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NUMERICAL BOUNDARY LAYERS FOR HYPERBOLIC SYSTEMS IN 1-D
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Abstract. The aim of this paper is to investigate the stability of boundary layers which appear
in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular
meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal
stability in the scalar case. Examples of unstable boundary layers are also given.
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1. Introduction

1.1. Presentation of the problem

The aim of this paper is to describe the asymptotic behavior of numerical approximations of systems of
conservation laws in one space dimension, of the form

∂tu+ ∂xf(u) = 0, (1)

where f : Rd 7→ Rd and u is a vector valued function, u : (x, t) ∈ R+ × R+ → Rd. We assume that f ∈
C∞(Rd,Rd) is uniformly lipschitzian on Rd and that f has uniformly bounded second derivatives. Equation (1)
must be completed with an initial data

u(x, 0) = u0(x) (2)

for every x ≥ 0, where u0 is a given smooth function. We must also provide boundary conditions at x = 0.
There are different ways to do this, and we refer to [1] and [3].

Let us first recall the approach of Gisclon and Serre in [4,5]: we consider solutions of (1) as limits of solutions
of the following parabolic equation

∂tu
ε + ∂xf(uε)− ε∂xxuε = 0 (3)

with Dirichlet boundary condition

uε(0, t) = 0. (4)
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As ε goes to 0, solutions uε of (3,4) converge, under some particular conditions, to solutions of (1) with boundary
conditions

u(0, t) ∈ Cvis (5)

where Cvis, introduced in [5] and [3] is the set of vectors v ∈ Rd such that there exists a solution w of

∂xf(v + w) = ∂xxw, (6)

on x > 0 satisfying w(0) = −v and w → 0 as x → +∞. Near 0, Cvis is a manifold, whose tangent space is
spanned by the eigenvectors of f ′(0) with negative corresponding eigenvalues. We refer to [4], [8] and [9] for
more details.

In this paper instead of looking at solutions of (1) as limits of solutions of a parabolic system (namely as limits
of solutions of (3, 4)), we consider solutions of (1) as limits of numerical solutions obtained by some numerical
schemes like monotonic schemes or Lax Friedrichs type schemes with homogeneous Dirichlet boundary condition.
As in [6] and [8], we assume that the initial condition u0 is compatible with this numerical boundary condition:
it means

u0(0) = 0. (7)

This assumption will be discussed later (see Sect. 2.4).
We prove, under a smallness condition, the convergence of numerical solutions to solutions of (1) with

boundary condition

u(0, t) ∈ Cnum (8)

(see (16)) which is a numerical counterpart of (5), as long as this solution remains smooth. Therefore we do
not investigate shocks, but rather the existence and stability of numerical boundary layers in small time. These
layers turn out to be stable under a smallness condition, except in the scalar case where no condition is required.
Hence this paper is a rigorous justification of the formal analysis developed in [9] and is a numerical counterpart
to [8]. It also completes the analysis of [6].

In all the paper we will assume that the boundary is noncharacteristic, i.e. that 0 is never an eigenvalue
of f ′. We also assume that the system is symmetrizable:

∃S ∈ C∞(Rd,Md×d) such that ∀u ∈ Rd,
S(u) is symmetric nonnegative definite, S(u)� I, and S(u)f ′(u) is symmetric. (9)

Moreover, we assume that S is uniformly bounded with respect to u (similar proofs can be fulfilled if we only
assume that S is locally bounded in u).

1.2. Numerical schemes

Let us now detail the numerical schemes. We want to compute an approximate solution of u(x, t), solution
of (1). Therefore, we consider an uniform mesh of R+, which is constituted of cells Mi =](i− 1)h, ih] of size h,
i ≥ 1. The center of the cell Mi is denoted by xi = (i− 1/2)h.

Let k be the time step and let set tn = nk. In order to discretize the hyperbolic system (1), we use the
modified Lax-Friedrichs scheme. Therefore, we introduce the numerical flux F ∈ C∞(Rd × Rd,Rd) defined by:

F (u, v) =
f(u) + f(v)

2
− λ

2
(v − u) (10)

with λ large enough (λ > supu∈Rd |f ′(u)|).
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In the scalar case, we don’t restrict the study to the Lax-Friedrichs scheme. We just make the following
assumptions on the numerical flux{

(i) F (u, u) = f(u),
(ii) F (u, v) is nondecreasing with respect to u and nonincreasing with respect to v. (11)

Hypothesis (11 i) ensures the consistency of the scheme (it is clearly satisfied by Lax-Friedrichs fluxes), hypoth-
esis (11 ii) its monotony under a CFL condition.

In both cases, the scheme is the following

h

k
(un+1
i − uni ) +

(
F (uni , u

n
i+1)− F (uni−1, u

n
i )
)

= 0, i ≥ 1, (12)

un0 = 0, u0
i = u0(xi) (13)

and the numerical solution is defined by{
unum(x, t) = uni on Mi × [tn, tn+1[, ∀i ≥ 1, ∀n ∈ N,
unum(0, t) = un0 on [tn, tn+1[, ∀n ∈ N. (14)

We assume that the space step and the time step are linked by a CFL condition:

k ≤ Ch (15)

where C, small enough, depends on F (see (33)).
The analysis of the paper can be extended to the case where (13) is replaced by

u0
i =

1
|Mi|

∫
Mi

u0(x)dx.

