Bipolar barotropic non-newtonian compressible fluids
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 923-934.
@article{M2AN_2000__34_5_923_0,
     author = {Matu\v{S}\r{u}-Ne\v{c}asov\'a, \v{S}\'arka and Medvidov\'a-Luk\'a\v{c}ov\'a, M\'aria},
     title = {Bipolar barotropic non-newtonian compressible fluids},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {923--934},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1837761},
     zbl = {0992.76010},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_923_0/}
}
TY  - JOUR
AU  - MatuŠů-Nečasová, Šárka
AU  - Medvidová-Lukáčová, Mária
TI  - Bipolar barotropic non-newtonian compressible fluids
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 923
EP  - 934
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_5_923_0/
LA  - en
ID  - M2AN_2000__34_5_923_0
ER  - 
%0 Journal Article
%A MatuŠů-Nečasová, Šárka
%A Medvidová-Lukáčová, Mária
%T Bipolar barotropic non-newtonian compressible fluids
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 923-934
%V 34
%N 5
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_2000__34_5_923_0/
%G en
%F M2AN_2000__34_5_923_0
MatuŠů-Nečasová, Šárka; Medvidová-Lukáčová, Mária. Bipolar barotropic non-newtonian compressible fluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 923-934. http://www.numdam.org/item/M2AN_2000__34_5_923_0/

[1] C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988). | Zbl

[2] C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791. | MR | Zbl

[3] H. Bellout, F. Bloom and J. Nečas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun Partial Differential Equations 19 (1994) 1763-1803. | MR | Zbl

[4] Beirão Da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions Comm. Math. Phys. 109 (1987) 229-248. | MR | Zbl

[5] D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade Collège de France Seminars, Pitman Res Notes Math. Ser. 109 (1984) 178-197. | MR | Zbl

[6] E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. | MR | Zbl

[7] E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999) | MR | Zbl

[8] G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103. | MR | Zbl

[9] G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. | MR | Zbl

[10] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990). | MR | Zbl

[11] J. Málek, J. Nečas, M. Rokyta and R. Růžička, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996). | Zbl

[12] A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I Siberian Math. J. 40 (1999) 351-362. | MR | Zbl

[13] A. E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555 | MR | Zbl

[14] Š Matušů-Nečasová and M. Medvid'Ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483. | EuDML | MR | Zbl

[15] Š. Matušů-Nečasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. | MR | Zbl

[16] Š. Matušů-Nečasová and M. Medvid'Ová-Lukáčová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192. | MR | Zbl

[17] J. Nečas and M. Šilhavý, Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266 | MR | Zbl

[18] J. Nečas, A. Novotný and M. Šilhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret Comp. Fluid Dynamics 4 (1992) 1-11. | Zbl

[19] J. Nečas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244. | MR | Zbl

[20] J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed, Pitman Res. Notes Math. Ser. 388 (1998) 86-100. | MR | Zbl

[21] J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods. Appl. Sci. 14 (1991) 93-119. | MR | Zbl

[22] J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541. | MR | Zbl

[23] K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993). | MR | Zbl

[24] M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987). | MR | Zbl

[25] R. Salvi and I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51. | MR | Zbl

[26] W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).

[27] M.H. Sy, Contributions à l'étude mathématique des problèmes issus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).

[28] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992). | MR | Zbl