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RIGOROUS DERIVATION OF KORTEWEG-DE VRIES-TYPE SYSTEMS
FROM A GENERAL CLASS OF NONLINEAR HYPERBOLIC SYSTEMS

WALID BEN YOUSSEF! AND THIERRY COLIN!

Abstract. In this paper, we study the long wave approximation for quasilinear symmetric hyperbolic
systems. Using the technics developed by Joly-Métivier-Rauch for nonlinear geometrical optics, we
prove that under suitable assumptions the long wave limit is described by KdV-type systems. The
error estimate if the system is coupled appears to be better. We apply formally our technics to Euler
equations with free surface and Euler-Poisson systems. This leads to new systems of KdV-type.

Résumé. Dans cet article, nous étudions ’approximation de type ondes longues pour des systémes
hyperboliques quasi-linéaires symétriques. En utilisant des techniques développées par Joly-Métivier-
Rauch pour l'optique géométrique non linéaire, nous montrons (sous des hypotheses convenables) que
la limite onde longue est décrite par des systémes de type KdV. L’estimation d’erreur est d’autant
meilleure que P'on conserve les couplages dans ces systemes. Nous appliquons formellement ensuite
notre technique aux équations d’Euler avec surface libre et au systéme d’Euler-Poisson. Cela conduit
a de nouveaux systemes de type KdV.
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1. INTRODUCTION

1.1. Setting up the problem

This paper is mainly concerned with the exact derivation of Korteweg-de Vries type systems in one di-
mensional space, starting from generic quasilinear and symmetric hyperbolic systems. The Korteweg-de Vries
systems are considered as asymptotical equations as the amplitude of the wave is considered small whereas
the wavelength is large. The KdV equations occur in several physical situations such as plasma physics [23],
meteorology and more importantly in the shallow water-waves context, which is the historical background in
which Korteweg and de Vries obtained their result in 1895 [19].

As we said above, we present a systematic study of long wave approximation. More precisely, one considers:

FEu¢

Opu + A(Or)u + = B(u®)0zu’. (1.1)

Keywords and phrases. Hyperbolic systems, systems of KdV-type, Euler-Poisson, water-waves, asymptotic expansion, long-wave
approximation.

1 Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 et CNRS UMR 5466, 351 Cours de la Libération, 33405
Talence Cedex, France. e-mail: benyou@math.u-bordeaux.fr; colin@math.u-bordeaux.fr

© EDP Sciences, SMAI 2000



874 W. BEN YOUSSEF AND T. COLIN

The function u¢(z,t) is a RV-valued function, where z lies in R and ¢ is the time variable. The nonlinearity
is taken to be as simple as possible in the quasi-linear context. Vu € RY, B(u) is a symmetric matrix and
u — B(u) is linear so that the system has a quadratic nonlinearity. We assume that the N x N matrix A4 is
symmetric and real and that E is a N x N skew-symmetric matrix. To finish, this description, let us suppose
that E is non invertible in order to derive non trivial approximate solution.

Our aim is to derive from the hyperbolic equation (1.1) KdV systems. In order to do so, we keep in mind that
we need our approximate solutions to approach small amplitude solutions with large wavelength and be governed
by a system where nonlinear and dispersive effects exist at the same long time scale. There are two types of
KdV systems: the coupled systems and the uncoupled ones which are nothing else but a pair of independent
KdV equations each one of which describing a propagation in opposite directions. One of the motivation of
this study is to establish a distinction between these two models as we prove that they do not approximate the
exact solution of our problem (1.1) at the same level of accuracy with respect to the small parameter e.

Note that the problem of the rigorous justification of the KdV equation from the Euler equations with free
surface has been solved by Craig in [11]. Recently Schneider and Wayne [21] have extended this result to the
case where two directions of propagation are present: they obtain a set of two uncoupled KdV equations. Here
we study this problem, in a general framework, namely starting from system (1.1). And we derive systems of
two uncoupled KdV equations as well as coupled systems of KdV type and we compare both approximations.
Our results do not apply directly to the water-wave problem nor to the Euler-Poisson problem (both presented
in the last section) since these systems can not be written under the simple form (1.1). We postpone this study
for a latter work.

Notations

Within the course of this paper, the norm L? in space will be denoted as ||.||2, whereas the H® norm of a
function u will be denoted as ||uls = ||(1 + £2)3/24]|,.

1.2. Formulating the ansatz

Our aim is to study the behavior of solutions for the system (1.1) for time scales where the nonlinearity and
dispersion compete at the same order with respect to the small parameter € in the leading order term of our
approximate solution.

Following the work of [12,14,15,20], in the context of geometrical optics, one ought to set our ansatz a priori
as follows,

U (z,t) = ePu(x,t, €t)

where €P is the size of the solutions and ¢; = €9t the long time variable at which our above intentions must meet
their requirements. Note that we have here only two scales compared to the three scales of classical geometrical
optics where one has to take into account the oscillatory nature of light by adding a scale for high frequencies
and oscillatory modes, which does not fit our physical context here. From the degree of the nonlinearity in the
set up of the problem and the presence of the parameter € in the dispersive term of (1.1), (p,q) must satisfy
P+ g = 2p = p = q to have the nonlinear contribution occurring at the long time scale ¢; and g must be equal
to 2 for the third order dispersive term to be present at the same time scale, considering the nature of the
nonlinear term.

Therefore, we start off with an ansatz, with ¢t and ¢; = €2t, namely the short and long time variable, that
reads,

3
U(z,t) =y T2, (x,t,€%). (1.2)
1=0

With this model, the nonlinear contribution occurs in large time scales of order O(;lz—) along with the dispersive
effects as it was our aim in the construction of (1.2).
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Before going any further, our ansatz can be described as follows: ug is the leading order term whereas u1, us
and ug are supposed to be correctors, which means that they remain smaller than ug for all times. Besides our
intention is to study the behavior of the leading order term for large time scales of order O(Z) which implies
that the overall expansion (1.2) must be valid for such times. Hence, one must control, somehow, the growth
in time of the corrector terms. Thus, to make sure that these terms are indeed correctors on time intervals of
the form [0; O(%)], we assume that they satisfy a priori an analog of a sub-linear growth condition introduced
in [14,20], that reads for any function a sufficiently smooth in our case as:

Sub-squareroot growth condition

The function a(z,t,1 ) satisfies a sub-squareroot growth condition if only if

i 1
tivngo Vi
Remark 1.1. In fact we will show in the course of this paper that the correctors are even better controlled
since they are most of the time L2-bounded in time.

02, p0(z,t,t1)|]2=0 forall oeN°. (1.3)

We now plug in (1.1) the ansatz (1.2), assuming that the u; are smooth enough and we get
10
€ € 1 € € j
QU + A(Da)U + —BU — BU)0:U* = > e, (1.4)
j=1

where the r; are given by

r1 = Fug

r9 = Qyug + A(Oz)uo + Euy

r3 = Ogur + A(Oz)u1 + Eug

T4 = 8;51 (2% + 8{1142 + A(@x)uz + EUg — B(uo)azuo

r5 = O u1 + Orug + A(@I)ug — B(’u,l)azuO — B(’u,o)az’u,l

Te = (9t1'LL2 - B(UO)BIUZ — B(’U,z)az’u,o — B(ul)Bxul

r7 = 8t1u3 - B(u;;)&cuo - B(uo)c')zug - B(ul)am'lm — B(uz)ﬁxul
rg = —B(u3)0zu1 — B(uy)0zu3 — B(ug)0,us

T9 = —B(u;;)az’LLg - B(UQ)@IU,?,

r10 = —B(u3)0zus.

Our strategy to construct an approximate solution of (1.1) up to to the order 4 is to solve simultaneously the
four equations r; = 0 for j = 1,2, 3,4. These equations will be referred to as the profile equations and constitute
a set of necessary conditions for /¢ to be an approximate solution. They read

r1=0 = FEug=0 (1.5)
ro=0 = O+ A(Oz)ug+ Eu; =0 (1.6)
rg =0 = Oy + A(Oz)u1+ Euy =0 (1.7)
ry =0 = Oug+ Owug+ A(0z)uz + Euz = B(ug)0zuo- (1.8)

The paper is organized as follows: in Section 2, we derive necessary conditions on the unknowns from equa-
tions (1.5)—(1.8) and establish the equations satisfied by the profiles ug,u1,us and uz. We show that ug =
Uup1 + ug2, where each function upi, uge has to solve a KdV type equation.

In Section 3, we prove that the set of equations obtained in the second section can be solved and that the
function e3u; + €*uy + €3us is a corrector with respect to the first term of the expansion (1.2) and finally we
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prove in Theorem 3.1 that there exists a solution u¢ of (1.1) such that
lu® — uo(z, t, ezt)‘,fo([O’_Tf;;Hs) =o(e®) as e—0.

In Section 4, we show in Theorem 4.1 that, if one modifies slightly the ansatz, on can find two functions (ug1, uo2)
satisfying a system of KdV type such that

1w — €*uol| oo (g0, ;o) = O(€°) 85 €= 0.

The error estimate is therefore better if one keeps some coupling between the two components of ug.
Finally in Section 5, we apply the second section to Euler-Poisson and Euler with free surface problems and
derive new asymptotical models.

2. EQUATIONS FOR THE PROFILES
2.1. Algebraic solvability conditions

Following the analysis used in [14,15,20], we introduce some formal operators in order to modify and simplify
our set of profile equations and find a simplified set of equations satisfied by wg, u,us and us.

Definition 2.1. For (1,£) € R x R, let us denote by L(7,¢) and L1(7,&) the following maps
E
L(1,&) =71 + A + - as well as  Ly(7,&) =71 + A¢

and we denote by II(7,£) the orthogonal projector on the Kernel of L(7,£). We also define Q(7,&) the partial
inverse of L(7,£) such that

Q(Ta f)L(Ta g) = L(T7 E)Q(Ta 5) =I- H(Ta 6)
and

Q(Ta {)H(T, §) = H(Ta £)Q(’7’, 5) =0.

Let us point out that along the course of this paper L(0,0) will play an important role and will be denoted as
L along with TI(0,0) as IIy. Again I is nothing else but the projection on the Kernel of %E = Lo which is
symmetric.

Following [16], we first define the characteristic variety of the operator L, such as
E
CharL = {,6: (7,€) ERXR/det(TI+A§+7) 20} : (2.1)

Since the operator L is symmetric, we know that the polynomial equation in 7 4.e. detL(7,&) = 0 has only real
roots for all . CharL can then be parametrized by a finite number of functions 7;(§). Thereafter, following [20],
Bo = (70,&) € CharlL is called singular if it coincides with the intersection of different functions 7,(§). Bo is
called regular otherwise.

The main assumption is the following one:

Assumption 2.1. (0,0) is an isolated singular point of CharL of multiplicity 2. There ezists a regular function
A(&) defined on a neighborhood of 0 such that A(0) = N'(0) = 0 and N(0) # 0 with (A\(£),€§) € CharL and
(=A(£),&) € CharL.

From Assumption 2.1, we denote by II; (§) and II2(¢) the two projectors

L (€) = TI(A(€), €)
{ () = I(-A@)e) T E#0
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FIGURE 1. The characteristic variety around 0.

These two projectors are nonzero since A and —\ are eigenvalues of L. We denote also by II(£) the projector
TI(&) = I1; (&) + IIx(€) and one has that IIp = II(0) and II; = IT'(0).

Remark 2.1. Since all the operators herein defined are analytical with respect to ¢ around any point of the
characteristic variety, these operators can be extended to 0 [17].

We intend now to use all these operators in order to solve the equations of the profiles (1.5)—(1.8), that are
of the type L(7,&)a = b for any a, b in RY. For that matter, we state the following straightforward lemma, that
is easily deduced from the symmetry of the operators.

