@article{M2AN_2000__34_3_555_0, author = {Barillon, Cristelle and Makhviladze, Georgy M. and Volpert, Vitaly A.}, title = {Existence of solutions for an elliptic-algebraic system describing heat explosion in a two-phase medium}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {555--573}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {3}, year = {2000}, mrnumber = {1763525}, zbl = {0971.76077}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_3_555_0/} }
TY - JOUR AU - Barillon, Cristelle AU - Makhviladze, Georgy M. AU - Volpert, Vitaly A. TI - Existence of solutions for an elliptic-algebraic system describing heat explosion in a two-phase medium JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 555 EP - 573 VL - 34 IS - 3 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_3_555_0/ LA - en ID - M2AN_2000__34_3_555_0 ER -
%0 Journal Article %A Barillon, Cristelle %A Makhviladze, Georgy M. %A Volpert, Vitaly A. %T Existence of solutions for an elliptic-algebraic system describing heat explosion in a two-phase medium %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 555-573 %V 34 %N 3 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_3_555_0/ %G en %F M2AN_2000__34_3_555_0
Barillon, Cristelle; Makhviladze, Georgy M.; Volpert, Vitaly A. Existence of solutions for an elliptic-algebraic system describing heat explosion in a two-phase medium. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 3, pp. 555-573. http://www.numdam.org/item/M2AN_2000__34_3_555_0/
[1] Calculation of the extremal combustion characteristics of aerial suspensions of metal with autoignition. Combustion, Explosion and Shock Waves 16 (1980) 3-10.
and ,[2] Ignition regims of a gas suspension in a vessel with heated walls. Combustion, Explosion, and Shock Waves 20 (1984) 58-61.
and ,[3] An integral formula for total gradient variation. Arch. Math. 11 (1960) 218-222. | MR | Zbl
and ,[4] Quelques résultats sur le problème - Δu = λeu. C. R. Acad. Sci. Paris Sér. I 307 (1988) 289-292. | MR | Zbl
, and ,[5] Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math. XLII (1989) 845-884. | MR | Zbl
, ,[6] Ignition limit of a monofractional gas suspension. Combustion, Explosion, and Shock Waves 10 (1974) 88-93.
, and ,[7] Lectures on elliptic and parabolic equations in Holder spaces, AMS, Graduate studies in Mathematics (1996). | MR | Zbl
,[8] Induction period in the ignition of a particle System. Combustion Explosion, and Shock Waves 1 (1971) 1-6.
, and ,[9] Equations of gas combustion: S-shaped bifurcations and mushrooms. J. Differential Equations 134 (1997) 183-205. | MR | Zbl
and ,[10] Regularization of nonlinear differential-algebraic equations. SIAM J. Math. Anal. 25 (1994) 615-629. | MR | Zbl
and ,[11] Critical autoignition conditions for a System of particles. Combustion, Explosion, and Shock Waves 5 (1969) 129-136.
and ,[12] The spaces BV and quasilinear equations. Math USSR - Sbornik 2 (1967) 225-267. | MR | Zbl
,[13] Analysis in classes of discontinuons functions and equations of mathematical physics, Martinus Nijhoff Pubhshers, Dordrecht (1985). | MR | Zbl
, ,[14] The mathematical theory of combustion and explosion. Plenum Press, New York-London (1985). | MR
, , and ,