This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization. The proposed scheme enables numerical simulations which show that the model allows for hysteresis.
Mots-clés : variational problems, phase transitions, elasticity, hysteresis, a priori error estimates, a posteriori error estimates, adaptive algorithms, non-convex minimization, microstructure
@article{M2AN_2001__35_5_865_0, author = {Carstensen, Carsten and Plech\'a\v{c}, Petr}, title = {Numerical analysis of a relaxed variational model of hysteresis in two-phase solids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {865--878}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866271}, zbl = {1007.74062}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_5_865_0/} }
TY - JOUR AU - Carstensen, Carsten AU - Plecháč, Petr TI - Numerical analysis of a relaxed variational model of hysteresis in two-phase solids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 865 EP - 878 VL - 35 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_5_865_0/ LA - en ID - M2AN_2001__35_5_865_0 ER -
%0 Journal Article %A Carstensen, Carsten %A Plecháč, Petr %T Numerical analysis of a relaxed variational model of hysteresis in two-phase solids %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 865-878 %V 35 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_5_865_0/ %G en %F M2AN_2001__35_5_865_0
Carstensen, Carsten; Plecháč, Petr. Numerical analysis of a relaxed variational model of hysteresis in two-phase solids. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 5, pp. 865-878. http://www.numdam.org/item/M2AN_2001__35_5_865_0/
[1] Fine phase mixtures as minimisers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl
and ,[2] Proposed experimental tests of the theory of fine microstructure and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. | Zbl
and ,[3] Local regularity of solutions of variational problems for the equilibrium configuration of an incompressible, multiphase elastic body. Nonlin. Diff. Equations Appl. 8 (2001) 53-81. | Zbl
, and ,[4] The mathematical theory of finite element methods, in Texts in Applied Mathematics 15. Springer-Verlag, New York (1994). | MR | Zbl
and ,[5] Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8 (2000) 153-175. | Zbl
and ,[6] Fully reliable localised error control in the FEM. SIAM J. Sci. Comput. 21 (2000) 1465-1484. | Zbl
and ,[7] Local stress regularity in scalar non-convex variational problems. In preparation. | Zbl
and ,[8] Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl
and ,[9] Zbl
and Petr Plecháč, Numerical analysis of compatible phase transitions in elastic solids. SIAM J. Numer. Anal. 37 (2000) 2061-2081. |[10] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR | Zbl
,[11] Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal. 154 (1999) 101-134. | Zbl
and ,[12] Introduction to adaptive methods for differential equations, in Acta Numerica, A. Iserles, Ed., Cambridge University Press, Cambridge (1995) 105-158. | Zbl
, , and ,[13] A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl
and ,[14] Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Engrg. 57 (1986) 107-127. | Zbl
, and ,[15] Theory of Structural Transformations in Solids. John Wiley & Sons, New York (1983).
,[16] Modelling of hysteresis in two-phase systems. Solid Mechanics Conference (1999); Arch. Mech. 51 (1999) 693-715. | Zbl
, and ,[17] The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991) 193-236. | Zbl
,[18] On the computation of crystalline microstructure, in Acta Numerica, A. Iserles, Ed., Cambridge University Press, Cambridge (1996) 191-257. | Zbl
,[19] A mathematical model for rate-independent phase transformations with hysteresis, in Workshop of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, D. Bateau and R. Farwig, Eds. , Shaker-Verlag, Aachen (1999) 117-129.
and ,[20] A variational formulation of rate-independent phase transformations using an extremum principle. Submitted to Arch. Rational Mech. Anal. | Zbl
, and ,[21] Martensitic transformation as a typical phase transformation in solids, in Solid State Physics 33, Academic Press, New York (1978) 317-390.
,[22] The regularity properties of solutions of variational problems in the theory of phase transitions in an elastic body. St. Petersbg. Math. J. 7 (1996) 979-1003, English translation from Algebra Anal. 7 (1995) 153-187. | Zbl
,[23] A review of a posteriori error estimation and adaptive mesh-refinement techniques, in Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Chichester; Teubner, Stuttgart (1996). | Zbl
,