Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 165-189.

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Classification : 34A30, 35G60, 35F30
Mots-clés : electro-magnetism, Maxwell equations, Vlasov equation, finite volumes
@article{M2AN_2001__35_1_165_0,
     author = {Bostan, Mihai},
     title = {Numerical study by a controllability method for the calculation of the time-periodic solutions of the {Maxwell} and {Vlasov-Maxwell} systems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {165--189},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {1},
     year = {2001},
     mrnumber = {1811986},
     zbl = {1041.78005},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_1_165_0/}
}
TY  - JOUR
AU  - Bostan, Mihai
TI  - Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2001
SP  - 165
EP  - 189
VL  - 35
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_2001__35_1_165_0/
LA  - en
ID  - M2AN_2001__35_1_165_0
ER  - 
%0 Journal Article
%A Bostan, Mihai
%T Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2001
%P 165-189
%V 35
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_2001__35_1_165_0/
%G en
%F M2AN_2001__35_1_165_0
Bostan, Mihai. Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 165-189. http://www.numdam.org/item/M2AN_2001__35_1_165_0/

[1] A. Arsenev, Global existence of a weak solution of Vlasov's system of equations. USSR Comp. Math. Math. Phys. 15 (1975) 131-143.

[2] K. Asano and S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. Pattern and waves. Qualitative analysis of nonlinear differential equations. Stud. Math. Appl. 18 (1986) 369-383. | Zbl

[3] N. Ben.Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system,. Math. Meth. Appl. Sci. 17 (1994) 451-476. | Zbl

[4] M. Bezard, Boundary value problems for the Vlasov-Maxwell system, in Semin. Équ. Deriv. Partielles, Ec. Polytech., Cent. Math., Palaiseau Semi 1992-1993, Exp. No. 4 (1993) 17. | Numdam | Zbl

[5] B. Bodin, Modélisation et simulation numérique du régime de Child-Langmuir. Thèse de l'École Polytechnique, Palaiseau (1995).

[6] M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. C. R. Acad. Sci. Paris, Sér. I 325 (1997) 1333-1336. | Zbl

[7] M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. Math. Mod. Meth. Appl. Sci. 10 (1998) 651-672. | Zbl

[8] M. Bostan and F. Poupaud, Periodic solutions of the 1D Vlasov-Maxwell system with boundary conditions. Math. Meth. Appl. Sci. 23 (2000) 1195-1221. | Zbl

[9] M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time periodic solutions; application to scattering. J. Comp. Phys. 147 (1998) 265-292. | Zbl

[10] J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph.D., Université de Nice Sophia-Antipolis (1995).

[11] J.P. Cioni, L. Fezoui and D. Issautier, High-order upwind schemes for solving time-domain Maxwell equation. La Recherche Aérospatiale No. 5 (1994) 319-328.

[12] P. Degond, Regularité de la solution des équations cinétiques en physiques de plasmas, in Semin. Équ. Dériv. Partielles 1985-1986, Exp. No. 18 (1986) 11. | Numdam | Zbl

[13] P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods Appl. Sci. 8 (1986) 533-558. | Zbl

[14] P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. Ec. Norm. Super. IV. Ser. 19 (1986) 519-542. | Numdam | Zbl

[15] R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell system. Comm. Pure Appl. Math. XVII (1989) 729-757. | Zbl

[16] C. Greengard and P.A. Raviart, A boundary value problem for the stationary Vlasov-Poisson system. Comm. Pure Appl. Math. XLIII (1990) 473-507. | Zbl

[17] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions. Comm. Math. Phys. 154 (1993) 245-263. | Zbl

[18] Y. Guo, Regularity for the Vlasov equation in a half space. Indiana Univ. Math. J. 43 (1994) 255-320. | Zbl

[19] P.L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991) 415-430. | Zbl

[20] R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI conference on numerical methods for the solution of Maxwell equations, Paris (1989).

[21] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data. J. Diff. Eq. 95 (1992) 281-303. | Zbl

[22] F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499-527. | Zbl