@article{M2AN_2000__34_6_1151_0, author = {Golse, Fran\c{c}ois and Wennberg, Bernt}, title = {On the distribution of free path lengths for the periodic {Lorentz} gas {II}}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1151--1163}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {6}, year = {2000}, mrnumber = {1812731}, zbl = {1006.82025}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_6_1151_0/} }
TY - JOUR AU - Golse, François AU - Wennberg, Bernt TI - On the distribution of free path lengths for the periodic Lorentz gas II JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1151 EP - 1163 VL - 34 IS - 6 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_6_1151_0/ LA - en ID - M2AN_2000__34_6_1151_0 ER -
%0 Journal Article %A Golse, François %A Wennberg, Bernt %T On the distribution of free path lengths for the periodic Lorentz gas II %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 1151-1163 %V 34 %N 6 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_6_1151_0/ %G en %F M2AN_2000__34_6_1151_0
Golse, François; Wennberg, Bernt. On the distribution of free path lengths for the periodic Lorentz gas II. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 6, pp. 1151-1163. http://www.numdam.org/item/M2AN_2000__34_6_1151_0/
[1] On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983) 477-501. | MR | Zbl
, and ,[2] On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. | MR | Zbl
, and ,[3] Markov Partitions of Dispersed Billiards. Comm. Math. Phys. 73 (1980) 247-280. | MR | Zbl
and ,[4] Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys. 78 (1981) 479-497. | MR | Zbl
and ,[5] Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105-152. | MR | Zbl
, and ,[6] Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. | MR | Zbl
, and ,[7] Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist Phys. 87 (1997) 943-950. | MR | Zbl
, and ,[8] Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).
,[9] Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 381-410. | EuDML | Numdam | MR | Zbl
,[10] The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60 (1978) 277-290. | MR | Zbl
,