1.3. Main results

Let us define Cnum to be the set of vectors u such that there exists a solution v(i) to

F
(
u+ v(i), u+ v(i+ 1)

)
= f(u)

v(0) = −u
v(+∞) = 0

 (16)

(see Sect. 2.1 for details). This space has already been introduced by Joseph and LeFloch in [9]. The hyperbolic
system (1)-(2) with boundary condition u(0, t) ∈ Cnum is well posed.

Theorem 1.1 (Lax-Friedrichs scheme). Let uint,0 be a smooth solution on a time interval [0, T ] to (1) with ini-
tial data u0 with compact support satisfying the compatibility assumption (7) and boundary condition uint,0(0, .) ∈
Cnum (see (16)). Let unum be the approximate solution defined by (12), (13), (10) and (14) under the CFL con-
dition (15).

Then, there exists C0 depending only on F such that, if on [0, T ]

|uint,0(0, t)| ≤ C0, (17)

then unum converges to uint,0 in L∞([0, T ], L2(R+)) and, on [0, T ],

uni − uint,0(xi, tn)− ub,0(i, tn) = O(h) (18)
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where ub,0(., tn) is a solution to (16) with u = uint,0(0, tn).

In fact the proof of this theorem says more since it gives a complete expansion of uni in h and k. We will
not precise the regularity of uint,0. Basically we need Hs regularity with s large. The restriction to compactly
supported initial data is a nonessential simplification which avoid to take care of the behavior near +∞.

In the scalar case d = 1, following an idea of Goodman [7] and Liu [11] we can remove the smallness
assumption (17) and for every scheme whose fluxes satisfy (11) we have:

Theorem 1.2 (1D scheme). Let uint,0 be a smooth solution on a time interval [0, T ] to (1) with initial data
u0 with compact support satisfying the compatibility assumption (7) and boundary condition uint,0(0, .) ∈ Cnum.
Let unum be the approximate solution defined by (12), (13), (11) and (14) under the CFL condition (15).
Then on [0, T ], unum(., t) converges to uint,0(., t) in L∞([0, T ], L2(R+)) and, on [0, T ],

uni − uint,0(xi, tn)− ub,0(i, tn) = O(h)

where ub,0(., tn) is solution to (16) with u = uint,0(0, tn).

Section 2 is devoted to the construction of an approximate solution uapp of unum. In Section 3, we prove
L2 estimates between the numerical solution and the approximate one. Theorem 1.1 is then a consequence of
this part. Theorem 1.2 is proved in Section 4. Section 5 is devoted to numerical counterexamples, that are
cases of unstable boundary layers where the condition (17) is not satisfied, and Section 1.4 is a list of possible
extensions.

1.4. Extensions

Similar techniques can be used in multidimensional space x = (x1, ..., xN ) ∈ RN with xN ≥ 0 in the particular
case of regular meshes of rectangles. Theorem 1.1 can be extended to this case. We will not detail it here.

In one dimensional space x ≥ 0, other boundary conditions can be treated, like inhomogeneous Dirichlet
conditions

un0 = g(tn)
where g is some smooth given function, or Neumann conditions

un0 = un1 .

This latest case is even simpler since there is no boundary layer at leading order.

2. Asymptotic expansion

Following [8], we want to construct some uint,j and ub,j such that

uapp(xi, tn) =
N∑
j=0

hj
(
uint,j(xi, tn) + ub,j(i, tn)

)
(19)

is a “good” approximation of uni . The uint,j : R+ ×R+ → Rd are smooth functions and describe the numerical
solution far away from the boundaries. The ub,j : N×R+ → Rd are boundary layer profiles and therefore must
be rapidly decreasing with respect to i.

In this section, we give a formal derivation of the equations satisfied by the uint,j and ub,j . The fact that
uapp is really a good approximation of unum will be proved in Section 3. The idea is the following: if uapp(xi, tn)
is close to unum(xi, tn) then it satisfies an equality similar to (12) but with some error terms. It means that, for
all i and n, Eni defined by

Eni =
h

k

(
uapp(xi, tn+1)− uapp(xi, tn)

)
+
(
F
(
uapp(xi, tn), uapp(xi+1, t

n)
)
−F
(
uapp(xi−1, t

n), uapp(xi, tn)
))
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is controlled by o(hα(N)) for some α(N). The approximate solution uapp must also satisfy the initial and
boundary conditions (13).

In the next subsections, we study the expansion of Eni with respect to the powers of h in each area of R+×R+:
in the boundary layer (small i) and outside the boundary layer (large i). If we want Eni to be a o(hα(N)), we
have to set all the terms of the expansion of Eni until hα(N) equal to 0: it formally yields the equations satisfied
by uint,j and ub,j . We also discuss the existence and uniqueness of the solutions to these equations.

