u) = 0,

D− ε(u) = 0,

(27)

in Ω, where the velocity u vanishes on ∂Ω. Obviously, at the continuous level (27) is equivalent to (1).
In order to solve this problem, we consider the following EVSS scheme: find (uh, ph,σh,Dh) ∈ Vh × Qh ×

Mh ×Mh such that

2(ηs + ηp)(ε(uh), ε(v)) − (ph, div v) + (σh − 2ηpDh, ε(v)) − (f ,v)

− (div uh, q) −
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(uh) + ∇ph − div σh − f ,∇q

)
K

−
(

1
2ηp

σh − λ

2ηp
(∇uhσh + σh∇uT

h ) − ε(uh), τ
)
,

+ (Dh − ε(uh),E) = 0,

(28)
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for all (v, q, τ ,E) ∈ Vh × Qh ×Mh ×Mh. In the above scheme, only the stabilization terms corresponding to
the first equation of (27) have been added in order to avoid spurious oscillations for the pressure. However, no
special attention is paid to the extra-stress σh and the stabilization term(

1
2ηp

σh − λ

2ηp
(∇uhσh + σh∇uT

h ) − ε(uh), 2ηpβε(v)
)

present in (9) is missing in (28). The extra-stress Dh is added only for stability purposes and thus (28) can be
interpreted as an EVSS scheme for solving (1).

In the linear case (i.e. when λ = 0), the GLS scheme (9) with β = 1 is equivalent to the EVSS formula-
tion (28), as explained in [6]. Indeed, Dh ∈Mh is such that

(Dh − ε(uh),E) = 0 ∀E ∈Mh,

and, when λ = 0, σh ∈Mh is such that(
1

2ηp
σh − ε(uh), τ

)
= 0 ∀τ ∈Mh.

Thus, Dh = 1
2ηp

σh and (28) reduces to (9) with β = 1.
In the nonlinear case, the two GLS and EVSS schemes are not equivalent anymore. Indeed, when λ 6= 0, we

have (
1

2ηp
σh +

λ

2ηp
(∇uhσh + σh∇uT

h ) − Dh, τ

)
= 0 ∀τ ∈Mh,

and since (∇uhσh + σh∇uT
h ) 6∈Mh we cannot conclude.

Proceeding as we did for the GLS scheme (9), and under the same assumptions, we can prove that (28) has
a solution converging to the solution of (27).

7. Numerical results

We now discuss iterative decoupling schemes for solving (9) with β = 1 and (28).
Our iterative procedures are an extension of those presented in [6] and [12] and allow velocity and pressure

computations to be decoupled from extra-stresses computations.
Let us start with the GLS scheme (9) and β = 1. Let (un

h , p
n
h,σ

n
h) be the known approximation of (uh, ph,σh)

after n steps. Step (n + 1) of the algorithm consists in first computing (un+1
h , pn+1

h ) by using the mass and
momentum equations, then under-relaxing with parameter 0 ≤ ω ≤ 1, and finally computing σn+1

h with the
constitutive relationship. Thus iteration (n+ 1) consists in finding (ũn+1

h , p̃n+1
h ) ∈ Vh ×Qh such that

2ηs(ε(ũn+1
h ), ε(v)) − (p̃n+1

h , div v) + (σn
h, ε(v))

−
(
σn

h − λ(∇un
hσn

h + σn
h(∇un

h)T ) − 2ηpε(ũn+1
h ), ε(v)

)
− (f ,v)

− (div ũn+1
h , q)

−
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(ũn+1

h ) + ∇p̃n+1
h − div σn

h − f ,∇q
)

K
= 0,

(29)

for all (v, q) ∈ Vh ×Qh, then updating un+1
h and pn+1

h as following

un+1
h = ωũn+1

h + (1 − ω)un
h,

pn+1
h = ωp̃n+1

h + (1 − ω)pn
h,
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and finally finding σn+1
h ∈Mh such that

(
1

2ηp
σn+1

h − λ

2ηp
(∇un

hσn
h + σn

h(∇un
h)T ) − ε(un+1

h ), τ
)

= 0 ∀τ ∈Mh. (30)