Lemma 2.1. For any a, b € RV
L(,8)a=b&e(r,)b=0 and a=TI(7,£)a+ Q(,&)b.

2.2. Consequences for the profile equations

One turns now to the resolution of the set of equations (1.5)-(1.8).
e The first equation (1.5): Eug = 0, from Lemma 2.1 reads as

Ho'uo = Ug- (22)

This equation is non trivial since we assumed that Lo is non invertible.
e The second equation (1.6): dug + A(9z)uo + Fu; = 0 reads as

Louy = 1L1(0%, Oz )uo
which is equivalent from Lemma 2.1 to the following necessary solvability conditions
0 = illg L1 (8¢, Oz )uo = illg L1 (84, 9z )llgug  thanks to (2.2)
(I - Tlo)us = iQoLy (8s, u)uo = iQoL1 (s, 85)lguo  thanks to (2.2). &3
e The third equation (1.7): Gru1 + A(9z)u1 + Eug = 0 reads as

Lo’u,g = 7;L1(8t, Bz)ul



878 W. BEN YOUSSEF AND T. COLIN

which is equivalent, using Lemma 2.1 again, to

'Z:H()Ll (8t, (9:,;)’(,61 =0
(2.4)
(I —To)ug = iQo L1 (0, Oz )us -

We decompose in the first equation u; = Igu; + (I — Hp)u; and use (2.3) to obtain the following equivalent
solvability condition,

IIo L1 (0%, 0z)loguy = —illgL1 (0%, 02 )QoL1 (0, 0x)oug
(2.5)
(I — Ho)uz = iQoLl(Bt,BI)ul.

e Let us turn now to the fourth profile equation (1.8), where the nonlinearity and the long time evolution
appear: O, ug + Opug + A(Oz)us + Fusz = B(ug)Ozuo, that reads

Loug = 10y, up + L1 (8¢, Oz )ua — 1B(ug)0zuo
which is again equivalent to, thanks to Lemma 2.1

8t1 IMoug + gLy (8t, (93;)’(1,2 = HoB(UO)axUO
(2.6)
(I — Ho)Ug = z’&tl QoUO + iQoL] (3t, 81)112 — iQoB(Uo)@xuO.

Decomposing us with the projector Iy and using (2.5), the first equation in the above system becomes,
O, oug + Mo L1 (8%, Ox)Mousg + 109 L1 (0s, 8% )QoL1(0:, Oz )u1 = Mg B(ug)dzug
which again gives using (2.3) and writing u; = ouy + (I — Hp)u,, the following equivalent system to (1.8)
O, Moup + Mg L1 (0%, Oz ) Mloug + 1110 L1 (8%, 05)QoL1(0%, Ox)ou
—IoL1 (0%, 02)QoL1 (0, 02)Qo L1 (8¢, 0x)ouo = Mo B(ug)dzuo (2.7)

(I — Ho)’wg, = iatl QQUQ +1QoL4 (6}, 8x)u2 — iQoB(uo)axuo.

The equations obtained (2.2)—(2.7) constitute our set of solvability conditions on the profiles ug, w3, u2
and us.

The last equation (2.7) is at this stage, the equation in ug (e.g. the principal term in the expansion) that
contains nonlinear terms and dispersive third order terms in the long time evolution of uo and our ansatz was
specifically constructed for this reason. In order to use the properties of our problem (e.g. the particular form
of Char L), one needs to project this equation “on both branches of the characteristic variety”, to be able to
derive as claimed, KdV type systems either coupled or uncoupled with two components moving in two opposite
directions, defined by each branch in Figure 2.1. We begin by describing the differential operators arising
in (2.7).

The operator Mo L1 (0%, 0, )1

To begin with, it is essential to understand the operator II(7, £) L1 (9, 0;)IL(, &) both in 0 (e.g. (7,&) = (0,0)
and T1(0,0) = Ilp) as well as on the branches of Char L on regular points. Indeed, when (7, ) is not a singularity
of the characteristic variety, II(7, &) L1 (8, 05)II(7, &) happen to be a simple scalar operator. This result is well
known and proved in [14,15,20]. We give the proof here for the convenience of the reader and also because this
proof leads to the result at £ = 0.
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Lemma 2.2. If Assumption 2.1 is satisfied, for all £ in a neighborhood of 0 and & # 0, we have
M1 (§)L1(0r, 92)T1 (§) = (8 — N'(€)02) T (€)
{ M2 (§) L1 (0, 0=)Ma(£) = (: + X' (§)0:)Ma(§)

and if we set, for any £ € R,I1(§) = I1; (&) + [12(&), one has that

(2.8)

TI(€)L1(8¢, 02)IL(€) =0eTI(E) — X' (£)0z (M1 (§) — T2(€)) + 2A(€) (I (§)T5(8) — T2 (&) (£)] - (2.9)
Proof of Lemma 2.2. We recall that by definition one has

(@) + A¢ + )T (€) =0 for € £0.

We differentiate this equation with respect to £ and obtain,

E
(N(€) + AL (€) + (M) + A6 + )1 (€) = 0. (2.10)
Applying I1;(€) on the left side gives,

IL (N (€) + AL (§) =0

which yields the first relation in (2.8) and the second relation is obtained likewise with IIs,
To derive the last relation (2.9), we develop the operator II(£)AII(£):

TI(§) ATI(E) = 11y (§) AIIL (§) + I12(§) ATl (€) + 11 (§) A2 (€) + T2(§) ATl ().

In order to evaluate the crossed products, we apply the projector II2(€) on (2.10),

Mo (€)(V(€) + AL () + T () (\(E) + A€ + )T (€) = 0.

Then,

T2 (§)AIL (€) + 2A(§)M2(§)IT1(€) = 0
and likewise, we have that

I11 (§) ATz (€) — 2M(EIL1 (§)I5(€) = 0.

Finally, we gather all the previous relations in the above development and obtain as claimed (2.9), which finishes
the proof. 0

Corollary 2.1. At the singular point (0,0) of Char L, one has that, under Assumption 2.1

TIo L1 (8, 35)Tlp = 8411y — N (0)8, (11 (0) — I(0)) . (2.11)

Proof. The proof of this corollary is straightforward from the previous lemma since it is simply the value of
the order 1 operator (2.9) extended to & = 0, using the fact that the projectors II; and II; are analytic on a
neighborhood of 0. ]

We therefore obtain from (2.3) and the previous Corollary 2.1, the following fundamental transport proposi-
tion for each component of ug.
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Proposition 2.1. One has

(8¢ — X' (0)9)I1; (0)up =0
(2.12)
(0 + X(O)ax)ng (0)up = 0.
The operator gL, (0:, 0:)QoL1 (0, 0x)1lo
At a regular point of the characteristic variety, one has that, as it is proved in [14],
H(A(£), §)AQ(A(E), ) ATI(A(E), ) = N"(E)TI(A(E), &)
Here, since (0, 0) is not regular and A”(0) = 0, one has:
Proposition 2.2. The matriz Ilg AQoAlly is given by
o AQo Allg = 2X'(0) (112(0)I1; (0) + I (0)IL(0)) . (2.13)
We deduce from this proposition the following corollary: -
Corollary 2.2.
11, (0) L1 (8%, 02)Qo L1 (8, 8,)I11(0) =0
(2.14)
T15(0) L1 (0%, 02)Qo L1(9:, 82 )15(0) = 0.

Proof of Proposition 2.2. Let us introduce the ratio ¢(&):

_ I(QATI(E) ~ T ATT,
¢

The idea is to compute this ratio in two different manners as £ — 0 to derive the desired relation (2.13). One
has, using Lemma 2.2, that

M (AL () | Ta(@Am(E) N
£ G ¢

which can be written as

w(€) =~ <’VL);A—,@> I (€) — X' (0) <H_1(§)_°§‘Hﬂ>+,\/(o) (H2(€) -5- Hz(O))

+2 (M 2O0) m g -2 (X2 mgm g + (XD e

The operators II; (€) and II3(§) being analytical, they are, along with their derivative bounded around 0 and
since we assumed (Assumption 2.1) that A(0) = X’(0) = 0, we let £ — 0 and obtain

©(£)

X(E)
¢

1T, (s)+i'§°—)H1(0> -

X'(0)

w(é) = ¢

I (§) +

II5(0)

Jim (€)= X'(0)(IT1 (0) +IT5(0)) + 2X'(0) (11 (0)IT3(0) — T2 (0)IT; (0)] - (2.15)

We go back to ¢(£) and compute its limit in a different way. One can write

o(e) = (FETT) An(e) + moa (=T



DERIVATION OF KDV-TYPE SYSTEMS 881

which gives gin(l] (&) = IIH Allp + II  AIl;. To evaluate the terms in the right-hand side, we differentiate the
following quantity with respect to £, where I1(£) is defined as in Lemma 2.2,

(A©) + At + ?)(—A(g) + AE + %H(@ =0

which gives

O%HAN4©+%+?mw+uw+&+§%¢w+Am@
HOO) + A6+ D)(AE) + AL+ )T (E) =0

At £ = 0, this reads as

E E
(N(0) + A);Ho +7(—X(0) + A)Il, — E?T1, = 0.
| ————

The first term is null since Il is the pzr(z) jector on Ker%. Thus,
EAIly — BT =0
and applying Qo twice on the right side of the relation above gives
QoAlly + (I — IIp)IT = 0. (2.16)
And likewise one obtains that
My AQo + G (I — ) = 0. (2.17)

It follows that ,
IIH ATl = —IIgAQoAllp — N (0)II5 (11, (0) — II2(0))

o ATy = —TIpAQo Al — N (0)(IT (0) — II5(0))IT,.
Equaling both expressions of %Lr)% p(§£), leads to
—2ITp AQo ATl — N (0)II5(I11(0) — II2(0)) — N'(0)(111(0) — II2(0))II;
= N'(0)(II1(0) + 115(0)) + 2X'(0) (I11 (0)IT5(0) — TI2(0)IT1(0)) .

This latter equation is simplified using straightforward algebraic relations on the projectors that we will con-
stantly refer to, namely

I ()T (§) + 113 (6T (§) = 113 (€)
Mo ()5 (€) + 15 (€)M (€) = TI5(€)
IT; (&)IT5(€) + 113 (6)T12(€) = 0

[ TI5(O)IT1(8) + M2 (I3 (§) = 0

and the proof is complete. O

(2.18)




882 W. BEN YOUSSEF AND T. COLIN

The corollary follows in a straightforward manner from Proposition 2.2 thanks to relations (2.18).
With all these tools in hand, we apply II; (0) on the first equation of (2.7), which gives, thanks to Lemma 2.2
and Proposition 2.2 and their corresponding corollaries

O, 111 (0)ug + 11 (0) L1 (0%, 02) 11 (0)ug + 1111 (0) L1 (¢, 02)QoL1 (0%, g )12 (0)uy
—TI1;(0) L1 (8%, 92)Qo L1 (8, 82 )Qo L1 (8t 9z)Mouo = o B(uo)euo.  (2.19)

Going back to the solvability conditions established earlier, it is possible from (2.5) to solve exactly u; in terms
of ug. Indeed, applying successively II;(0) and II5(0) on (2.5), one recalls thanks to Lemma 2.2 that

(6t — )\'(O)BI)Hl (O)u1 = —iH1 (O)Ll (8t, 855)@()[/1 (at, ag;)IIQUQ

= —ill1(0)L1 (0, 0)QoL1 (0, 02)112(0)uo
thanks to Corollary 2.2

and likewise
(0 + N (0)0:)2(0)us = —iT12(0) L1 (0%, 82)Qo L1 (8, 9z)TI; (0)uo.
Thanks to Proposition 2.2, these two latter equations can be solved and one obtains:
3

II, (0)u1 = mnl (O)AQoAHQ(O)az’U,Q + IT; (0)’01 (220)

where v is an unknown function such that
(Bt - A'(O)@I)Hl (O)’Ul =0.