2.1. The first boundary layer profile: ub,0

In order to get the equation on the first profile of the boundary layer, we study Eni for n large and i small:

Eni = F
(
uint,0(xi, tn) + ub,0(i, tn), uint,0(xi+1, t

n) + ub,0(i+ 1, tn)
)

− F
(
uint,0(xi−1, t

n) + ub,0(i− 1, tn), uint,0(xi, tn) + ub,0(i, tn)
)

+O(h).

But, in the boundary layer, uint,0(xi, tn) = uint,0(0, tn) +O(h). Therefore,

Eni = F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
− F

(
uint,0(0, tn) + ub,0(i− 1, tn), uint,0(0, tn) + ub,0(i, tn)

)
+O(h).

Setting the term of order 0 in Eni equal to 0 gives the equation on ub,0. The following boundary condition is
added: ub,0(0, tn) = −uint,0(0, tn), which comes from the approximation of un0 = 0, and ub,0(i, tn) → 0 when i
goes to +∞, since ub,0 is rapidly decreasing with respect to i. Finally, ub,0 is solution to:

F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
= f(uint,0(0, tn))

ub,0(0, tn) = −uint,0(0, tn)
ub,0(+∞, tn) = 0

 (20)

With such boundary conditions, there exist some solution ub,0(., tn) to the discrete dynamical system (20) only
for some values of uint,0(0, tn), i.e. if and only if

uint,0(0, .) ∈ Cnum, (21)

which defines Cnum. The space Cnum is the numerical analog to Cvis (compare (6) with (16)). We refer to [9] for
further properties of Cnum. In particular Cvis and Cnum have the same tangent space in 0, which is spanned by
the eigenvectors of f ′(0) with negative corresponding eigenvalues.

2.2. The first inner term: uint,0

Note that the study of ub,0 gives the boundary condition on uint,0: uint,0(0, .) ∈ Cnum. The expansion of Eni
for large i and n leads to the equation satisfied by uint,0. Indeed, for such i and n, all the boundary terms can
be considered as equal to 0. Using the smoothness of uint,0, Eni rewrites:

Eni = h∂tu
int,0(xi, tn) +

(
F
(
uint,0(xi, tn), uint,0(xi+1, t

n)
)
−F
(
uint,0(xi−1, t

n), uint,0(xi, tn)
))

+O(h2).

In this expression, we can add and subtract the quantity

F
(
uint,0(xi+1, t

n), uint,0(xi+1, t
n)
)
−F
(
uint,0(xi, tn), uint,0(xi, tn)

)
.
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On one hand, owing to the consistency of the numerical fluxes, we have:

F
(
uint,0(xi+1, t

n), uint,0(xi+1, t
n)
)
−F
(
uint,0(xi, tn), uint,0(xi, tn)

)
=

f(uint,0(xi+1, t
n))− f(uint,0(xi, tn)) = hf ′(uint,0(xi, tn)).∂xuint,0(xi, tn) +O(h2).

On the other hand, the regularity of F and uint,0 and the regularity of the mesh imply

F
(
uint,0(xi, tn), uint,0(xi+1, t

n)
)
−F
(
uint,0(xi+1, t

n), uint,0(xi+1, t
n)
)

+ F
(
uint,0(xi, tn), uint,0(xi, tn)

)
−F
(
uint,0(xi−1, t

n), uint,0(xi, tn)
)

= O(h2).

Finally, we get:

Eni = h

(
∂tu

int,0(xi, tn) + ∂x
(
f(uint,0)

)
(xi, tn)

)
+O(h2).

We deduce that uint,0 must be solution to the hyperbolic conservation law (1) with initial and boundary
conditions:

∂tu
int,0 + ∂xf(uint,0) = 0 on R+ × R+,

uint,0(., 0) = u0(.) on R+,
uint,0(0, .) ∈ Cnum on R+.

 (22)

The definition of Cnum ensures that the boundary condition on uint,0 (uint,0(0, .) ∈ Cnum) is maximal dissipative.
Therefore, the problem (22) is well posed (locally in time) up to some compatibility conditions (as usual for
hyperbolic systems in a half space). We refer to Rauch and Massey [12] or Li and Yu [10] for the expression of
the compatibility conditions and the proof of this result.

2.3. Equations on the next inner terms and profiles

The boundary layer profiles: ub,j

In order to obtain the equations on the next ub,j , we go on with the expansion of Eni with respect to the
powers of h for small i and large n. For instance, the coefficient of h in Eni leads to the equation on ub,1:

∂1F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
ub,1(i, tn)

+ ∂2F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
ub,1(i+ 1, tn)

− ∂1F
(
uint,0(0, tn) + ub,0(i− 1, tn), uint,0(0, tn) + ub,0(i, tn)

)
ub,1(i− 1, tn)

− ∂2F
(
uint,0(0, tn) + ub,0(i− 1, tn), uint,0(0, tn) + ub,0(i, tn)

)
ub,1(i, tn) = Sb,1

(
ub,0, uint,0(0, .)

