Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 1051-1067.
@article{M2AN_2000__34_5_1051_0,
     author = {Ming, Pingbing and Shi, Zhong-Ci},
     title = {Dual combined finite element methods for non-newtonian flow {(II).} {Parameter-dependent} problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1051--1067},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1837767},
     zbl = {1072.76567},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_1051_0/}
}
TY  - JOUR
AU  - Ming, Pingbing
AU  - Shi, Zhong-Ci
TI  - Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 1051
EP  - 1067
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_5_1051_0/
LA  - en
ID  - M2AN_2000__34_5_1051_0
ER  - 
%0 Journal Article
%A Ming, Pingbing
%A Shi, Zhong-Ci
%T Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 1051-1067
%V 34
%N 5
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_2000__34_5_1051_0/
%G en
%F M2AN_2000__34_5_1051_0
Ming, Pingbing; Shi, Zhong-Ci. Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 1051-1067. http://www.numdam.org/item/M2AN_2000__34_5_1051_0/

[1] R.A. Adams, Sobolev Space. Academic Press, New York (1975). | MR | Zbl

[2] C. Amrouche and V. Girault, Propriétés fonctionnelles d'opérateurs. Application au problème de stokes en dimension qualconque. Publications du Laboratoire d'Analyse Numérique, No 90025, Université Piere et Marie Curie, Paris, France (1990).

[3] D.N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations, edited by C. Baiocchi and J.L. Lions Masson, Paris (1992) 287-292. | MR | Zbl

[4] J. Baranger, K. Najib and D. Sandri, Numerical analysis of a three-field model for a Quasi-Newtonian flow. Comput. Methods Appl. Mech. Engrg. 109 (1993) 281-292. | MR | Zbl

[5] J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a Non-Newtonian flow. Numer. Math. 61 (1994) 437-456. | MR | Zbl

[6] F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991) 581-590. | MR | Zbl

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Methods. Springer-Verlags, New York (1991). | MR

[8] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). | MR | Zbl

[9] M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulations of Non-Newtonian Flow. Elsevier, Amsterdam, Rheology Series 1 (1984). | MR | Zbl

[10] M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75. | Numdam | Zbl

[11] M. Fortin, Old and new finite elements for incompressible flows. Internat J. Numer. Methods Fluids 1 (1981) 347-364. | MR | Zbl

[12] M. Fortin, R. Guénette and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. | MR | Zbl

[13] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. | MR | Zbl

[14] V. Girault and R.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin-New York (1986). | MR | Zbl

[15] P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equation using the finite element technique. Comput. and Fluids 1 (1973) 73-100. | MR | Zbl

[16] A.F.D. Loula and J.W.C. Guerreiro, Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Engrg. 79 (1990) 89-109. | MR | Zbl

[17] J. Malek and S.J. Nečas, Weak and Measure-valued Solution to Evolutionary Partial Differential Equations. Chapman & Hall (1996). | Zbl

[18] Pingbing Ming and Zhong-Ci Shi, Dual combined finite element methods for Non-Newtonian flow (I) Nonlinear Stabilized Methods (1998 Preprint).

[19] Pingbing Ming and Zhong-Ci Shi, A technique for the analysis of B-B inequality for non-Newtonian flow (1998 Preprint). | MR

[20] D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Math. Anal. Numér. 27 (1993) 817-841. | Numdam | MR | Zbl

[21] D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscoélastiques suit la Loi Puissance ou le modèle de Carreau. RAIRO-Modèl. Math. Anal. Numér. 27 (1993) 131-155. | Numdam | MR | Zbl

[22] D. Sandri, A posteriori estimators for mixed finite element approximation of a fluid obeying the power law. Comput. Meths Appl. Mech. Engrg. 166 (1998) 329-340. | MR | Zbl

[23] C. Schwab and M. Suri, Mixed h - p finite element methods for Stokes and non-Newtonian Flow. Research report No 97-19, Seminar für Angewandte Mathematik, ETH Zürich (1997). | Zbl

[24] B. Szabó and I. Babuška, Finite Element Analysis. John & Sons, Inc. (1991). | MR | Zbl

[25] Tianxiao Zhou, Stabilized finite element methods for a model parameter-dependent problem, in Proc of the Second Conference on Numerical Methods for P.D.E., edited by Longan Ying and Benyu Guo World Scientific, Singapore (1991) 192-194. | MR