And likewise for the second component

HQ(O)’U,l = HQ(O)AQQAHl(O)aw’uO + Hz(O)’Ul (2.21)

.
2X(0)
with (6t + X(O)Bx)l'[g (O)Ul =0.
Plugging these values of IT; (0)u; and IIz(0)u; in (2.7) and applying the projector I1; (0) on the result yields
1
6t1H1 (O)UO + Hl (O)Ll (6,:, az)Hl (O)UQ + lHl (0)L1Q0L1H2 (O)U1+MH1 (0)AQOAH2 (O)AQoAnl (0)82’11,0
11, (0) AQo AQo A[IL; (0) + I12(0)]03ug — X (0)II; (0) AQZ AL, (0)83uo + N (0)II, (0) AQE ATI(0)83uqg
= I1; (0) B([I1; (0) + I2(0)]uo)0zMoug. (2.22)

We replaced L;1(0,0,) by 8 + A9, in the previous calculation. As we developed 9; + Ad, in some terms,
the derivative with respect to t reads simply as either X'(0)9, or —\ (0)9, depending on the component of ug
to which it is applied, thanks to the transport Proposition 2.12. We obtain likewise the second fundamental
solvability equation for 1I5(0)uo:

8¢1 HQ(O)UO + H2 (O)Ll ((9t, ax)Hz (O)’Uq + in (0)L1Q0L1 Hl (0)1}1 - 2—)%0)—1]2 (0)AQ0AH1 (O)AQQAHQ (0)(92’11,0
~T15(0) AQoAQo A[I1; (0) + IT5(0)]03ug — X' (0)TT2(0) AQ3 ATT; (0)83ug + N (0)T12(0) AQ2 ATT5(0)d3ug

= 115 (0) B([I1 (0) + IT2(0)]uo)dzIlouo.  (2.23)
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Transport operators

We introduce for convenience and clarity at this point some notations for the two transport operators that are
scalar, corresponding respectively to the transport along the tangent space of both branches of the characteristic
variety at 0:

Tl(at, Bz) - 3t - A'(O)@m
(2.24)
To (84, 85) = 8, + N (0)8,

and obviously one has, from Lemma 2.2, that
I1:(0) L1 (0, 0)11 (0) = T1(04, 62)I11 (0)
I15(0) L1 (8, 02)2(0) = T2(8¢, 85 )I12(0).

Comments on (2.22)-(2.23)

Let us make a few remarks on the previous equations (2.22) and (2.23). For large times of order O(Z%),
both the nonlinearity and the dispersion occur in the evolution equations for ug, which is separated in two
waves 1I; (0)uo and II3(0)ug evolving in two opposite directions. As they are written in (2.22) and (2.23), these
equations do not constitute exactly a system of KdV type, mainly because of the presence of the corrector
ug that we need to get rid of somehow. We denote also the presence in both equations of dispersive terms of
order 3 in both directions. Besides the nonlinearities in (2.22)—(2.23) are in both case coupled in the sense that
we come across combination of derivatives of quadratic polynomials of terms moving in two different direction.

In order to simplify these equations and derive the KdV systems as claimed, we introduce average operators
as in [20] to apply them on the two equations that govern the evolution of ug. The aim of this technique is to
derive supplementary necessary conditions that eliminate the corrector terms along with the dispersive terms
moving in the wrong direction. After this operation, the system (2.22)—(2.23) turns into as claimed, a pair of
two independent KdV equations for each component II; (0) and II3(0) moving in two different directions.

2.3. Average operators

We must keep in mind that these operators are constructed in order to eliminate ug from the equations (2.22)—
(2.23) governing the profile ug. We recall that us was supposed to respect some growth condition.

As in [20], an average operator is defined relatively to a transport operator. Hence for T3 and T, we define
two average operators G, and Gr,:

Definition 2.2. For A > 0 and w sufficiently smooth,

h
Chu(e,tr) = [ wle = X(O)s,t+5,7)ds
0

1 [k
Ghw(z,t,7) = Z / w(z + N (0)s,t +s,7)ds
0

and

Gr,w = lim G%

h—oo
(2.25)
Gr,w zhli_'n;o Gy,

when this limit exists.
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These operators were described and introduced in detail in [20]. We recall their properties and refer to [20] for
the corresponding proofs.

Proposition 2.3 (Properties of the average operator). Let T' be a transport operator such that T(0;,0;) =
0 — Oy, then

(i) If w satisfies T(0, 0z)w = 0, then Grw ezists and Grw = w.
(ii) If w satisfies T' (O, Oz )w = O where T (04, 0;) = Oy — 'O and if ¢ # ¢’ then Grw exists and Grw = 0.
(iii) If w respects a sub-squareroot growth condition (1.3), then GrT(8:,0.)w is well defined and
GTT(@, 8I)U) =0.
(iv) Let W := ww’ where w and w’ are such that T (0, 0z)w = 0 and T' (8, 8z )w’ = 0. If T(0:, 0z) = T (84, 0z),
then GrW =W . In any other case GtW = 0.

The first two properties mean that when we apply Gr to the linear terms of the equations, it leaves only those
transported by T'(9;, 0z) and eliminates the rest. The third property allows us to get rid of the correctors in
the equations as it was the motivation in the construction of these operators. And the important last property
allows us to eliminate all the product terms where the factors are transported by different operators. And as
we said earlier, it is thanks to this last property that we will reduce dramatically the nonlinear terms and thus
uncouple the system (2.22)-(2.23) in order to derive a pair of independent KdV equations for the evolution of
each component of ug.

2.4. Consequence for the profile equations
Obtaining the uncoupled system.

As we are looking for solvability condition on the system (2.22)—(2.23), let us apply the operator G, on
(2.22) and G, on (2.23), which gives thanks to the properties of these operators

81,111 (0)uo + Grry (T1(8s, B ) +ﬁm (0) AQo ATT, (0) AQo AT (0)3uq

=0 property (iii)

—1I1; (0) AQo AQo AT, (0)d3up — N (0)I11(0) AQE ATT; (0) 82

—I1, (0) AQo AQo A G, (T12(0)33u0) +N' (0)IT; (0) AQE A Gz, (IT2(0)83up) (2.26)
S ————————’
=o property (ii) =oproperty (ii)

—Hl (O)AQ()A GT1 (Hz (0)82111) = GT1 (H] (O)B(Houo)axnouo).
N—— —

=oproperty (ii)

In the nonlinear terms, only the terms polarized in the direction of IT;(0) remain thanks to Property (iv),
and therefore one has that, Gr, (I, (0) B(Ilguo )0z oug) = I1;(0)B(I11(0)ug)0, 111 (0)up). Each component of
ug being either transported by T3 or T, some remain unchanged and other disappear thanks to Properties (i)
and (ii).
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We obtain similarly an analog equation governing IT5(0)ug. Our system (2.22)—(2.23), reduces to the following
system for ug

80, T () + (%(O)Hl(o)AQOAHQ(O)AQOAHl(O)—HI(O)AQOAQOAHI(O)

X (0)TT1 (0) AQRATL, (0) ) 8311 (0)uo= I (0) B(ITs (0)rto) e T (0)uo

90, Ta(0)uo + ( = 5-—T1>(0) AQo Al (0) AQo ATIz(0) (2.27)

23/ (0)

~115(0) AQo AQo ATI> (0) + N (0)TTy(0) AQRATT (0) ) 2T (O)ug

= Hz (O)B(Hz (O)UO)amnz (0)u0

This system (2.27) is indeed uncoupled and corresponds to a pair of independent KdV equations governing each
component of ug moving in opposite directions and us whose supposed to be a corrector verifies

T1 (815,61)1_[1 (0)U2 Hl (O)B(HO(UO))B Ho’u,o - Hl( ) (H (O)uo)azﬂluo

— (T11(0)AQo AQo ATl (0) + X' (0)II; (0) AQE ATI2(0)) 82w (2.28)
Tg(at, 6I)H2(O)U2 H2 (O)B(Ho(’U,O))a Ho'u,o - H2 (O)B(Hg (0)’!1,0)6 Hz’LLo ’

— (I12(0) AQo AQo AIL, (0) + X' (0)I12(0) AQ3 AIL (0)) d3us.

Remark 2.2. One can set v; = 0 (the initial condition as we solved (2.5)) with no loss of generality since
it appears in the equation (2.22) polarized such as it ends up in the equation describing the corrector term

u (4.3).
2.5. Main algebraic lemma

The system (2.27) will read as KdV type system in a more obvious way, thanks to the following algebraic
lemma, regarding the operators of order 3, namely the dispersive terms, that gives:

Lemma 2.3 (Main lemma). One has the following relations

) _ A (0)
6

mﬂl(O)AQoAﬂa(O)AQoAﬂl(O) — 111 (0) AQo AQo ATI1 (0)— ' (0)I11 (0) AQE ATy (0) = I, (0) (2.29)

and likewise,

)\//I (O)

7~ 115(0) AQo ATL (0) AQo ATI>(0) — T12(0) AQo AQo Al (0)+X' (0)IT3(0) AQF ATl (0) = — I15(0).

(2.30)

2»(0)

Proof of the main lemma. Let us start by proving the first relation. Use will be made in this proof of the
previous lemmas and in particular we start by a proposition concerning the behavior of the operators Q;(§)
and Q2(€) as € tends to 0. Note that these two operators are defined as expected as Q1(€) = Q(\(£),€) and
Q2(8) = Q(—A(£),€) and are meromorph with respect to the variable £ as a straightforward consequence of the
analycity of the projector operators. O
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Proposition 2.4. @, and Q2 admit the following expansion around O with respect to &,

Q1(8) = Qo + 7= 112(§) + O(A(E)) (2.31)

2>\(€)

Q2(8) = Qo — 57511 () + O(A(E))- (2.32)

2/\(5)

Proof of Proposition 2.4. From our original hypothesis laid out in the set up of the problem, one has that
A€ + % is symmetric and real for any £ in R. Therefore, there exists P(£) an orthogonal N x N matrix
such that

I
Ag+ 2 = P7E) . P(E) (23)

An(€)

where the first two eigenvalues are those of interest in this paper and the matrix P(£) is analytical with respect
to €. Thereafter, L(£) namely L(£X(£),£) reads as, on the same basis,

0
L(E) = ME) + AL + 2 =P () X5(6) +20) P

AN () + A(¢)

and consequently

1 1 1
O MO TNE W+ A(f)] P

Qi(€) = P~ (¢) Diag {o

and similarly one has that

L 1 1
20877 As(©) = AME)TT T AN(E) — A9

whereas Qo which is the partial inverse of 1 E reads in a very straightforward manner from (2.33) and Assump-
tion 2.1, as

Qu(6) = P(¢) Ding |- | @

Qo = P71(0) Xs(0) P(0).

1

An(0)
As we have expressed explicitly all the operators involved in Proposition 2.4, it is a straightforward task to
finish the proof. )

We denote by I, IT and III the three terms in the left-hand side of (2.29).
e From (2.13) in Lemma, 2.2, the first term I gives immediately, using the algebraical relations (2.18), that

= o ( 235y T () AQoATI> (0) AQo AT (0) = 2X'(0)IL1 ()12 (0)1L, (0). (2.34)
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e For the second term II, one needs to compute the value of the operators of order 2 and order 3 at a regular
point of the characteristic variety. For that matter, we state the following proposition:

Proposition 2.5. If (A(£),£) is a regular point of the characteristic variety Char L, which in our case means
that £ # 0 in a ball near 0, then,

Xm0 (2.35)
/// (6)

M (§)AQ1(§ALL(E) =

T (£) AQ1 (€) AQ: (€) ATLL (€) = — 25211, (8) — N ()T (§)IT'3 (€)1 (€) (2.36)

and likewise for the second branch of the characteristic relatively to the projector I(€).