)
with the following boundary conditions:

ub,1(0, tn) = −uint,1(0, tn) and ub,1(+∞, tn) = 0.

The source term Sb,1 is a function of ub,0 and uint,0(0, .). It is not of wide interest to develop its expression here.
We just want to note that it is rapidly decreasing with respect to i. The solution to this equation is in general
not unique, and is the sum of a particular solution ub,1par(i, tn) and a solution of the corresponding homogeneous
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equation (setting Sb,1 to 0). The homogeneous equation, expressed in the variable wi is simply

∂1F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
wi

+ ∂2F
(
uint,0(0, tn) + ub,0(i, tn), uint,0(0, tn) + ub,0(i+ 1, tn)

)
wi+1

− ∂1F
(
uint,0(0, tn) + ub,0(i− 1, tn), uint,0(0, tn) + ub,0(i, tn)

)
wi−1

− ∂2F
(
uint,0(0, tn) + ub,0(i− 1, tn), uint,0(0, tn) + ub,0(i, tn)

)
wi = 0.

Note that this equation is the linearized version of the equation on ub,0. Hence the set of solutions of the this
homogeneous equation is of the dimension of Cnum, and the set of the values of w0 is a subspace Puint,0(0,tn).
Therefore

ub,1(0, tn) = −uint,1(0, tn) ∈ ub,1par(0, t
n) + Puint,0(0,tn), (23)

ub,1par(0, t
n) being given by the source term Sb,1 which does not depend on ub,1 and uint,1.

Following the expansion on Eni , we will get the same kind of equation for all the ub,k, with a source term
Sb,k still rapidly decreasing in i.

The inner terms: uint,j

We formally obtain the equations on the uint,j by studying the different powers of h in Eni for large i and n.
For instance, to get the equation on uint,1, we are looking for the coefficient of h2 in Eni .
For large i and n, we have:

Eni = h∂tu
int,0(xi, tn) +

hk

2
∂ttu

int,0(xi, tn) + h2∂tu
int,1(xi, tn)

+
(
F
(
uint,0(xi, tn) + huint,1(xi, tn), uint,0(xi+1, t

n) + huint,1(xi+1, t
n)
)

− F
(
uint,0(xi−1, t

n) + huint,1(xi−1, t
n), uint,0(xi, tn) + huint,1(xi, tn)

))
+O(h3).

We add and substract f(uint,0(xi+1, t
n))− f(uint,0(xi, tn)) in Eni . As uint,0 is solution to (1), it yields:

Eni = h2∂tu
int,1(xi, tn) +

hk

2
∂ttu

int,0(xi, tn) +
h2

2
∂xx
(
f(uint,0)

)
(xi, tn) + ∆F +O(h3)

with

∆F =
(
F
(
uint,0(xi, tn) + huint,1(xi, tn), uint,0(xi+1, t

n) + huint,1(xi+1, t
n)
)

− F
(
uint,0(xi+1, t

n), uint,0(xi+1, t
n)
))

−
(
F
(
uint,0(xi−1, t

n) + huint,1(xi−1, t
n), uint,0(xi, tn) + huint,1(xi, tn)

)
− F

(
uint,0(xi, tn), uint,0(xi, tn)

))
.

Using Taylor’s formula, we can rewrite ∆F as:

∆F = ∆0
F + ∆1

F
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with

∆0
F =

(
F
(
uint,0(xi, tn), uint,0(xi+1, t

n)
)
−F
(
uint,0(xi+1, t

n), uint,0(xi+1, t
n)
))

−
(
F
(
uint,0(xi−1, t

n), uint,0(xi, tn)
)
−F
(
uint,0(xi, tn), uint,0(xi, tn)

))
and

∆1
F = h∂1F

(
uint,0(xi, tn), uint,0(xi+1, t

n)
)
.uint,1(xi, tn)

+ h∂2F
(
uint,0(xi, tn), uint,0(xi+1, t

n)
)
.uint,1(xi+1, t

n)

− h∂1F
(
uint,0(xi−1, t

n), uint,0(xi, tn)
)
.uint,1(xi−1, t

n)

− h∂2F
(
uint,0(xi−1, t

n), uint,0(xi, tn)
)
.uint,1(xi, tn).

The term ∆0
F will contribute to the source term in the equation on uint,1 because

∆0
F = h2G

(
uint,0(xi, tn), ∂xuint,0(xi, tn), ∂xxuint,0(xi, tn)

)
.

It remains to rewrite ∆1
F . Therefore, we use the consistency of the scheme F (u, u) = f(u), which implies

f ′(u) = ∂1F (u, u)+∂2F (u, u) and f ′′(u) = ∂11F (u, u)+2∂12F (u, u)+∂22F (u, u). Developing all the derivatives
of F around the point (uint,0(xi, tn), uint,0(xi, tn)) in ∆1

F , we get:

∆1
F = h2

(
f ′
(
uint,0(xi, tn)

)
.∂xu

int,1(xi, tn) + f ′′
(
uint,0(xi, tn)

)
.∂xu

int,0(xi, tn).uint,1(xi, tn)
)

+O(h3).

