Nous présentons une solution numérique des équations d'Euler montrant la solution non-bornée : l'approximation de la solution est donnée par une série de Taylor dans la variable de temps de la solution exacte, et il est probable que cet exemple fournira le résultat.
We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.
Mots-clés : Euler equations, blow-up of solution
@article{M2AN_2001__35_2_229_0, author = {Behr, Eric and Ne\v{c}as, Jind\v{r}ich and Wu, Hongyou}, title = {On blow-up of solution for {Euler} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {229--238}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1825697}, zbl = {0985.35057}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_2_229_0/} }
TY - JOUR AU - Behr, Eric AU - Nečas, Jindřich AU - Wu, Hongyou TI - On blow-up of solution for Euler equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 229 EP - 238 VL - 35 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_2_229_0/ LA - en ID - M2AN_2001__35_2_229_0 ER -
Behr, Eric; Nečas, Jindřich; Wu, Hongyou. On blow-up of solution for Euler equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 229-238. http://www.numdam.org/item/M2AN_2001__35_2_229_0/
[1] On the existence and uniqueness of flows of multipolar fluids of grade and their stability. Internat. J. Engrg. Sci. 37 (1999) 75-96.
, and ,[2] Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de application aux equations d’Euler. Comm. Partial Differential Equations 10 (1985) 1465-1525. | Zbl
,[3] Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67 (1991) 3511.
and ,[4] Finite time singularities in ideal fluids with swirl. Phys. D 88 (1995) 116-132. | Zbl
and ,[5] Functional analysis and semi-Groups. Amer. Math. Soc., Providence, R.I. (1957). | MR | Zbl
and ,[6] Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A5 (1993) 1725-1746. | Zbl
,[7] Sur le mouvement d'un liquide visqueux remplissant l'espace. Acta Math. 63 (1934) 193-248. | JFM
,[8] Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford University Press, New York (1996). | MR | Zbl
,[9] On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199 (1999) 97-114. | Zbl
, , and ,[10] Theory of multipolar fluids. Problems and methods in mathematical physics (Chemnitz, 1993) 111-119. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994). | Zbl
,[11] Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 245-249. | Zbl
, and ,[12] On Leray's self-similar solutions of the Navier-Stokes equations. Acta Math. 176 (1996) 283-294. | Zbl
, and ,[13] Collapsing solutions to the 3-D Euler equations. Phys. Fluids A2 (1990) 220-241. | Zbl
and ,[14] Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A4 (1992) 1472-1491. | Zbl
and ,