Proof of Proposition 2.5. The first relation is not difficult to establish and its complete proof can be found
in [14]. Briefly, one differentiates the relation

I-TH(E) = QiOAE) + A+ ) (2:37)

and apply II;(£) on the right-hand side to obtain IT}(&)II(¢) = —Q1(£)AIl1 (&) and likewise II, (§)II} (&) =
—II, () AQ1(§). Then differentiating the first order relation, one gets

T, (§) AILy (§) = =X (111 (£),

which gives the first relation displayed in Proposition 2.5.
Let us turn now to the third order operator and prove the second relation in Proposition 2.5. We start by
differentiating the first relation which gives, at all regular point &,

" "
A—Hl + A H' =11 AQ, AT, + I1; AQ) ATL + 1T, AQ, ATT; .

We apply I1; (¢) both on the left and right side of the relation, which yields

AIII A/I

—2H1AQ1AQ1AH1 + HlAQ'lAHI = —Hl + — D) HIH’1H1 .

=0
In order to evaluate Q(¢), we differentiate the relation (2.37) and apply @1(§) in order to obtain:
Q4(8) = ~TL(Q1(8) + QUOTLE) — N (E)QA(E) — Qu(E)AQ(©)-
Thereafter, using the fact that Q1[; + @I} = 0, one has that
0; AQ) AL, =—T1; Al Q1 AIT; + IT, AQ 1T, ATT — NI AQZ AN, —T1; AQ AQ: Ally,
and using II7 (§)II(§) = —Q1(§) AL (§) and IL (§)IT1 (§) = —I11(£) AQ1(E), we obtain
I, AQ} ATl, = I, AIN2TI; + IL I3 ATL, — NTLIT2T, — 10, AQ; AQq AT
Now thanks to the algebraic relations (2.18) and Lemma 2.2, we get

I ATT2TL, = —NTL 7210,
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as well as
ILITS AL = —XNTLIT2TH,.
Gathering all the terms together gives the second relation of Proposition 2.5 and finishes the proof. D

We go back to the computation of II. Our strategy is to evaluate the third order operator IT; (§) AQ1 (§) AQ1(€)
AlT; () at 0 by using Proposition 2.4 and letting £ tend to 0. Hence one has that

10, (6) AQ1 (€) AQ1 () ATL (€) =T, (¢)A [Qo+ n2<s>+0(x>} [Qo+ M (€) + O(N)| AT (6).

1
2X(8) 20(§)
As we develop the quantity in the right-hand side, nine terms appear, most of which tend to 0 as £ tends to
0. Indeed, the five terms that contain O()\), in the development can be crossed out since everything else is
bounded and the singularity iﬁ as € tends to 0 is controlled by either IT; (£)AIl2(€) = 2A(€)II;1 (€)II5(€) or
T2 ()AL (&) = —2A (&)1 (&)IT} (€), in each of these terms.

Thus, after developing, we are left with the following four terms:

éi_rg%H1(€)AQ1(€)AQ1(E)AH1(€)=gi}g IT; (§) AQo AQo AIL (£) + 2/\(@ 11 (§) AQo ATl (§) AILL (§)

1 ~
(1 b

1

) T (€) ATI (€) ATI2 (€) ATL (€)

[T, (§) ATI (€) AQo ATT, (€) + ﬁzl(_g)

3] 4]

As £ tends to 0, thanks to Lemma 2.3 along with the projectors properties (2.18) and the two previous relations
for the crossed products II; (§) Al (€) and II5(€)AIL; (€), each of the four above limit reads as

lim (1] = 11 lim (2] = —2)'(0)T1: (0)1I'3(0)T11 (0);
lim (3] = —2X'(O)TL (O)II5(O)T(0) 5 Jim [4] = X' ()L, (0)TI5(0)1 (0).

Now that we have the limit of the third order operator, we identify it with the second relation of Proposition 2.5
at £ = 0 and obtain

20, v m )0 (0) = ~11 - 3 (0)1L (0)1T3(0) 1L 0)

which yields

)\NI (O)

I1 = 200 + N (0)ILL (0)I12 (0)II1 (0) — 3N (0)TT; (0)II2(0)I1, (0). (2.38)

e We are left now with III. As for II, we use Proposition 2.4 to compute the limit as £ tends to 0 of the
operator II; (§) AQ?(¢) ATL, (£).
We develop the latter operator as suggested by Proposition 2.4, which gives

1

hm I, (€)A [Qo + 422(¢)

e 1a(6) + 0 A)} A, —Jim [nl(a)AQoAm (6) + —- T, (¢) ATy (€) AL, (é)] .

A(



DERIVATION OF KDV-TYPE SYSTEMS 889

The other terms in the development cancel out as £ tends to 0 either because of the presence of O()\) or because
of the projectors II; (0) and II;(0) applied to Qo.

On the other hand, one has that IT; (§) AQZ(¢) AIL (€) = I, (€)IT'2(£)I1; (¢) and therefore identifying the two
limit as £ tends to 0 gives

IL, (0)T1'3 (0)T (0) = T3 (0) AQB AL (0) + ITa (0)I1'5 (0) 11 (0)
which gives
II1 = — X (0)I1; (0)IT"2(0)I1; (0) + N (0)II; (0)II'2(0)II; (0) (2.39)
and finally as we sum I + II + III, (2.29) holds. The proof of (2.30) is exactly the same. m]

Thanks to the previous lemmas, the uncoupled system derived earlier (2.27) read in a much simpler way, as
an obvious KdV type system:

8t1H1 (O)UO =+ 2\”/6&)-831'[1(0)1;0 =1I; (O)B(Hl (O)uo)aml'll (O)UQ
(2.40)
3t11_[2(0)u0 - )\—6(-0—)821_[2(0)“0 = HQ(O)B(H‘Z (O)uo)(’)zl'lz(O)uo

3. CONVERGENCE IN THE UNCOUPLED CASE

In the preceding section, we have obtained a set of necessary conditions on ug, u1,us and ug in order that
U* given by (1.2) is an approximate solution of (1.1). The aim of this section is to show that one can solve
simultaneously equations (2.12), (2.40) and (2.28) and that there exists a solution to (1.1) which is indeed
asymptotic to the approximate solution thus constructed. One of the key argument will be that the correctors
ug and ug given (2.28) and (2.7) satisfy the sub-squareroot condition (1.3).

In order to be able to state our theorem, one needs to prove the following proposition regarding the existence
for large times of order O(Z%) of the exact solution of (1.1).

Proposition 3.1. For any s > % and for any ui—g = €U,y such that u,, € H*(R), there exists T > 0 such
that there is a unique solution u of (1.1) lying in the space C([0, L], H*) nC*([0, ], H*™1).

Proof of Proposition 8.1. The proof relies mainly on the fact that B(u) is symmetric and follows the existence
proof for quasilinear symmetric systems [1]. The only non trivial thing here that needs to be proved is that the
H*-norm of u(t) remains bounded for large time scales of order O(eiz) Let us briefly sketch the proof: as we
multiply the equation (1.1) by 8%*u and integrate with respect to the space variable, one obtains that

%%/Iasulzdw:/E)quB(u)audx.
R R

As usual, we manage to estimate the right-hand side as follows

< cllul?

/ 0% uB(u)0udzx
R

and we conclude by applying Gronwall’s lemma, that gives

= T
lulls < 3 lus=olls < luimolls for t<c=-

cte? |[uanlls
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Therefore our H*-bound does not blow up for times of order O(Z) and the natural local existence theorem for
(1.1) as a hyperbolic system extends itself to the interval [0, %], which finishes the proof. a

Thanks to Proposition 3.1, let us introduce u¢, for any f lying in H?® with s strictly greater than %, solution of

(at + A(D) + g) ut = B(u)d,ut o

ué(z,0) = €2 f(z)
defined on [0, Z4] for 77 > 0.

62
Our result reads as follows.
Theorem 3.1. Let s > % and f € H? (o sufficiently large) such that Ilof = f. Under Assumption 2.1, there

exists T1 > 0 and a unique uc(z,t) in L>=([0, %],Hs) solution of (3.1) as well as To > 0 and uo1(X1,%1) and
ug2(X2,t1) solutions of

A/Il (O)
6

O, uo1 + 9%, uor = I11(0) B(uo1)0x, uo1

u01(X1,0) = I11(0) £ (X1)
and

A//I (0)
6

O, uo2 — 9%, uo2 = I12(0) B (uo2)0x, oz

(3.3)
up2(X2,0) = 2(0) f(X2)

both lying in L*°([0, Tz], H®).
Moreover there exists Ty > 0 (s.t. To < min(Th,T3)) such that

u_e(e%t—) — [uor(z + N (0)t, €%t) + uoz(z — X' (0)t, €°¢)] =o(1)

Le=(j0, 74 );H*)

as € tends to 0.

The strategy to prove this theorem relies on three points. We start by introducing
US(t, z) =€ [uo1(z + X' (0)t, €%t) + ug2(z — N (0)¢, €°t) | +€*ui(z, t) + *us(z, t) + Sug(a, t). (3.4)

Then we prove the following three points:

1. The equations for up1, upz as well as those determining u§, u§ and u§ are well posed and all these terms
exist for time scales of order O(%) and lie in L*°([0, £2]; H*).
2. In the expression of U¢(t, z), €3u§ + e*u§ + e5u§ is indeed a corrector of the principal term that is

le3us + e*us + eSugan([O%];Hs) = 0(é%).

3. We obtain an estimate of the residues r; for j > 5 and we finish the proof by performing a standard energy
estimate on %; — %—6
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3.1. Properties of the approximate solution

One first has to solve the following set of equations:

{ (8,1 - /\’(O)&c)um =0
(31; + Al(o)az)U()Q =0

and an uncoupled system of KdV equations for the long time evolution

A/// O

O, uo1 + ( )327101 = II; (0) B(uo1) 0z uo01
A"(0) .5

O, U2 — 5 Ozuo2 = I1;(0) B(ug2)0zuo2

with ugy = I11(0) f and uge = II2(0) f.

For each component we have a global existence theorem in L>°(R, H?(R)) (with ¢ > 0) for f in H®, since the
long time evolution is governed by a classical KAV whose Cauchy problem in H® is well known (see [18] for
example) and the short time evolution is compatible with the long time KdV. Note that if the initial condition
is polarized by the projectors I1; (0) and II5(0), the solution remains likewise.

As up is uniquely determined, it is an easy task to find the remaining terms of the expansion (1.2) from the
solvability conditions that are all satisfied in the uncoupled case. Indeed, one recalls from (2.20)—(2.21) that for
Ious, we have that

K]
Y0

i
2X'(0)
if we choose to set vy equal to 0. As for the remaining component of ug (e.g. (I — Ip)up), it is given by (2.3).

We turn now to u§, whose components on Il are given by (2.28). These equations for Iy (0)u§ and IT(0)u$
are very important in order to determine the growth of u§ with respect to time. The more terms we put at
the right-hand side of these equations, the more it affects the final result of convergence. These hyperbolic
equations for each component of Ilou$ can be solved and thus determine IIgu§. As for the remaining component
(I —Ip)u§, it is given by (2.5) as we already found u5.

We are left with u§ that we set as equal to (I —IIp)u§ which is given by (2.7) as we already know ug and u§.

Moreover since all the operators involved in the description of u§, u§ and u§ from uo are bounded, one
concludes that theses terms are not only determined from ug but lie also in L= (R, H?) as ug and T, can be
chosen as large as we want (recall that o is large enough). The existence of T is clear from Proposition 3.1.