Finally, we find that uint,1 satisfy the linearized system of (1) around uint,0 with some source term:

∂tu
int,1 + ∂x

(
f ′(uint,0).uint,1

)
= Sint,1(uint,0),

with the initial condition uint,1(x, 0) = 0, and boundary condition (23). This system is well posed, as long as
uint,0 is not too large. The source term Sint,1 is a function of uint,0 and its space and time derivatives until the
order 2.

With the same technique, we can get the equation satisfied by all the uint,j that is:

∂tu
int,j + ∂x

(
f ′(uint,0).uint,j

)
= Sint,j

(
uint,0, uint,1, ..., uint,j−1

)
(24)

where Sint,j is a function of all uint,k, 0 ≤ k ≤ j − 1 and their derivatives until the order j + 1− k.

2.4. About the compatibility condition (7)

If we do not assume the compatibility of the initial condition with the numerical boundary condition (7), we
have to introduce initial boundary layer profiles in the construction of uapp. Then, we search an asymptotic
expansion of the form:

uapp(xi, tn) =
N∑
j=0

hj
(
uint,j(xi, tn) + ub,j(i, tn) + ũb,j(i, n)

)
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where the ũb,j : N×N→ Rd are the initial boundary layer profiles. If the two first initial boundary layer profiles
are rapidly decreasing with respect to i and n, the results of Theorem 1.1 and Theorem 1.2 still hold.

In order to get the equations satisfied by the ũb,j, we develop Eni for small i and n (in the initial boundary
layer). It yields the equation satisfied by ũb,0:

h

k

(
ũb,0(i, n+ 1)− ũb,0(i, n)

)
+F
(
uint,0(0, 0) + ub,0(i, 0) + ũb,0(i, n), uint,0(0, 0) + ub,0(i+ 1, 0) + ũb,0(i+ 1, n)

)
−F
(
uint,0(0, 0) + ub,0(i− 1, 0) + ũb,0(i− 1, n), uint,0(0, 0) + ub,0(i, 0) + ũb,0(i, n)

)
= 0

with ũb,0(i, 0) = −ub,0(i, 0) and ũb,0(0, n) = 0.


(25)

Note that in this equation time and space are discrete, i.e. that ũb,0 is defined on N× N. Therefore existence
and uniqueness of a solution is straightforward. It remains to get decreasing properties. We will not investigate
exponential decrease here and refer to [14] for related equations.

3. Justification of the asymptotic expansion: L2
estimates

In this section, we give the proof of Theorem 1.1, which is inspired by the methods of [2]. Let us consider
uapp defined by (19) where the uint,j and ub,j are solutions to the equations derived in the Section 2. We want
to prove that uapp is an asymptotic expansion of the numerical solution unum defined by the Lax-Friedrichs
scheme (12), (13), (10), (14).

Thanks to the numerical scheme, unum satisfies:

h

k
(unum(xi, tn+1) − unum(xi, tn)) + F (unum(xi, tn), unum(xi+1, t

n)) − F (unum(xi−1, t
n), unum(xi, tn)) = 0. (26)

Furthermore, the construction of the uint,j and ub,j ensures that

h

k
(uapp(xi, tn+1) − uapp(xi, tn)) + F (uapp(xi, tn), uapp(xi+1, t

n)) − F (uapp(xi−1, t
n), uapp(xi, tn)) = Rni (27)

with Rni = O(hN+1) in the boundary layer and Rni = O(hN+2) outside.
We set v=unum−uapp and vni = v(xi, tn). The difference between the scheme (26) and the equation satisfied

by uapp (27) leads to:

h

k
(vn+1
i − vni ) + F (unum(xi, tn), unum(xi+1, t

n))− F (uapp(xi, tn), uapp(xi+1, t
n))

− F (unum(xi−1, t
n), unum(xi, tn)) + F (uapp(xi−1, t

n), uapp(xi, tn)) = −Rni .

But, for the Lax-Friedrichs flux defined by (10), we have, using a Taylor’s formula

F (unum(xi, tn), unum(xi+1, t
n))− F (uapp(xi, tn), uapp(xi+1, t

n)) =

f ′(uapp(xi, tn))vni + f ′(uapp(xi+1, t
n))vni+1

2
− λ

2
(vni+1 − vni ) + Cni v

n
i v

n
i + Cni+1v

n
i+1v

n
i+1,

where |Cni | ≤ C because the second derivatives of f are uniformly bounded.
Let us introduce

Ani = f ′(uapp(xi, tn)), A+
i,n =

Ani + λI

2
, A−i,n =

Ani − λI
2

· (28)
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The vni are solutions of a kind of “linearized” scheme with error terms

h

k
(vn+1
i − vni ) +A+

i,nv
n
i +A−i+1,nv

n
i+1 −A+

i−1,nv
n
i−1 −A−i,nvni = −Tni −Rni (29)

where |Tni | ≤ C(|vni |2 + |vni+1|2 + |vni−1|2) and with the initial condition v0
i = 0 for all i ∈ N.

