@article{M2AN_2000__34_3_539_0, author = {Miranville, Alain}, title = {Some models of {Cahn-Hilliard} equations in nonisotropic media}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {539--554}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {3}, year = {2000}, mrnumber = {1763524}, zbl = {0965.35170}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_3_539_0/} }
TY - JOUR AU - Miranville, Alain TI - Some models of Cahn-Hilliard equations in nonisotropic media JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 539 EP - 554 VL - 34 IS - 3 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_3_539_0/ LA - en ID - M2AN_2000__34_3_539_0 ER -
Miranville, Alain. Some models of Cahn-Hilliard equations in nonisotropic media. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 3, pp. 539-554. http://www.numdam.org/item/M2AN_2000__34_3_539_0/
[1] Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92. | Zbl
, and ,[2] Exponential attractors of reaction-diffusion Systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. | MR | Zbl
and ,[3] Attractors of evolution equations. North-Holland, Amsterdam (1991). | MR | Zbl
and ,[4] Analyse fonctionnelle, théorie et applications. Masson (1983). | MR | Zbl
,[5] On spinodal decomposition. Acta Metall. 9 (1961) 795-801.
,[6] Free energy of a nonuniform System I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267.
and ,[7] The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. | MR | Zbl
, , and ,[8] The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear). | MR | Zbl
, and ,[9] Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. | MR | Zbl
and ,[10] Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted). | Zbl
and ,[11] Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. | MR | Zbl
and ,[12] On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. | MR | Zbl
and ,[13] Exponential attractors for dissipative evolution equations. Masson (1994). | MR | Zbl
, , and ,[14] Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. | MR | Zbl
and ,[15] A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint.
and ,[16] Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. | MR | Zbl
and ,[17] Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996).
,[18] Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. | MR | Zbl
, and ,[19] Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. | MR | Zbl
,[20] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
,[21] Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998) | MR | Zbl
and ,[22] Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P. G. Ciarlet and J. L. Lions eds. (to appear) | MR | Zbl
and ,[23] Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. | MR
,[24] Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150. | MR | Zbl
,[25] Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear). | MR | Zbl
,[26] Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case C. R. Acad. Sci. 328 (1999) 907-912. | MR | Zbl
,[27] Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100. | MR | Zbl
,[28] A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252. | MR | Zbl
,[29] Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345. | MR | Zbl
, and ,[30] Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. | MR | Zbl
, and ,[31] Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997). | MR | Zbl
,