In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.
Mots-clés : Navier-Stokes equations, domain decomposition methods, iterative schemes, convergence analysis
@article{M2AN_2001__35_3_549_0, author = {Fatone, L. and Gervasio, P. and Quarteroni, A.}, title = {Multimodels for incompressible flows : iterative solutions for the {Navier-Stokes} / {Oseen} coupling}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {549--574}, publisher = {EDP-Sciences}, volume = {35}, number = {3}, year = {2001}, mrnumber = {1837084}, zbl = {1039.76031}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_3_549_0/} }
TY - JOUR AU - Fatone, L. AU - Gervasio, P. AU - Quarteroni, A. TI - Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 549 EP - 574 VL - 35 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_3_549_0/ LA - en ID - M2AN_2001__35_3_549_0 ER -
%0 Journal Article %A Fatone, L. %A Gervasio, P. %A Quarteroni, A. %T Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 549-574 %V 35 %N 3 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_3_549_0/ %G en %F M2AN_2001__35_3_549_0
Fatone, L.; Gervasio, P.; Quarteroni, A. Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 3, pp. 549-574. http://www.numdam.org/item/M2AN_2001__35_3_549_0/
[1] Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag, Paris (1992). | MR | Zbl
and ,[2] Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. | Zbl
and ,[3] Homogeneous and heterogeneous models for incompressible flows. Ph.D. thesis, Università degli Studi di Milano (1999).
,[4] Multimodels for incompressible flows. J. Math. Fluid Mech. 2 (2000) 126-150. | Zbl
, and ,[5] Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. Technical Report Research 98-01, ETH, Zurich (1998). | Zbl
and ,[6] On coupled problems for viscous flow in exterior domains. Math. Models Methods Appl. Sci. 8 (1998) 657-684. | Zbl
and ,[7] Coupled problems for viscous incompressible flow in exterior domains. In Applied nonlinear analysis. Kluwer/Plenum, New York (1999) 97-116. | Zbl
and ,[8] Laminar flow behind two-dimensional grid. Proc. Cambridge Phil. Soc. 44 (1948) 58-62. | Zbl
,[9] Spectral element methods for the incompressible Navier-Stokes equations. In State-of-the-art surveys on computational mechanics. A.K. Noor and J. T. Oden Eds., The American Society of Mechanical Engineers, New York (1989). | Zbl
and ,[10] Coupling of viscous and inviscid incompressible Stokes equations. Numer. Math. 59 (1991) 831-859. | Zbl
, , and ,[11] Theory and application of Steklov-Poincaré operators for boundary-value problems. In Applied and Industrial Mathematics, R. Spigler Ed., Kluwer Academic Publisher, Dordest (1991) 179-203. | Zbl
and ,[12] Domain decomposition methods for partial differential equations. Oxford Science Publications, Oxford (1999). | MR | Zbl
and ,[13] Coupling of two dimensional viscous and inviscid incompressible Stokes equations. Technical Report Preprint 93-68 (SFB 359), Heidelberg University (1993). | Zbl
and ,[14] Navier-Stokes equations. Theory and numerical analysis. 3rd edn., North-Holland, Amsterdam (1984). | Zbl
,[15] Navier-Stokes equations and nonlinear functional analysis. SIAM, Philadelphia (1988). | MR | Zbl
,[16] Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992) 631-644. | Zbl
,