H1 (O)Ui = HlAQOAHZE)qu

H2 (O)Ui = H2AQOAH1 Bzuo

3.2. Correctors

To construct our approximate solution, we have assumed as we have set up our ansatz that the term e3u§ +
etu$ + eSu§ was a corrector of the leading order term, which in other words means that we control the growth
in time of u§, u§ and u§.

Let us check each term separately. For ug, since ug is bounded in H? for ¢ sufficiently large, both Ilpu§ and
(I —TIp)u§ are bounded in H°~* from the previous relations that we used to determine u§.

Again u§ decomposes itself in two parts. The component (I —ITp)u$ is bounded in H°~? since u§ is bounded
in H°~! thanks to (2.5). For [Tu$, the general results of [20] give that u§ has a sublinear growth in time. This
is not enough in our case since this gives e*u§ = o(€?) on [0, 622] We give below more precise results.

Proposition 3.2. Let f(z,t) be a sufficiently smooth function such that
Tl(atyaz)f = 3959

where To(0:,0z)g = 0 and g € L®(R; L?) then f € L®°(R; L?).
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Proposition 3.3. Let u(z,t) be a sufficiently smooth function such that
T1(8:, 0z)u = gh
where g and h are such that Ty(8:, 8z )h = 0 and T2(8;, 0z)g = O with g, h € L®(R; L?) then u respects sub-square
root growth condition as defined in (1.3) that is

. 1
Jim ==l =0.

Proof of Proposition 8.2. Since g is transported by T5, one can write the relation in Proposition 3.2, as
T1(0k, 0z) f (z,t) = Ozg(z — N'(0)¢)
which leads to
(01, 90)f (x, ) = f ot o= ONEs(e) de.

R

Then,
i
Fle ) = > O8i5(6,0) + [ N ON9e N Ontigie) as
0

Therefore,
F(&,t) = e O8G(e, 0) + igG(g)e D [ o2V (05 gg

N R R , 1— ef21/\'(0)§t
= ¥ O5(¢,0) 4 ig(e)e 0% [—— '

2i)'(0)
It follows that
1fll2(2) < 2](gll2-

Remark 3.1. The crucial point in the previous proof is the presence of the 0, in the right-hand side.
Proof of Proposition 3.3. Since g and h are transported, the relation in Proposition 3.3 can be written as follows
(8 — XN(0)0z)u = g(z — X (0)t)h(z + X (0)t).
We perform the change of function u(z,t) = v(z + X (0)¢,t) and set X = z + X' (0)¢, the equation becomes
Av(X,t) = h(X)g(X — 2X'(0)t) (3.5)
and therefore

t
o(X1) = w0 (X) + (X) [ g(X — 2N (O))ds
0
Cauchy-Schwartz inequality gives
[o(X, 8)] < lwo| + ¢/2]R(X)]llg]l2
which leads to

lu®ls  Wolla | yafapgl 3.6)
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Introduce, as in [15], the dense subset .4 of L? given by
A={rer?/fece®-{oh}-
Then let u, be a sequence in A be such that u, tends to u in L? and such that for each n
(0 = XN(0)0z)un(z,t) = gn(z — N (0)t)hn(z + XN (0)t)
and where h,, and g,, belonging to A tend respectively to h and g in L2. u, is given by

1 — e2'i)\' ©)nt

—~ _ SN ()€t~ i\ (0)€t TN~
T ) = ¥ OT0() + X O [ Fln)a(e — ) G

dn.
Since the denominator is bounded away from 0 on the support of f, and g, it follows that

. 1
timy 2 = 0. (37)

Then, one has that
1 1 1
— < — —u|l2(t) + —=|lju ).
\/ZHUHz < \/Ellun ll2(2) \/zll nll2(t)

Applying the inequality (3.6) to u, — u that verifies

Ot(un —u) = (gn — g)frn+ (fn—fg

gives for n sufficiently large such that ||f, — f|l2 < € and ||gn — g|| < ¢, that

luoll2

1 1
%Ilunz Se+ 7£||un|lz(t) Aiv-a

and now taking the limit in ¢ as it tends to oo gives the desired result thanks to (3.7). O

Proposition 3.4. The solutions II; (0)us and I>(0)u$ to (2.28) satisfy a sub-square root growth condition (1.3)
that 1s 1

lim —t”Hl(O)quHs =0
and likewise for II2(0)us.

Proof. We first write equations (2.28) in a simplified way. Indeed, since we have that T3 (0;, 9, )1 up = 0 and
T2(8¢, 0z )lIaug = 0, the two components of ug read as I3 (0)ug(z + A (0)t) and Iz(0)ug(x — N (0)t) with the
variable ¢; taken as a parameter. Thereafter, we simply write the first equation above with the right-hand side
being the sum of two generic terms, such as

(8 — N(0)8:)u = 8. (z — N(0)t) + g(z — N (0))h(z + N (0))

where f, g and h are L2-bounded functions and v any function of = and t sufficiently smooth. We have
from Proposition 3.2 that the first term in the right-hand side gives in u a bounded contribution in time, and
from Proposition 3.3, that the second term implies that u respects a sub-squareroot growth in time. This
holds exactly the same for the second component and one has, as claimed, that IIou§ respects the growth
condition (1.3). m]

Finally for u§ we deduce the same growth control in time as for u§ from the solvability condition (2.7). These
two conditions give then that ||e*u§||2 = o(e?) and ||e®u§||2 = o(e?) and we can state the following proposition.
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3

Proposition 3.5. The corrector term €3u$ + €*u§ + €>u§ is indeed a corrector in (3.4) and one has that

lle*uf + e?us + 65“51]1,@([0,5,];115) = 0(&).

3.3. Estimate for the residue and end of the proof
Before proving the convergence result, we first estimate the residue. Since one has r; =0 for j =1 to j = 4,
the residue reads as the remaining terms:

Res(z,t,t1,€) = €715 + €876 + €'17 + ¥rg + ¥rg + 1%7¢.

Only the first two summands of this residue play a role. To estimate the H®-norm L? of this residue, we use
the fact that u{ is H®-bounded and that u§ and u§ are controlled in time as proved from Proposition 3.2 and
Proposition 3.3.

The first term for instance is estimated as follows, using the Sobolev embeddings where H® «— L and
H*™' — L for s > 3. And we have

[€rsll2 < Ve ( O3, usll2 +  bounded terms) '

: |
NG
‘We have then:

Proposition 3.6. The residue can be estimated as follows in the norm L*([0, 5]; L?):

”ReS”Lw([o,;Tf];LZ) = o(e?).
Remark 3.2. If u§ verifies only a sub-linear growth condition, we would have concluded using the same argu-
ments that ||Res||z = o(e3) which would not had been enough to establish our theorem.
As we have estimated the residue, we have that our approximate solution /¢ satisfies

EU®
€

OUS + A(9)US + — BU)3U = o(e*) (3.8)
where o(e*) is in L*([0, %]; H*) norm.
Let us turn to the final proof of our convergence result that can be compared to the stability results displayed
in [14,20]. We denote by u¢ the exact solution of (1.1) and U¢ both lying in C([0, %]; H*), for some T > 0.
We denote by 4 the difference

4 =U*—u* with 4(z,0)=0.
Thus the equation satisfied by u reads as

By + Adyii + % — B(u)dyu + BU)0,U = o(e?)

which can be written B
Byt + A, + 7“ + B(@)8,u + BU )iy = o).

Multiplying by %% and integrating with respect to the space variable gives

(-1t 4 / 16°4[2 dz + / 0% 4B (@)u, dz + / O GBU )it dz = o(c").
2dt Jg R R

A B



DERIVATION OF KDV-TYPE SYSTEMS 895

As in the proof of Proposition 3.1, if s is strictly greater than %, one can bound the two terms A and B,
such as ,
A < lee|ls llalls
B < Julslal:
which finally gives that
d, . . -
FollEls < CAuells + llulls) 1alls + o(e®)

and Gronwall’s lemma gives with ||@]|s(0) =0
T
lall < (ecezt —1)o(e?) for t< =

and it is thus straightforward to conclude the proof of Theorem 3.1.

3.4. Higher order terms

A natural question that arises at this point is to push further the formal expansion and check if a new term
in the expansion provides a better precision. In the previous expansion, we have set the ansatz to be U¢ as
described in (3.4). In the expression (3.4), uz was set as equal to its component (I — Ilp)us and we verified
that the corrector terms were indeed correcting the leading order term. Let us start off now with the following
ansatz that has one more term

US(t,z) = € [uor(z + X' (0)t, €°t) + uoz(z — X' (0)t, €°1)]
(3.9)
+e3uy (z,t, €2t) + tug(x, t, €2t) + Sus(x, t, €2t) + Sug(z, t, €2t).

Again, we plug this ansatz (3.9) in (1.1) and obtain the same profile equations (1.5), (1.6), (1.7) and (1.8) as in
the first section up to the order 4 (r, = 0). At the order 5, annihilating rs gives

8t1 uy + Opuz + A(aw)’u;g + Euy = B(UO)(azul + B(ul)é‘muo. (3.10)
From the above equation and thanks to Lemma (2.1), we deduce the following solvability conditions

O, ouy + HoLyus = H()B(Uo)ax’u,l + H()B(’U,l)axuO
(3.11)
(I — H())U4 = i@tl Q0u1 -+ iQ0L1U3 - iQoB(Uo)@mul — 'iQoB(’LLl)azuO.

Now thanks to (2.5) and (2.6), we deduce the following long time evolution equation for the corrector u;, where
Ious is not null anymore

O, ouy + Mo L1Tlous + illg L1Qo L1 Ilogus — Mo L1QoL1QoL1our — illg L1 QoL1QoL1QoL1IIpug
= Iy L1QoB(uo)0zuo + o B(up)0zu1 + Mo B(u1)0zup.  (3.12)

From this equation (3.12), as earlier, we apply successively the projectors II; (0) and II(0). Then by using the
average operators, Gy, and G,, we deduce the equation governing the corrector Ilyus that appeared in this
new formal expansion. It reads

T (E)t, Bx)l'll (O)U3 = —¢II; (0)L1Q0L1H2 (0)’1,1,2 -+ F(ul, Uo)
(3.13)
Tz(at, 6m)H2(0)u;; = —illy (O)LlQoLlnl(O)’UQ + G(ul, UQ)
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where F' and G are some bounded functions depending only on ug and u;. We have proved previously that
the corrector u; was bounded in L*°(R,L?) and that us respected a sub-squareroot growth condition (1.3)
along with (I — IIp)us. As one solves (3.13) by integrating the right-hand side term, one realises that the two
components of Ilpus cannot respect any more a sub-squareroot growth (1.3) but in fact verify at the most a
sublinear growth condition (5.4), which implies that the term e’ Ilgus is not a corrector of the term e*uy in
the expansion (3.9). Indeed one has that ||e*us|l2 = o(¢®) and at the most ||e’usll2 = o(e®) for large times of
order O(%).

It is thereafter clear that we cannot push the expansion any further as it does not provide us with terms that
improve the accuracy. Nevertheless, with some manipulations in the previous expansion, we derive in the next
section, coupled KdV type systems for which we obtain a better error estimate.

