On considère le problème de l'écoulement d'un fluide visqueux plastique dans une conduite cylindrique. Afin d'approcher ce problème régi par une inéquation variationnelle, nous appliquons la méthode non conforme des éléments finis avec joints. En utilisant des techniques appropriées, on devient en mesure de prouver la convergence de la méthode avec un taux de convergence identique au cas conforme.
This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.
Mots-clés : viscoplastic fluid, Bingham model, variational inequality, mortar finite element method, a priori error estimates
@article{M2AN_2001__35_1_153_0, author = {Hild, Patrick}, title = {The {Mortar} finite element method for {Bingham} fluids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {153--164}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1811985}, zbl = {0990.76042}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_1_153_0/} }
TY - JOUR AU - Hild, Patrick TI - The Mortar finite element method for Bingham fluids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 153 EP - 164 VL - 35 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_1_153_0/ LA - en ID - M2AN_2001__35_1_153_0 ER -
Hild, Patrick. The Mortar finite element method for Bingham fluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 1, pp. 153-164. http://www.numdam.org/item/M2AN_2001__35_1_153_0/
[1] A fast solver for Navier-Stokes equations in the laminar regime using mortar finite elements and boundary element methods. SIAM J. Numer. Anal. 32 (1995) 985-1016. | Zbl
and ,[2] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[3] The mixed mortar finite element method for the incompressible Stokes problem: Convergence analysis. SIAM J. Numer. Anal. 37 (2000) 1085-1100. | Zbl
,[4] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl
,[5] Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9 (1999) 287-303. | Zbl
, and ,[6] Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21-39. | Zbl
, and ,[7] A Local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. | Zbl
and ,[8] A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | Zbl
, and ,[9] Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. | Zbl
and ,[10] Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to nonlinear functional analysis, E. Zarantonello Ed., Academic Press, New York (1971) 101-156. | MR | Zbl
,[11] The finite element method for elliptic problems, in Handbook of numerical analysis, Vol. II, Part 1, P.-G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991) 17-352. | Zbl
,[12] La méthode des éléments avec joints dans le cas du couplage de méthodes spectrales et méthodes d'éléments finis: résolution des équations de Navier-Stokes. Ph.D. thesis, University of Paris VI, France (1991).
,[13] Les inéquations en mécanique et en physique. Dunod, Paris (1972). | Zbl
and ,[14] Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974) 963-971. | Zbl
,[15] Lectures on numerical methods for non-linear variational problems. Springer, Berlin (1980). | Zbl
,[16] Problèmes de contact unilatéral et maillages éléments finis incompatibles. Ph.D. thesis, University of Toulouse III, France (1998).
,[17] Variational inequalities. Comm. Pure. Appl. Math. XX (1967) 493-519. | Zbl
and ,[18] Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM, J. Mech. Appl. Math. 29 (1965) 545-577. | Zbl
and ,[19] On stagnant flow regions of a viscous-plastic medium in pipes. PPM, J. Mech. Appl. Math. 30 (1966) 841-854. | Zbl
and ,[20] On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM, J. Mech Appl. Math. 31 (1967) 609-613. | Zbl
and ,