Using the hypothesis of symmetrizability of the system (9), we also introduce Sni = S(uapp(xi, tn)). The
matrix Sni is symmetric nonnegative definite, Sni � I and Sni Ani is symmetric. Moreover, Sni is uniformly
bounded. As Sni is symmetric nonnegative definite, there exists Sni symmetric nonnegative definite such that
(Sni )2 = Sni and, for all i ∈ N, for all n ∈ N, we have the following norm equivalence:

∀v ∈ Rd, |v|2 ≤ |Sni v|2 ≤ C|v|2. (30)

Multiplying (29) by Sni , we get:

Sni v
n+1
i = Sni v

n
i −

k

h
(F1 + F2 + F3) (31)

with

F1 = Sni A+
i,n(vni − vni−1) + Sni A−i,n(vni+1 − vni ),

F2 = Sni (A−i+1,n −A−i,n)vni+1 + Sni (A+
i,n −A+

i−1,n)vni−1,

F3 = Sni T
n
i + Sni R

n
i .

Therefore,

|Sni vn+1
i |2 = |Sni vni |2 − 2

k

h
Sni v

n
i .(F1 + F2 + F3) +

k2

h2
|F1 + F2 + F3|2

and

|Sni vn+1
i |2 ≤ |Sni vni |2 − 2

k

h
Sni v

n
i .(F1 + F2 + F3) +

3k2

h2
(|F1|2 + |F2|2 + |F3|2). (32)

We now bound all the terms of the right hand side of (32).
1. Terms containing F1

First, we rewrite

2Sni v
n
i .F1 = 2vni .Sni A+

i,n(vni − vni−1) + 2vni .Sni A−i,n(vni+1 − vni ).

But, thanks to (9), Sni A+
i,n and Sni A−i,n are symmetric matrices and for a symmetric matrix M , we have

2a.M(a− b) = a.Ma− b.Mb+ (a− b).M(a− b), ∀a, b ∈ Rd.

Thus,

2Sni v
n
i .F1 = vni .Sni A+

i,nv
n
i − vni−1.Sni A+

i,nv
n
i−1 + (vni − vni−1).Sni A+

i,n(vni − vni−1)

+ vni+1.Sni A−i,nvni+1 − vni .Sni A−i,nvni − (vni − vni+1).Sni A−i,n(vni − vni+1).

Moreover,
|F1|2 ≤ 2

(
|Sni A+

i,n(vni − vni−1)|2 + |Sni A−i,n(vni+1 − vni )|2
)
.
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2. Terms containing F2

By definition, we have 2(A−i+1,n −A−i,n) = Ani+1 −Ani = f ′(uapp(xi+1, t
n))− f ′(uapp(xi, tn)) and 2(A+

i,n −
A+
i−1,n) = Ani −Ani−1 = f ′(uapp(xi, tn))− f ′(uapp(xi−1, t

n)). The regularity of uint,0 and ub,0 (we assume
here that the decrease of ub,0 is exponential) implies

|A−i+1,n −A−i,n| ≤ Cinth+ Cbe−µi

|A+
i,n −A+

i−1,n| ≤ Cinth+ Cbe−µi.

An important point to note is that Cb depends on |uint,0(0, t)| and goes to 0 as |uint,0(0, t)| goes to 0. We
have

2|Sni vni .F2| ≤ C(Cinth+ Cbe−µi)(|vni+1|2 + |vni |2 + |vni−1|2),

|F2|2 ≤ C(Cinth+ Cbe−µi)(|vni+1|2 + |vni−1|2).

3. Terms containing F3

For F3, we have the following bounds:

2|Sni vni .F3| ≤ C(|vni |3 + |vni+1|3 + |vni−1|3 + |vni ||Rni |)
|F3|2 ≤ C(|vni |4 + |vni+1|4 + |vni−1|4 + |Rni |2).

Introducing all these bounds in (32), we get:

|Sni vn+1
i |2 ≤ |Sni vni |2 −

k

h
(vni+1.Sni A−i,nvni+1 − vni .Sni A−i,nvni )

− k

h
(vni .Sni A+

i,nv
n
i − vni−1.Sni A+

i,nv
n
i−1)

− k

h
(vni − vni−1).Sni A+

i,n(vni − vni−1) +
6k2

h2
|Sni A+

i,n(vni − vni−1)|2

+
k

h
(vni − vni+1).Sni A−i,n(vni − vni+1) +

6k2

h2
|Sni A−i,n(vni − vni+1)|2

+ C
k

h
(Cinth+ Cbe−µi)(|vni+1|2 + |vni |2 + |vni−1|2)

+ C
k

h
(|vni |3 + |vni+1|3 + |vni−1|3 + |vni |4 + |vni+1|4 + |vni−1|4)

+ C
k

h
(|vni | |Rni |+ |Rni |2).