4. THE COUPLED SYSTEM: DERIVATION AND CONVERGENCE

4.1. Derivation of the system and statement of the result

The way we derive the coupled system of KAV type relies on the following remark. The convergence result
in the previous section shows that the error between the approximate solution and the exact solution of (1.1)
is o(1) rather than O(e) as one could expect. This is mainly due to the fact that when we constructed u$, the
contribution of the coupled nonlinear terms in (2.28) yields a sub-square root growth in time. In order to avoid
this fact, one can impose to conserve all the nonlinear terms in the equations satisfied by II; (0)uo and IIz(0)ug
in the previous analysis, which gives

8, 1T (0)uo + ( 5111 (0) AQo ATI; (0) AQo ATT, (0)

1
2\(0)
—Hl (O)AQ()AQ()AH;L (0) - )\I (O)Hl (O)AQ?)AIL (O)) 821_[1 (O)UO-: 1'[1 (O)B(Ho (O)U,o)axno (O)UO

(4.1)
j O, o (0)up + ( ——T15(0) AQo ATI; (0) AQo ATl (0)—TI2(0) AQo AQo Al (0)

2X(0)
+ X (0)TT>(0) AQ2 AT15(0) ) 92TI>(0) 0= TTa(0) B(T1p(0)0) 8, o (0) uo.

-

Thanks to the main Lemma 2.3, the above system reduce to

AII/ (0)

04, 111 (0)ug + =——=—282I1, (0)uo = T, (0) B(Tguo ), Ilgug

(4.2)

AIII (0)

A4, M (0)ug — =321 (0)uo = T12(0) B(Touo)dxToug.

Then u$§ is given by

Ty (8, 0211 (0)u§ = —T1,(0) AQo AQo AT (0)d3uo — N (0)IT; (0) AQE AT, (0)83uy 43)
- .

Tz(at, )HQ(O)Uz = *Hz(O)AQQAQQAHl (0)831,60 — /\/( ( )AQ2AH1 (0)83’(1,0.
We have to keep in mind that II;(0)uo and IT2{0)up have also to satisfy the equations of transport (2.12).
Obviously this last set of equations (2.12) is not compatible with (4.2).

In order to overcome this difficulty, the crucial point is to modify the ansatz (1.2): we do not consider any
more functions depending on two scales in time but only functions under the form

US(t, ) = Eus, (,t) + ugs(z, )] + Eus(t, ) + *us(t, z) + Sug(t, ). (4.4)
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We impose that (uf;, uf,) satisfies

A/Il O
dsu§, — N (0)0zuf; + €2 ( )

Aufy — M1 (0)B(u§; + udy)0x(us; + ugs)

ufy + M2(0)B(uf; + uy)0x(ug, + ugy) | = 0.

Brudy + N (0)0uf, — €

Again this system is not compatible with the set of transport equations (2.12) which is satisfied only at the
order O(€?)

(8: — X (0)8z)uf; = O(€?)
(4.6)
(8 + N (0)8)u§y = O(€?).

Remark 4.1. If we look at the system (4.5) as non homogeneous linear system, we have that ug; and wugs
remain polarized with respect to 11 (0) and II3(0) as long as they do respect this polarisation condition at ¢ = 0.
This is easily deduced from the presence of II; (0) and IT3(0) in front of the non linear terms.

We still define u§ by

I (0)ui(w,t) = 5177~ 111(0) AQo ATL2(0) 0z ugy

2X(0 ( )
(4.7)
I (0)ui(z,t) = 2)\,(0) 577 H2(0) AQo Al (0)9rugy
and for the remaining part (I — Ilp)u$ we maintain the second equation in (2.3). For u§ we set
T3 (B, 02) T (0)u§ = —T11(0) AQo (9 + Ad%)Qo ATl2(0)07ug, s

T5(84, 02)T2(0)us = —T15(0) AQo(8; + Ad)Qo Al (0)82uf,

and again for the remaining part (I — IIp)u§, we maintain the solvability condition in (2.5). To finish our set of
conditions for our ansatz, we set Ilpu§ = 0 and the remaining part differs from (2.7) as we have eliminated in
our ansatz the variable t1, as is

(I —p)u§ = iQoL1(8t, O )us — iQoB(uf) Oz ug. (4.9)
Our result reads as follows:

Theorem 4.1 (Coupled system). Let s > % and f in H (o large enough) be such that Il f = f. Under
Assumption 2.1, there ezists Ty > 0 and a unique solution u(z,t) of (3.1) bounded in L>([0, Zt]; H®) as well
as Ty > 0 such a unique couple (ug; (,t), u§y(z,t)) bounded (with respect to €) in L>=([0, Z2]; Hs) solution of

A///
Byufy — N (0)8zuf; + € ( )8;’ u§; = €111 (0)B(u§, + u§2)0z (ug; + ufz)

(4.10)

A/// 0
Oyusy + N (0)0,us, — €2 ( )

ugy = € T2(0) B(ufy + uh2)0 (ufy + ufy)

with u; (z,0) =111 (0) f and u§y(z,0) = Hz(O)f. Moreover, there exists To > 0 (To < min(Th,T2)) such that
(ﬂc t)
€2

= O(e).

Le=([0,28);H)

— [ug1 (2, 1) + uge(z, 1))
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The strategy for proving this theorem is the same that for the previous one. However, the proofs are slightly
different.

4.2. Properties of the approximate solution

We have a local existence theorem for this coupled system (see [3]) that can be viewed as a dispersive
perturbation of a symmetric hyperbolic system. The solution is defined on [0, gg] thanks to the presence of €2
in front of the nonlinear terms (as in Prop. 3.1). Therefore all the terms of the ansatz are well defined and u§,
and ug, are bounded in L>([0, Z]; H®). The crucial point is now to prove that u$,u§ and u§ are bounded.

Furthermore, as we have remarked in Remark 4.1, u§; and u§, remain polarized respectively to II;(0) and
I15(0) for all times as it is the case at ¢ = 0.

4.3. Properties of the corrector

u§ and u§ are indeed bounded as in the previous proof. For u§ we improve the previous results and those
displayed in [14,15] in similar cases. We prove that u§ is bounded in time on [0, 612] Let us recall the equations
defining u$

T1 (84, 0z) 1 (0)u§ = —11,(0)AQo(0; + A8,)Qo Allz(0)02us,
(4.11)
Tz(at, 6;;)1—[2 (0)u§ = —Hz (O)AQo(at + A@x)QoAﬂl (0)82’(161

Recall that u§; and uf, satisfy

(8 — X(0)3z)u§, = O(e?)
(4.12)
(8 + N (0)0z)u§y = O(€?).
We prove the following proposition.

Proposition 4.1. u§ is bounded independently of € in L=([0, 5]; H®).

Proof of Proposition 4.1. We prove the result for the first component IT; (0)u$ of u§. The proof is similar for
T5(0)us. Let us rewrite the first equation in (4.11) in a simplified way:

T1(8:, 0z)IT1 (0)us = Mz uf,
where M is a N x N matrix and ug, lies in L*°([0, ]; H®). Then, one has

— N7 —~ N7 i N/ o~
I (0)ug (€, t) = e %M s (€, 0) +£%™ ()% / e~ N O prys, (€, 5) ds.
\._v_/ \0 ,

=0

A
We integrate by parts A, which gives

t

_ [_ L —ix(0)se qug;]

t
1 —iX (0)s oy
IN(O)E +/ e~ N OsENT9 ug, ds

o Jo iN(0)¢
and now from (4.12), we have that 83175\2 = —iXN(0)éus, + O(e?), which gives

"y i\ (0)t
Uy e\ (0)t8 __

21 (0)ug (€, ) = Mé (—M,(O) - ) u52) +0(1)
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for times of order O(Z), which gives that II;(0)u§ is bounded in H* on [0, %] and since (I — Ip)u§ is bounded
from (2.5), we conclude the proof. ]

The fact that u§ is also bounded is easily deduced from (4.9) and the fact that u§ is bounded. We therefore
have proved:

Proposition 4.2. The corrector term e3u§ + €*u§ + e3u§ is indeed a corrector in (4.4) and one has that
ll€*ug + e*us + €5u§||Loo([o,:T§];Hs) = 0(€’).

4.4. Estimate for the residue and end of the proof

As earlier, we start by estimating the residue. It is more complicated than in the previous proof since the
conditions we have chosen on the terms of the ansatz (3.4) do not imply r§{ = 0 for i = 1, 2, 3,4. For the moment,
we can only write the residue as

10
Res(z,t,t1,€) = Z €'rs
=1

and perform the asymptotic expansion with respect to €. Note here that the ansatz is expressed only in the
variable ¢t and  and therefore the values of ¢ displayed at the beginning of this section do not hold anymore,
in particular, the variable ¢; is not used anymore. Therefore, one has that

ri = Buy with  uf = ug; + udy; ry = Opug + A(Oz)uf + Eug
rs = Oui + A(0z)u; + Eus; rs = Owug + A(Oz)us + Eug — B(ug)dzuf.

From the conditions imposed on each term of the ansatz at the end of Section 1.2 for the coupled system, we
deduce, as part of the ansatz is constructed for that matter, that
- r{ = 0 since ug = Ipug;
- (I —IIp)r§ = 0 from the second equation in (2.3);
- Ilpr§ = 0 from the expressions of ITpu§ in (4.7) and (I — IIp)r§ = O from the expression of (I — Ilg)u$
in (2.5);
- (I —IIp)rg = 0 from the expression of (I — Ilp)u§ in (4.9).

Up to the order 5, we are a priori, only left with e2Ilgr§ + €*Ilpr§ which reduces to, for its first component,

; 1
IT; (0)75 + €TL; (0)r§ = dyu§; — N (0)0zus; + 62(T1(8t, ) (0)u§ + T(O)Hl (0) AQo All2(0) AQo AL, (0)33us;

~ ;1 (0)AQo(8: + Ad,)QoA(I11 (0) + 112(0))82u§ — 1 (0) B(u§; + u§s)x(uf; + ugz)).

Now from the system (4.5) verified by u§; and u§,, and the main algebraic lemma 2.3, one has that the previous
equation reduces to, using also the condition verified by u$, namely (4.8),

I, (0)rs + €21, (0)rs = €2(9; — X' (0)0,)I1; (0) AQZ ATT, (0)82u§,

and from (4.12), the term €?Iyr§ + €*Ilpr§ is nothing else but a residue at the order 6. Then it is obvious to
deduce the following proposition since all the terms u;, 4§ and ug are bounded.

Proposition 4.3. We have that ||Res|| co(io 7.1.12) = O(€%).
Le(0, L)



900 W. BEN YOUSSEF AND T. COLIN
Thus our approximate solution solves (1.1) such as

EU*

U + A0 U + — B(U®)UE = O(e). (4.13)
Following then the argument laid out earlier, we obtain in the same manner, the following estimation on the
norm H*® of the difference % between the exact solution and our approximate solution, that reads

a2 < (et — 1)O(e)  for tgg

which finishes the proof of Theorem 4.1.

5. COMPARISON BETWEEN BOTH MODELS

The two convergence theorems presented in this paper rise a few questions. As the error estimate between
the approximate solution and the exact solution is improved in the second theorem, one ought to think that
the second approximation is more accurate. It is in fact not clear as we do not exhibit a lower bound estimate
of the error between the exact solution and the approximate solution in both cases.

Nevertheless, we want in this section to establish a link between the two models that partially enlight their
comparison. Indeed, our purpose here is to show that, in large time scales, the solution of the coupled system
converges to the solution of an uncoupled pair of KdV type equations.