Let us now turn to the EVSS scheme (28). Let (un
h , p

n
h,σ

n
h,D

n
h) be the known approximation of (uh, ph,σh,Dh)

after n steps. Iteration (n+ 1) consists in finding (ũn+1
h , p̃n+1

h ) ∈ Vh ×Qh such that

2(ηs + ηp)(ε(ũn+1
h ), ε(v)) − (p̃n+1

h , div v) + (σn
h − 2ηpDn

h, ε(v)) − (f ,v)

− (div ũn+1
h , q)

−
∑

K∈Th

αh2
K

2ηp

(
−2ηsdiv ε(ũn+1

h ) + ∇p̃n+1
h − div σn

h − f ,∇q
)

K
= 0,

(31)

for all (v, q) ∈ Vh ×Qh, then updating un+1
h and pn+1

h as following

un+1
h = ωũn+1

h + (1 − ω)un
h,

pn+1
h = ωp̃n+1

h + (1 − ω)pn
h,

and finally finding σn+1
h ∈Mh such that

(
1

2ηp
σn+1

h − λ

2ηp
(∇un

hσn
h + σn

h(∇un
h)T ) − ε(un+1

h ), τ
)

= 0 ∀τ ∈Mh, (32)

and Dn+1
h ∈Mh such that

(Dn+1
h − ε(un+1

h ),E) = 0, ∀E ∈Mh. (33)

The computational effort required to compute the velocity and pressure thus corresponds to solving a Stokes’
problem with a conventional GLS method, whereas the computations of the extra-stresses are explicit provided
the mass matrices are lumped. The decoupled EVSS procedure is more interesting than the GLS one from the
implementation point of view. Indeed, if the constitutive relationship between the extra-stress and the velocity
field is replaced by a more realistic equation (for instance the Phan-Thien-Tanner or the FENE-P models), then
only the portion of the code corresponding to (32) should be updated. This is not the case of the GLS scheme
since some of the terms present in (29) are due to the constitutive equation.

The EVSS scheme is particularly interesting for molecular models, the constitutive relationship being replaced
by a stochastic differential equation for the dumbbells elongations, see for instance [8, 16, 20].

7.1. A simple test case

In order to investigate numerically the rate of convergence of both GLS and EVSS schemes we have set

u(x1, x2) =
(
u1(x2)
u2(x1)

)
=
(

sin(πx2)ex2

sin(πx1)ex1

)
, p(x1, x2) = 0.

The constitutive relationship (the last equation of (1)) then leads to

σ11 = 2ηpλu
′
1γ, σ12 = ηpγ, σ22 = 2ηpλu

′
2γ,
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where γ is defined by

γ(x1, x2) =
u′1(x2) + u′2(x1)

1 − 4λ2u′1(x2)u′2(x1)
,

whenever λ < 1/
√

4 max |u′1u′2| = 1
2πe ' 0.058. Then, the source term in the momentum equation is given by

f = −ηs

(
u′′1
u′′2

)
− ηp

(
2λu′1∂γ/∂x1 + ∂γ/∂x2

∂γ/∂x1 + 2λu′2∂γ/∂x2

)
.

The calculation domain was the unit square cut into several squares, each square being cut into two triangles
along one of its diagonal. The viscosities were ηs = 0.01, ηp = 1, the GLS stabilization parameter was α = 0.01,
the relaxation parameter was ω = 0.5, the elastic time scale was λ = 0.02. In Table 1 we have reported the
L2 error of the scalar unknowns (velocity components u1, u2, pressure p, extra-stress components σ11,...) with
several meshes. Clearly, the order of convergence with respect to h is close to two for the velocity and one for
the pressure and extra-stress.

Table 1. L2 error and number of iterations to achieve convergence with several meshes, top:
GLS scheme, bottom EVSS scheme.