But, for a large λ, Sni A+
i,n is symmetric nonnegative definite with eigenvalues greater than γ (depending on

λ) and Sni A−i,n is symmetric non positive definite with eigenvalues smaller than −γ. Moreover, |Sni A+
i,n| and

|Sni A−i,n| are bounded by M (depending on λ).
Therefore, under the CFL condition

k

h
≤ γ 1− ξ

6M2
, ξ ∈]0, 1[, (33)

we have

−k
h

(vni − vni−1).Sni A+
i,n(vni − vni−1) +

6k2

h2
|Sni A+

i,n(vni − vni−1)|2 ≤ −γξ k
h
|vni − vni−1|2

and
k

h
(vni − vni+1).Sni A−i,n(vni − vni+1) +

6k2

h2
|Sni A−i,n(vni − vni+1)|2 ≤ −γξ k

h
|vni − vni+1|2.



102 C. CHAINAIS-HILLAIRET AND E. GRENIER

Thus, we get

∑
i≥1

|Sni vn+1
i |2 ≤

∑
i≥1

|Sni vni |2 −
k

h

∑
i≥1

(vni .(Sni−1A−i−1,n − Sni A−i,n)vni )

− k

h

∑
i≥1

(vni .(Sni+1A+
i+1,n − Sni A+

i,n)vni )

− γ ξk
h

∑
i≥1

|vni − vni−1|2 − γ
ξk

h

∑
i≥1

|vni − vni+1|2

+ C
k

h
(Cinth

∑
i≥1

|vni |2 + Cb
∑
i≥1

e−µi|vni |2)

+ C
k

h

∑
i≥1

(|vni |3 + |vni |4) + C
k

h
(
∑
i≥1

|vni | |Rni |+
∑
i≥1

|Rni |2)

and further:

∑
i≥1

|Sni vn+1
i |2 ≤

∑
i≥1

|Sni vni |2(1 + C
k

h
h) + Cb

k

h

∑
i≥1

e−µi|vni |2 − Cd
k

h

∑
i≥1

|vni − vni−1|2

+ C
k

h

∑
i≥1

(|vni |3 + |vni |4) + C
k

h
(
∑
i≥1

|vni | |Rni |+
∑
i≥1

|Rni |2). (34)

But, we can control the term Cb
∑
i≥1 e−µi|vni |2 by Cd

∑
i≥1 |vni −vni−1|2 so that their difference stays nonpositive.

Indeed, as vn0 = 0, vni =
∑
j≤i(v

n
j − vnj−1) and

|vni |2 ≤ i
∑
j≤i
|vnj − vnj−1|2 ≤ i

∑
j≥1

|vnj − vnj−1|2,

hence ∑
i≥1

e−µi|vni |2 ≤ (
∑
i≥1

ie−µi)
∑
i≥1

|vni − vni−1|2.

Thus, if

Cb ≤
Cd∑

i≥1

ie−µi
, (35)

we deduce from (34)

∑
i≥1

|Sni vn+1
i |2 ≤

∑
i≥1

|Sni vni |2(1 + Ck) + C
k

h

∑
i≥1

(|vni |3 + |vni |4) + C
k

h
(
∑
i≥1

|vni | |Rni |+
∑
i≥1

|Rni |2).

Note again that (35) is satisfied if supt |uint,0(0, t)| is small enough.
Now, we want to replace

∑
i≥1 |Sni vn+1

i |2 in the last inequality by
∑
i≥1 |Sn+1

i vn+1
i |2. But,

Sn+1
i vn+1

i = (Sn+1
i − Sni )vn+1

i + Sni v
n+1
i
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and for all n ∈ N, |Sn+1
i − Sni | ≤ Ck. Thus, thanks to (30), we get

|Sn+1
i vn+1

i |2 ≤ |Sni vn+1
i |2 + Ck|Sn+1

i vn+1
i |2.

Therefore, ∑
i≥1

|Sn+1
i vn+1

i |2 ≤ 1
1− Ck

∑
i≥1

|Sni vn+1
i |2 ≤ (1 + C′k)

∑
i≥1

|Sni vn+1
i |2

and for all n ∈ N, we have

∑
i≥1

|Sn+1
i vn+1

i |2 ≤ (1 + Ck)
∑
i≥1

|Sni vni |2 + C
k

h

∑
i≥1

(|vni |3 + |vni |4) + C
k

h
(
∑
i≥1

|vni | |Rni |+
∑
i≥1

|Rni |2). (36)

Let introduce Nh = sup{n;
∑
i≥1 |Sni vni |2 ≤ h2} and Th = Nh k. For all n ≤ Nh, we have

|vni | ≤ |Sni vni | ≤ h∑
i≥1

|vni |3 ≤ h
∑
i≥1

|Sni vni |2∑
i≥1

|vni |4 ≤ h
∑
i≥1

|Sni vni |2

∑
i≥1

|vni | |Rni | ≤ h
∑
i≥1

|Sni vni |2 +
∑
i≥1

|Rni |2
h
·

But, we proved that |Rni | ≤ ChN+1 in the boundary layer and |Rni | ≤ ChN+2 outside.
Therefore, if u0 has a compact support, ∑

i≥1

|Rni |2 ≤ Ch2N+2.