We rewrite both systems (4.10) and (3.2)—(3.3) in the variable (¢,z). The relevant small parameter reads as
¢ (we replace €2 by € in this section). This gives:

Opu + Ozu + €02u + €9,0, P(u,v) =0 (5.1)

B0 — Oyv — €d3v + €8,0, P(u,v) = 0 ’
for the coupled system and

Owu + Ozu + e(‘?ﬁu + €0,0,P(u,0) =0 (5.2)

B4v — Opv — €930 + €0,0, P(0,v) =0 ’

for the uncoupled system, where P(u,v) is an homogeneous polynomial of degree 3.
We intend to prove in this section the following theorem:

Theorem 5.1. Lets > 3. There exists Tmax > 0 (independent of €) such that there exists (uf,v¢) € C([0, T==x],
H?®) solution of (5.1) and (U, V<) € C([0, Tma=], H®) solution of (5.2) with U*(z,0) = u(z,0) and V<(z,0) =
v(z,0). Moreover

4 = N e o, T ey — 0

as € — 0.
”Ve — UEHLOO([(),Zn:u];HS) — 0

Proof. As it is proved in Proposition 3.1, we have a local existence theorem for (u€,v¢) solution of (5.1), valid
for times of order O(L). We remind the reader that the proof of this proposition relies on the fact that (5.1) is
a symmetric hyperbolic system with regards to the nonlinear terms.

The local existence for (¢, V€) is obvious from the global existence theorem available for the Korteweg-de
Vries equation.
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The idea to prove the convergence result is to seek approximate solution of the system (5.1) as an asymptotic
expansion with respect to €. This approximation reads as the following ansatz:

U (z,t) = uo(z, t, et) + eur(x, t, et)

(5.3)
Ve(xt) = vo(z, t, et) + evi(x, t, et)

and we denote by 7 = et. These expansions are a priori valid for times of order O(%) which is consistence with
the existence in time of the exact solution (u€,v¢) of (5.1). wg and vy correspond to the leading order terms
in the expansion where u; and v; are meant to be correctors. The same formal expansion as in the previous
section leads to a proof of Theorem 5.1.

We introduce as in {15,20] a sublinear growth condition that ought to be satisfied by (u1,v1) in order to be
correctors. This sublinear growth condition is weaker than the sub-squareroot condition introduced earlier (1.3)
but is enough for this proof.

Sublinear growth condition
For w sufficiently smooth

1
lim Z||3ffz,7w($at77)“2 =0 forall € N3, (5.4)

t—o00

Plugging our ansatz (5.3) in (5.2) gives

(0o + OUC + € (BU + 0,0, PU*, V7)) Zejrj
i3 (5.5)
(02 — B)VE — € (03V° — 8,8, P(U, V°)) Ze]s].

We solve simultaneously (r; = 0,s; = 0) for ¢ = 0, 1, which gives the following set of necessary equations

(0 + O0z)up =0 Orup + Osuq + Ozuy + 8‘;’uo + 050, P(ug,v9) =0
and

(0r — Oz)vg =0 070 + By — Bzv1 — O2vg + 00, P(uo, vo) = 0.

For (U<, V¢) to be an approximate solution of (5.2), the two above systems constitute a set of necessary solvability
conditions.

In an analog manner as in the second section, we denote by 7T} and 7_ the two transport operators
Ty (0t,0:) = O¢ — 0z and T_ (0%, 0z) = Oy + Oz. We introduce the corresponding average operators Gz, and Gr_
as defined in Section 2.3. We apply these operators to the long time profile equations. Note that Property (iii)
(Prop. 2.3) holds with a sublinear growth condition (5.4). Then applying Gr_ for example gives

Gr_ (3tu1 + 83;11.1) = Gr._ (T_ul) =90
Gr_ (BTUO + 8gu0) = Orug + ag’u,o
GT_ (8:,;6UP(UO, 1)0)) = BEBUP(uO, O)

Note that P(ug,0) gathers the only terms in P(ug,vg) that are polarized with respect to T-(8, d,) and that
are left unchanged by the action of Gr_. Analog actions of Gp+ on the other equation hold likewise.
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We obtain the new solvability conditions for up and vyg.

(8¢ + 0z)up =0 Brug + B3ug + 8,0, P(uo,0) = 0
and
(6t — 33;)’1)() =0 Orvg — 6_3110 + axavP(U(), 0) =0

and for the correctors, one has

(6t + 81)11,1 = azaup(’lto, 0) - 8¢8uP(U0,'U0)
(5.6)
(8,5 — 8,;)111 = 6xavP(0, 'Uo) — 838,,P(u0, 'Uo).

From Proposition 3.3, we easily deduce that u; and v, verify a sublinear growth condition (5.4).

At this point up and vy are completely determined by the above solvability conditions and therefore lie
in C(R, H?) together with the correctors whose growth is correctly controlled. Thereafter ¢ and V¢ lie in
C([0, £]; H®) as u® and v°.

Our proof of Theorem 5.1 ends with a stability result for which we ought to estimate the residue in (5.5).
627'2 + e3r3
The latter reads as 5y + €355

with the boundedness of up and vo in C([0, L]; H®) that

, and one has from the sublinear growth condition verified by u; and v; along

(02 + O)U + € (B3UE + 0,0, P(U, V%)) = o(e)
(5.7)
(8z — B,)VE — € (O3V° — 0,0, P(US, V) = o(e).

It is afterwords easy as in Section 3.3 to finish the proof by estimating ||L/¢ — u¢||s and |V¢ — v¢||s and thus
conclude. a

Remark 5.1. One must be careful if we try to interpret this result. It is indeed a decoupling result that enables
us to compare the two models but we have to keep in mind that the H® norms || —u€||s and || V¢ —v¢||s are only
of order o(1) and not O(e). This means that for relatively large ¢ (physically e = 107! is relevant in the water
waves context), the discrepancy between the two models can be large. For instance, in the case of interactions
of solitary waves, the interaction is definitely nonlinear and the coupled system is a better model as it is clear
in the simulations conducted in [4, 6].

6. EXAMPLES

In this section, we present the derivation of KdV coupled systems in two physical cases. We recall that our
convergence results do not apply in these cases.

6.1. The Euler-Poisson equations

In this section, we investigate the Euler-Poisson equations that occur in the context of ion acoustic waves.
Consider a plasma of electrons and ions, where the inertia of the electrons can be neglected unlike the electro-
static effects of the electron charges. The electrons are modelized as a gas. Expressing the Boltzmann equation
of state along with the conservation of mass, with ¢ being the electrostatic potential, n the density of electrons
and v their velocity, one obtains the simplified dimensionless equations, namely the Euler Poisson system, that
reads as

e+ (Mu)z =0
Vt + VU = -({bz (61)
¢xz = e¢ -7
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We refer to Dodd [13] for a detailed derivation of (6.1).
We will apply the second section, in this particular physical context, that is starting from (6.1), we give a
derivation of KdV type systems as an asymptotical equation describing (6.1) for long waves and small amplitudes.
If one linearizes this system, we obtain describing the potential, the following equation in ¢

0070 + 026 — ;=0
which gives the relation of dispersion w? = k?(1 + k?)~! whose shape near 0 (long wave approximation) meets
the requirements of the preceding general study as in figure 2.1. As we set up our ansatz, we derive necessary
conditions on the approximate solution and obtain KdV systems. The system (6.1) if obviously not of the
form (1.1). However, we will show that the second section applies in this case. We first make the following

remark.

Remark 6.1. If u¢(t, z) is a solution of (1.1) then v¢(¢, z) = u¢(et, ex) is a solution to
0 + A0,V + Ev® = B(v®)0,v°. (6.2)

Then the ansatz that has to be used for (6.2) is
3 .
U= Zeg+2uj(e$, et, €3t) (6.3)
7=0

in order to pursue the same analysis as in Section 2.

System (6.1) can be seen as belonging to a class of pseudo-differential systems that generalize (6.2). We
therefore use the same ansatz.

The ansatz

We seek approximate solutions for (6.1) of the form

n® =1+ ®no(ex, et, e3t) + 3m1 + €*ne
¢° = 2po(ex, et, €3t) + p1 + *po (6.4)
v¢ = vglex, et, €3t) + vy + e*vy.

Plugging the ansatz (6.4) into (6.1), one obtains the following expansion with respect to e,

( 2

i+ (v = Y 1ie3 + O(e)
2=0

2
\ v + ¢S + vl = Z i€ + O(e%)
=0

2
¢, —e? 4 = Zqie”z + O(€).
=0
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Since we intend to solve this system up to the order €%, we obtain the following set of equations
e for the first equation,

Oi,mo + Ozv0 =0 (ro =0)
O, + Ogv1 =0 (r1 =0) (6.5)
O, Mo + O, M2 + Ozv2 + Oz(vomp) =0 (r2 =0)
e for the second equation,
Ot v0 + Oz =0 (so=0)
O v1 + O0zp1 =0 (s1=0) (6.6)
O, 00 + Oy vg + Ozp2 + v00z10 =0 (s2 =0)

e and for the last equation, we have

no — ¢o =0 (90 =0)

m—y1=0 (n =0) (6.7)
2

2o — 2 +m2 — —(‘bg) =0 (g2=0).

Since from (6.7), 7o = ¢o, both these variables solve a classical wave equation (82 — 82)u = 0 and read as the
sum of two functions moving at the speed +1. Let us then define the two transport operators as previously
such as T1(8,0;) = 0y, — 9, and T(84, 8;) = O, + 9, and the associated average operators G, and Gr, that
are in this context nothing else but the projectors on the kernels of respectively I1; (0) and II3(0) and that we
will denote from now on, P, and P». With these notations, we deduce that 79 and vy read as follows

no = Pino + Pamo

and
vo = Pyug + Py

and from the wave equation in 79 and vg, one has that Ping = —Pivg and Parg = Pavg. Hence applying both
projectors P; and P, on every equations will lead to the desired results. Let us point out beforehand that these
two average projectors can be applied on each terms of the equations. For 79 and vy, it is clear since they are
transported by the scalar operators T and 7% and for the other terms in the expansions indexed by 2 (the ones
indexed by 1 do not play any role - see below -), we assume that their growth in time is controlled and is at
least sub-linear and Property (iii) of the average operators allows us to conclude. Naturally, this hypothesis
needs to be verified once we have derived necessary conditions on the corrector terms.

Now the equations satisfied by 71, v; and ¢ are the same than those satisfied by 79, v¢ and ¢ and are solved
in the same way. Moreover, since the unknowns 77, v; and (3 do not appear in the equations o = 0, 82 = 0 and
g2 = 0, we can set them to zero.