Mesh u1 u2 p σ11 σ12 σ22 iterations
10 × 10 0.00041 0.00041 0.36 0.19 0.41 0.19 22
20 × 20 0.00012 0.00012 0.17 0.066 0.14 0.066 22
40 × 40 0.000037 0.000037 0.082 0.023 0.048 0.023 23
80 × 80 0.000010 0.000010 0.040 0.0079 0.017 0.0079 23

Mesh u1 u2 p σ11 σ12 σ22 iterations
10 × 10 0.00049 0.00049 0.38 0.19 0.41 0.19 22
20 × 20 0.00016 0.00016 0.18 0.066 0.14 0.066 22
40 × 40 0.000052 0.000052 0.091 0.022 0.047 0.022 23
80 × 80 0.000015 0.000015 0.045 0.0078 0.016 0.0078 23

The stopping criterion for the iterative procedures (29–33) to reach convergence with respect to n was 10−6

on the relative discrepancy. From Table 2, we can see that, for a fixed λ, the number of iterations does not
depend on the mesh size nor on the solvent viscosity. However, when λ increases, the number of iterations
increases.

Table 2. Number of iterations to achieve convergence with respect to n on a 20 × 20 mesh.
Left table: with several solvent viscosities (λ = 0.02). Right table: with several relaxation
times (ηs = 0.01). The xx symbol means that the scheme was divergent.

ηs GLS EVSS
1 22 22

0.01 22 22
0 22 22

λ GLS EVSS
0.02 22 22
0.03 22 22
0.04 22 22
0.05 36 35
0.055 88 62
0.06 xx 225
0.065 xx xx
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Figure 1. The coarsest mesh (mesh 1) used for the computations (201 vertices). Mesh 2 is
obtained by cutting the mesh size by two (721 vertices), mesh 3 by four (2721 vertices) and
mesh 4 by eight (10561 vertices).

7.2. The 4:1 planar contraction

The 4:1 planar contraction is a classical test case in the frame of non Newtonian flows [22]. This test case is
not covered by our theory since the calculation domain is not convex, and the velocity gradient is not bounded
at the reentrant corner. From the physical point of view, instabilities are observed at high Deborah numbers.
From the numerical point of view, most viscoelastic codes fail to converge at high Deborah numbers. Moreover,
as reported in several papers (see for instance Sect. 7.2 of [1] for details), the maximum attainable Deborah
number seems to decrease with mesh size. The well posedness of the problem is still an open question.

We have performed computations on half of the contraction, with four different meshes, the coarsest mesh
being the one of Figure 1. The inlet and outlet velocities were imposed to be parabolic, with maximum velocity
one at the inlet. The viscosities were ηs = 0.01, ηp = 1, the GLS stabilization parameter was α = 0.01, the
elastic time scale λ was ranging from 0.01 to 0.04. In Table 3 we have reported the number of iterations to
reach convergence for several mesh sizes and several values of λ when using the EVSS scheme (similar results
were obtained with the GLS scheme). It seems that, the more the mesh is refined, the smaller the maximum
attainable Deborah number. Moreover, increasing the solvent viscosity does not help convergence.

There are (at least) two possible reasons to explain failure of the numerical procedure (31–33).
• The decoupled procedure (31–33) used to obtain the solution of (28) is not appropriate. Newton’s method

should be implemented to check if convergence could be obtained with higher Deborah numbers, and
several meshes.

• Problem (1) has many solutions or no solution at all for the contraction flow.

Table 3. The 4:1 planar contraction flow. Number of iterations to achieve convergence with
four meshes (see caption of Fig. 1) and several values of λ. Left: λ = 0.04, middle: λ = 0.02,
right: λ = 0.01. The xx symbol means that the scheme was divergent.

Mesh iterations
1 17
2 xx
3 xx
4 xx

Mesh iterations
1 16
2 16
3 17
4 xx

Mesh iterations
1 15
2 15
3 16
4 18

8. Conclusion and perspectives

In this paper, existence, a priori and a posteriori error estimates have been obtained for the GLS approxi-
mation of an Oldroyd-B problem without convection. An EVSS method is also introduced and the link with
the GLS method is shown. Numerical results are presented.
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An important point is now to extend these theoretical predictions to the case when the convective terms are
added to the momentum equation and to the constitutive equation. Also, we are looking forward to extending
this work to the case of mesoscopic models in order to justify the computations performed in [7, 8].

Acknowledgements. The authors wish to thank Jean Descloux for reading the manuscript and for his comments.
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