From (36), we deduce that, for all n ∈ N,∑
i≥1

|Sn+1
i vn+1

i |2 ≤ (1 + Ck)
∑
i≥1

|Sni vni |2 + Ckh2N .

We can then apply a discrete Gronwall lemma. As v0
i = 0 for all i ∈ N, we finally get∑

i≥1

|Sni vni |2 ≤ C(1 + Ck)nnkh2N ≤ C(1 + Ck)
Th
k Thh

2N , ∀n ≤ Nh.

We deduce that, if uapp is computed until order N ≥ 2, Th ≥ T where T is the existence time for a regular
solution to the hyperbolic problem (1). It also proves in this case, that, on [0, T ],

‖uapp(., tn)− unum(., tn)‖L2 ≤ h.

4. The scalar case

Let us now prove Theorem 1.2. This theorem holds for every scheme satisfying the hypotheses of monotonicity
and consistency (11), without any smallness condition.
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The first step is to construct an approximate solution uapp of the form (19) for N ≥ 2: it is done in Section 2.
The second step is to make energy estimates on vni = unum(xi, tn)−uapp(xi, tn). The main ingredient is a trick
of Goodman [7] and Liu [11]: we integrate the equation in x and work on

∂tU + f(∂xU) = 0, (37)

where ∂xU = u, instead of working on (1). This change in the formulation makes a crucial change in the energy
L2 estimate (see [7]), by changing a sign.

At the discrete level, we introduce Uni = −
∑
j≥i u

n
j , and similarly V ni and Uapp,n

i . The scheme rewrites

h

k
(Un+1

i − Uni ) + F
(
Uni − Uni−1, U

n
i+1 − Uni

)
= 0.

Furthermore, the construction of uapp ensures

h

k
(Uapp,n+1

i − Uapp,n
i ) + F

(
Uapp,n
i − Uapp,n

i−1 , Uapp,n
i+1 − Uapp,n

i

)
= Rni

where Rni = O(hN+1) in the boundary and initial boundary layers and Rni = O(hN+2) outside. Therefore,

h

k
(V n+1
i − V ni ) + ∂1F

(
Uapp,n
i − Uapp,n

i−1 , Uapp,n
i+1 − Uapp,n

i

)
(V ni − V ni−1)

+ ∂2F
(
Uapp,n
i − Uapp,n

i−1 , Uapp,n
i+1 − Uapp,n

i

)
(V ni+1 − V ni ) = Tni +Rni (38)

where, using a Taylor formula,
|Tni | ≤ C(|V ni |2 + |V ni−1|2 + |V ni+1|2).

Using the monotonicity of the scheme we get

‖V n+1‖L∞ ≤ ‖V n‖L∞ + C
k

h
‖V n‖2L∞ + CkhN

with V (0) = 0 and the proof can be ended as in the previous section, using a discrete Gronwall type lemma.

5. Numerical counterexamples

Numerical examples of stable boundary layers can be found in [6] for the Godunov and Lax Friedrichs
schemes. In this section we will give counterexamples, that is examples of unstable boundary layers.

The first one is inspired by the unstable layer described in [8], but is not in conservative form. Let us consider
the following system

∂tu+ ∂xu− u∂xv + ∂x
u2

2
= 0, (39)

∂tv − ∂xv = 0, (40)

and let try to compute the solutions using a Lax Friedrichs type scheme, starting from a small u (of order 10−3

to fix the ideas) and v = µ ≥ 0. For small µ, Theorem 1.1 can be applied and v has a boundary layer type
behavior (with an exponentially decreasing boundary layer) and u remains small, of order 10−3. However if µ
is large enough, v has always a boundary layer type behavior, but u = 0 is unstable. Therefore u begins to
grow in the vicinity of 0. This comes from the term u∂xv since ∂xv is very large in the layer, and u∂xv acts as
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Figure 1. Nonconservative case: u and v at different times.

Figure 2. Conservative case: u and v at different times.

an important amplification term. The ∂xu term causes the instability to leave x = 0 and soon a shock appears,
of very high strength, which propagates in the interior. The shock simply comes from a nonlinear saturation
effect of the Hopf term ∂xu

2/2. Figure 1 shows the behavior of v and u at different times in the boundary layer
(initial data, during the growth in the boundary layer, formation of the shock, after a while the shock is inside
the domain).

Therefore if try to compute the obvious solution u = 0 and v = µ for µ large enough using a Lax Friedrichs
type scheme, we go into big troubles, since instead of u = 0 we get a big shock which enters the domain!

The second example is conservative. Let us consider the system

∂tu+ ∂xu− 20∂x
(
u(v − 1/2)

)
+ ∂x

u2

2
= 0, (41)

∂tv − ∂xv = 0, (42)
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with initial data v = 1 and u = µ. Then for large µ we get an instability similar to the previous one (see Fig. 2
for a zoom on the boundary layer).

Acknowledgements. The authors would like to thank Denis Serre for bringing this problem to their attention and for
interesting discussions.
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[14] M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987.

To access this journal online:
www.edpsciences.org