In order to obtain the profile equations for 79, v and g, we start by applying P, on the equations (6.5) and
(6.6) and look at the evolution of the profile moving in the right direction

O, Pamio + (P20, M2 + P20zv2) + 2Pamg0; Pamo = 0 (6.8)
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and
Oty Pomo + (Po0Oyp2 + P20t v2) + PangOgp Pang — Panodz Pimg = 0. (6.9)

Now summing (6.8) and (6.9) and differentiate the second equation in (6.7) in order to replace Oy Pa¢2 in the
equation, gives

O, Pamo + PamoOzPemo — PynoOz Pimo + 1/203Pamo + P3(04, + Oz)va + Pa(Bs, + 0z)ma = 0.
—_————— N ~ N v

~ ~~
nonlinear term  nonlinear coupled term  dispersive term  corrector term corrector term

(6.10)

We obtain in an analog manner the second equation governing the long time evolution of Pyng

1 3 1 1
Og, Pimo — 503131770 — §P17703xP1770 - §P27725zP2772—§3z(P1770P2772) ~ Py(8¢y — Oz)va + P10y, — 0z)n2 =0
(6.11)

as we set now the corrector in the equation to be such that

Py (04, + 0z)(v2 +m2) =0
(6.12)
P10, — 0z)(n2 —v2) =0

we obtain the following coupled KdV system as an asymptotic limit to our problem that reads for the long time
evolution, with u = Pang and v = Py,

1
O, u + 58211, + ul,u — udzv =0

(6.13)
3

1 1
O, v — 5321) - Ev(?xv — iuaxu — Oz (uv) = 0.
Since we kept coupled terms, we recall from the previous general discussion that (6.13) is not compatible with
the 1-dimensional wave equation solved by 79 and v;. Therefore as for the derivation of the coupled system laid
out earlier, we consider u and v, back in the variable (z,t) solutions of

1
Ou+ Ozu+e€ [53;% + ubzu — uazv] =0
(6.14)
1, 3 1
Ov — OV + € —ic')zv — Efuﬁxv — éuazu — Oz (uv)| =0.

Note that we actually obtain a whole class of limit systems, since we can eliminate or add nonlinear term in the
equation as long as they can be compensated by the same terms in the correctors with a contribution that must
remain bounded in order not to affect the convergence result. For instance we add or subtract terms of the form
v8,v in the first equation and terms of the form u0,u in the second equation. Any of these terms thanks to
Proposition 3.2, implies a bounded contribution in the correctors and therefore does not affect the convergence.
We can for instance set up a combination of such terms in order to obtain a limit system with a symmetric
nonlinearity. This operation could very well be baptized as a “symmetrisation” process. The motivation for
applying such a process is double: first of all it assures that the limit system has at least an L? invariant, which
is physically important and secondly that the limit is well posed and has a solution that exists for large time
scales of order O(1), which is crucial in the scope of a convergence theorem.
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In this case, the “symmetrisation” process gives that we need to add v0,v in the first equation and —%u@zu
in the second and modify consequently the expression for the correctors. We then obtain, for the correctors,

P30, + 0z)(v2 + m2) = —v0zv

1 (6.15)
Py(01, ~ Ox)(m2 — v2) = §u8xu

which from proposition 3.2 remain bounded. The proposition can be applied here, thanks to Remark 6.1, as we
used the proper ansatz for which the previous general theory stands and as u? and v? are indeed L?-bounded
since u and v lie in the proper H*® (for s > %) The final limit system for the Euler-Poisson problem read in its
vectorial form as

10 1 0
BU + (0 _1) 0aU + ¢ <0_1> 83U + eM(U)3,U =0

where U is now the vector

Z and M(U) the symmetric matrix

M(U) = (;Zuuv__gw

We do not go further into the analysis of this model as we do not intend to prove in the scope of this paper,
a convergence result for this example. This convergence result may be obtained using technics of Cordier-
Grenier [10]. We postpone this study for a further work.

6.2. Water waves

The Korteweg-de Vries equation was first derived in the context of surface water waves after Russel’s obser-
vation of a soliton. From Bona-Chen’s derivation displayed in [5, 6], one can derive a large class of KdV type
systems modeling counter-propagating water waves.

Indeed, starting from the Euler equation for an irrotational and incompressible flow, associated to the appro-
priate boundary conditions at the bottom and no surface tension at the surface lead to the Laplace equation in
the flow domain. Then designating by ¢(z,y,t) the velocity potential where z is the horizontal variable and y
the vertical variable, n(z, t) being the water elevation lead to the Euler equation with free boundary conditions,
that read in its classical dimensionless form as

Bbzz + Gyy =0 O<y<l+an
gbyl:O y=20
Nt + adenz — B‘ﬁy =0 (6.16)

1 5 y=1+a77
n+ o+ 5ad, +~E¢

) 2
where o = 2melitude 5,4 g . (_depth )" that we suppose to be the small parameters of the system, e.g.
depth

wavelength
we place ourselves in the framework of large wavelength with small amplitude. Furthermore, one assumes that
a ~ 3. We will not recall in detail their derivation. Let us just say that it relies on an expansion of the potential
of velocity with respect to the vertical variable in order to derive the shallow water system. Taking w as the
horizontal velocity at a certain water level 6, one obtains a class of systers as it formulated in [6,7]
92
Nt + Wy + a(wn)y +ﬂ( -
1
2

1
= /\wmzz (1 - ) cht) = O(OZQ’BZ)
3) k (6.17)

62
W + Nz + QWWx — ( iy (—Nzzz + (1 — p)Wgyt) = O(az,ﬁz).
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Depending on the choice of (), u) € R?, the system above describes a class of systems that are all equivalent to
each other and the crucial point in their derivation holds in the system written at the first order such as

{nt = —Wg + O(ayﬁ)

wr = 10 + O(a, B) (6.18)

which means for these authors that a derivative with respect to ¢, 0; can be replaced by a derivative with respect
to z, 0, as long as w is replaced by n with no loss of precision.
Out of that large class of systems thus defined, two of them stand out as the KdV type system and the BBM
type system
M+ wy + a(wn)g + éwxm =0
KdV type ﬂﬁ
Wt + Mg + QUWWy + gnzzx =0

M+ Wy + a(wn)g — —ﬂ—nmt =0
BBM type 6

Wt + Nz + QWW, — B—wmt =0.

There exists numerous discussions regarding the comparison between these two models especially for the single
KdV equation compared to the BBM equation. The most fruitful and detailed one can be found in [2], where
the authors explain how the regularized model fits better with regards to the various drawbacks of the KdV
equation. However, these two systems nor any of the systems that can be derived from the class described
above, are satisfactory from our point of view, as in all cases the nonlinearity is not symmetric unlike in the
original system.

In this section, we propose a more satisfactory and “rigorous” derivation of KdV systems in the context of
water waves which gives a new class of such equivalent system including symmetric systems of KdV type that
do a priori hold the same approximation properties. Besides, in our derivation, the small parameter appear
to be unique and the arguments used are no different from those used in the general theory displayed in this
chapter. Let us rewrite the Euler system with free boundary conditions, with a unique small parameter e,

€Puz + Pyy =0 0<y<l+en
¢y =0 y=0
1 (6.19)
Nt + €hzNz — E(Z’y =0 :

1 1 y=14e€n.

Before setting up our ansatz and plugging it in (6.19), let us expand ¢(z, y,t) with respect to the second variable
around y = 1 such as

1
¢(',Ea y7 t)ly:1+£'n: ¢($7 y7 t)lyzl + 6773y¢(37; y$ t)|y:1+§527728§¢($> y) t)|y=1 + 0(63)' (620)

We set ¢(z,t) = ¢(x,1,t) the profile at the undisturbed water level, and from the following system,

€Prz +Pyy =0 0<y<l-+en
¢y =0 at y=0 (6.21)
¢z, 1,t) = o(z,1)

we solve ¢ in the y variable with respect to the other variables, using Fourier transforms,

N _ @(f,t) e p
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and thereafter one has that

|8y$<5,y, t)ly=1 = VEEB(E, t)th(v/e€)

' 855(6» ya t){’yzl = 652(2(5) t)

which gives the first terms of the expansion of these quantities with respect to ¢,

2
By6(@, Y, ly=1 = —eB2p(z,t) — T 4p(z, 1) + O(e*)
3 (6.22)

(@, y, t)|y=1 = —ed2p(z,1t).

Now plugging the expansion of ¢(z,y,t) in the last two equations of (6.19) at y = 1 + en gives, using (6.22):

€
M + 05 + ennOpp + endzp + 2030 — €050 = 0(€%)
. (6.23)
€

2
€ €
Oup + 1+ 5(0:0)” + 505 — €005 + 50 = 0(¢).

In order to use the same ansatz as in the general theory, we change € by €2 in the above system and make the
following change of unknowns 77 = % and ¢ = %. System (6.23) gives omitting the,

2
€
e + 02 + N 0pp + 02 + 5050 - oo = 0(c°)

(6.24)
1 2, €0 2 2 e , 5
Oep + 1+ 5(0:0)" + 5050 — €000z + 57 = 0(€).
We seek now an ansatz as follows
n(z,t) = €no(x, t,e%t) + Eny(x, t, €2t) + e*na(z, t, 1)
(6.25)
o(z,t) = Epo(z,t, €%t) + o1z, t, €2t) + e*pa(z, t, €%t).
We now plug (6.25) in (6.24). It gives as we identify the terms at each order of e:
- at the order O(€?)
Bymo + 000 = 0
(6.26)
Oepo +mo = 0;
- at the order O(e?)
Om + 0201 =0
(6.27)
Orp1 +m = 0;
- at the order O(e*)
1
sy Mo + B¢m2 + OumoOzipo + 022 + 55;1900 + 10020 =0
(6.28)

1
By, po + Oypa + 1 + 5(61%)2 =0.
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First of all, note that the equations satisfied by ¢; and 7; are the same as those satisfied by 79 and g in (6.26).
Besides 7; and ¢; do not appear in the long time evolution equations (6.28). One can therefore set them to
zero with no loss of generality.

These sets of equations suggest us to consider ¢ = O.¢ as an auxiliary unknown. Then, as in the first
example, solving (6.26) gives that

{no(m,t) =no1(z — t) + noz(z + t)
go(z,t) = go1(z — t) + goz(z + 1)

and naturally from the wave equation (6.26), one has that, ng1 = go1 and 1oz = —go2. Thereafter, if we set
u = 71 and v = 72, and rewrite the system (6.28) as follows, one obtains,

1
Ot Mo + Omz + 0z (gomo) + 0292 + 53390 =0,

(6.29)
Oty 9o + Otg2 + 9zm2 + goOzgo = 0.
Now summing and subtracting the above equations gives the following system,
1
20, u + gag(u —v) + 3udzu — vO;v — Oz (uv) + (8 + Oz)n2 + (Or + 0z )92 = 0,
(6.30)

20, v + %a;j(u —v) + uzu — 3v0;v + Oy (uv) + (8 — Oz ) — (8¢ — 0z)g1 = 0.

We know from the previous general theory described in the previous sections, that we need to get rid of the
corrector terms along with terms whose contributions in the corrector terms will keep them bounded. In that
case and only in that case, we do not affect the convergence result. For that matter, we set the corrector terms
to be such that the nonlinearity in the final system is symmetric. One needs afterwards to verify, that the
corrector terms remain bounded. This gives, as a necessary condition, that

1
T1(0%,02)(m2 + g2) = —gagv - 208,v

added term
(6.31)

1
T5(04,0z)(n2 — g2) = g@i’u + 2ulzu
added term

and the final system read then as a KdV type system whose nonlinearity derives from a gradient. Indeed one
has

1 1, [3u? | o2
6t1u+632u+56z —“—+3’——uu]=0

(6.32)

1 1, [ 302 w2
Btlv— '6‘85’0—*— 58;3 L—T — 7 +’LL’U] ZO

8V (u,v

v

with V(u,v) = % - % ”27“ — 1‘—;2 The crucial point now is to verify that our correctors are indeed bounded
from (6.31), which is a straightforward task as it is already established in Proposition 3.2, that holds since u
g

and v lie in H* (for s > 3).
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As for the Euler-Poisson example earlier and as for the coupled KdV system derived in the general case, the
above system (6.32) is not compatible with the wave equation verified by 7o and go. Then, as usual, we come
back to the (z,t) variable, and consider our approximate (uf,v¢) solution to solve

Beu’ + Dous + e 83u +elg, VWL
2 ous
(6.33)
€ € 1 3,,€ 1 av(ue,ve) _
Opv® — Ozv 6682'1) +e26m Foe =0

along with the condition (6.31) on the correctors.

Finally we have at hand asymptotic systems of KdV type with a non linearity deriving from a gradient that
compete as models for the propagation of counter-propagating hydrodynamic surface waves, exactly at the same
level of approximation as those displayed in the literature. For comparison purposes, let us rewrite the system
with the physical unknowns 7y and go being respectively the water elevation and the horizontal velocity. This
gives

Ao + 0z90 + §9290 + 50z(M0go) =
(6.34)
Orgo + Ozmo + £03n0 + $0:(nd + 3g5) = 0.

Again our intention, is not in the scope of this paper to prove a convergence theorem as it is anyhow a difficult
task. The purpose of this example was only meant to convince the reader of the relevance of such models in the
context of water waves and show as well how the methods deriving from geometrical optics provides a rather
rigorous framework for our problem.
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