Integral equations via saddle point problem for 2D electromagnetic problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 1023-1049.
@article{M2AN_2000__34_5_1023_0,
     author = {Bartoli, Nathalie and Collino, Francis},
     title = {Integral equations via saddle point problem for {2D} electromagnetic problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1023--1049},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1837766},
     zbl = {0964.78005},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_1023_0/}
}
TY  - JOUR
AU  - Bartoli, Nathalie
AU  - Collino, Francis
TI  - Integral equations via saddle point problem for 2D electromagnetic problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 1023
EP  - 1049
VL  - 34
IS  - 5
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_5_1023_0/
LA  - en
ID  - M2AN_2000__34_5_1023_0
ER  - 
%0 Journal Article
%A Bartoli, Nathalie
%A Collino, Francis
%T Integral equations via saddle point problem for 2D electromagnetic problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 1023-1049
%V 34
%N 5
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_2000__34_5_1023_0/
%G en
%F M2AN_2000__34_5_1023_0
Bartoli, Nathalie; Collino, Francis. Integral equations via saddle point problem for 2D electromagnetic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 5, pp. 1023-1049. http://www.numdam.org/item/M2AN_2000__34_5_1023_0/

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New-York (1972).

[2] N. Bartoli, Higher Order Effective Boundary Conditions for Perfectly Conducting Scatterers Coated by a thin Dielectric Layer. PhD thesis, INSA, Toulouse (to appear).

[3] N. Bartoli and A. Bendali, Higher order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer and their boundary element solution (to be submitted).

[4] A. Bendali, Boundary element solution of scattering problems relative to a gêneralized impedance boundary condition, in Partial differential equations, Theory and numerical solution, W. Jâger, J. Necas, O. John, K. Najzar and J, Stara, Eds. Chapman & Hall/CRC, 406 (1999) 10-24. | MR | Zbl

[5] A. Bendali and L. Vernhet, Résolution par éléments finis de frontière d'un problème de diffraction d'onde comportant une condition aux limites d'impédance généralisée. C. R. Acad. Sci. Paris, 321 (1995) 791-797. | MR | Zbl

[6] F. Brezzi and M. Fortin, in Mixed and Hybrid Finite Element Method, volume 15, Springer-Verlag (1991). | MR | Zbl

[7] D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetrie inconsistent linear Systems, in Proceedings of the Cornélius Lanczos International Centenary Conference, J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds. SIAM, Philadelphia (1994) 267-272. | MR

[8] G. Chen and J. Zhou, in Boundary element Methods. Academic Press, London (1992). | MR | Zbl

[9] F. Collino and B. Després, Integral equations via saddle point problems for time-harmonie Maxwell's equations. SIAM J. Appl. Math, (submitted). | Zbl

[10] D. Colton and R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory, 93, Springer-Verlag (1992). | MR | Zbl

[11] B. Després, Quadractic functional and integral equations for harmonie wave problems in exterior domains. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 679-732. | Numdam | MR | Zbl

[12] V. Frayssé, L. Giraud and S. Gratton, A set of GMRES routines for real and complex arithmetics. Technical report, Cerfacs TR/PA/97/49, Toulouse, France (1997).

[13] V. Girault and P.A. Raviart, in Finite Element methods for Navier-Stohes Equations, Theory and Algorithms, 5, Springer-Verlag (1986). | MR | Zbl

[14] G.H. Golub and C.F. Van Loan, in Matrix Commutations, 3rd edn., Chap. 9-10, The Johns Hopkins University Press, Baltimore (1996). | Zbl

[15] B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal., 164 (1999) 340-355. | MR | Zbl

[16] Y. Saad, in Iterative methods for sparse linear Systems. PWS publishing (1995). | Zbl