@article{M2AN_2000__34_3_637_0, author = {Bialecki, Bernard and Karageorghis, Andreas}, title = {A {Legendre} spectral collocation method for the biharmonic {Dirichlet} problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {637--662}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {3}, year = {2000}, mrnumber = {1763529}, zbl = {0984.65121}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_3_637_0/} }
TY - JOUR AU - Bialecki, Bernard AU - Karageorghis, Andreas TI - A Legendre spectral collocation method for the biharmonic Dirichlet problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 637 EP - 662 VL - 34 IS - 3 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_3_637_0/ LA - en ID - M2AN_2000__34_3_637_0 ER -
%0 Journal Article %A Bialecki, Bernard %A Karageorghis, Andreas %T A Legendre spectral collocation method for the biharmonic Dirichlet problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 637-662 %V 34 %N 3 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_3_637_0/ %G en %F M2AN_2000__34_3_637_0
Bialecki, Bernard; Karageorghis, Andreas. A Legendre spectral collocation method for the biharmonic Dirichlet problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 3, pp. 637-662. http://www.numdam.org/item/M2AN_2000__34_3_637_0/
[1] Spectral methods for the approximation of fourth order problems. Applications to the Stokes and Navier-Stokes equations. Comput. and Structures 30 (1988) 205-216. | MR | Zbl
and ,[2] Some spectral approximations of one-dimensional fourth order problems, in: Progress in Approximation Theory, P. Nevai and A. Pinkus Eds., Academic Press, San Diego (1991), 43-116. | MR
and ,[3] Spectral methods, in Handbook of Numerical Analysis, Vol. V, Part 2: Techniques of Scientific Computing, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997) 209-485. | MR
and ,[4] Some spectral approximations of two-dimensional fourth order problems. Math. Comp. 59 (1992) 63-76. | MR | Zbl
, and ,[5] A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. submitted | Zbl
,[6] Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method. SIAM J. Sci. Comput. 18 (1997) 621-632. | MR | Zbl
and ,[7] Chebyshev and Fourier Spectral Methods. Springer-Verlag, Berlin (1989). | Zbl
,[8] Collocation Methods for Parabolic Equations in a Single Space Variable. Lect. Notes Math. 358, Springer-Verlag, New York, 1974. | MR | Zbl
and ,[9] Matrix Computations, Third edn., The Johns Hopkins University Press, Baltimore, MD (1996). | MR | Zbl
and ,[10] A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12 (1991) 1162-1172. | MR | Zbl
,[11] The numerical solution of laminar flow in a re-entrant tube geometry by a Chebyshev spectral element collocation method. Comput. Methods Appl. Mech. Engng. 100 (1992) 339-358. | Zbl
,[12] A fully conforming spectral collocation scheme for second and fourth order problems. Comput. Methods Appl. Mech. Engng. 126 (1995) 305-314. | MR | Zbl
,[13] Conforming Chebyshev spectral collocation methods for the solution of laminar flow in a constricted channel. IMA Journal Numer. Anal. 11 (1991) 33-55. | MR | Zbl
and ,[14] A spectral domain decomposition approach for steady Navier-Stokes problems in circular geometries. Computers and Fluids 25 (1996) 541-549. | MR | Zbl
and ,[15] Orthogonal spline collocation methods for biharmonic problems. Numer. Math. 80 (1998) 267-303. | MR | Zbl
, , and ,[16] Chebyshev pseudospectral method of viscous flows with corner singularities. J. Sci. Comput. 4 (1989) 1-19. | Zbl
, and ,[17] Efficient spectral-Galerkin method I. Direct solvers of second- and forth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15 (1994) 1489-1505. | MR | Zbl
,