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NUMERICAL APPROXIMATIONS OF THE RELATIVE REARRANGEMENT:
THE PIECEWISE LINEAR CASE.
APPLICATION TO SOME NONLOCAL PROBLEMS * **

JEAN-MICHEL RAKOTOSON! AND MARIA LUISA SEOANE?

Abstract. We first prove an abstract result for a class of nonlocal problems using fixed point method.
We apply this result to equations revelant from plasma physic problems. These equations contain terms
like monotone or relative rearrangement of functions. So, we start the approximation study by using
finite element to discretize this nonstandard quantities. We end the paper by giving a numerical
resolution of a model containing those terms.
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1. INTRODUCTION

In the mathematical models appearing in plasma physics either for the Tokamak models or the Stellerators
models, the modelling equations may depend not only on the solution » but also on the distribution function
associated with that function, that is the volume of a level set m,, (t) = meas {z € Q,u(z) > t}, t € R, (here, Q2
is the mathematical domain). What is more, it might even depend on the generalized inverse of that function
™., called the decreasing monotone rearrangement of u and denoted by u. and its derivatives u/ or u”. For
instance, in the Tokamak models, Grad [25] and Shafranov [51], conjectured that the current flux u (associated
with the magnetic fields and the pressure) can satisfy an equation of the form

—Au(z) — My (my(u(z)) = f(z), 7 € Q

(see also Temam [55,57]). More recently, in the case of a confined plasma in a Stellerator, Diaz-Rakotoson
(see [15,16] for the modelization, [19] for the mathematical justification and [5] for the numerical solution)
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established that the current field u satisfies the following equation:

ui (@) 1/2
— = 2 _ ! "(u — by (M in
(psyl —Bu=a@) [F 2 [ p(t)b*u<mu<t>>dt]+ /() [b(z) ~ bou (mu(u(z))) | in 0
u = 7y on 9N
where
by = lim (L t0)e — U
t\.0 t

is called, according to Mossino-Temam [34], the relative rearrangement of b with respect to u (see below for
more details).

In this article, we wish to present a method for the numerical approximation of the monotone and relative
rearrangements by using finite elements P;. Since very few results are known concerning the regularity of the
derivatives of monotone and relative rearrangement functions, we shall only look at the convergence of the
scheme according to what we know on the first derivative of the monotone rearrangement. (Almost nothing is
known on the second derivatives of these quantities).

As an application in P.D.E, we choose a model which involves the first derivative of the monotone relative
rearrangement and whose nonlinearities are of the same type as those in Grad-Shafranov in the Stellerator
models, say:

M (U4 (7))

(py] @) (mu(u(@) - o) [F3 - /

1/2

P (wubedt| = f()
mu(O) +

u(0) =u(l)=0

The variational problem associated with that problem reads:
( Find u € H}(0,1) snch that
1 1 1 :
/ u'(z)v' (z)dz — )\/ Ul (8)Vay (8)ds —/ F(u)(z)v(z)dz
(Pv) 0 0 ]

= /1 f(z)v(z)dz for all v € Hg(0,1)
0

(4 (2)) 12
where F(u)(z) = a(x) [FOZ - / p’(u*)u;b*udt] , a and b are in L>®(0,1), f € L2(0,1), Fy > 0 is a
+

™., (0)
constant and p a C!-function with p’ bounded for the sake of simplicity.

+
Along this paper, we use the fact that u. € H*(0,1) ifu € H!(0, 1) and then dd:* (mu(u(x))> =, (mu(u(x)))
a.e.

In order to give a theoretical and numerical resolution of that problem, we shall consider a family of subspaces
Vi of H}(0,1) with finite dimension. Then, we shall prove the existence of a function uy € Vj, satisfying the
following approximate problem

Find up € V such that

(Ph) / wh(e)th @)de = A |

1

Uy (5)(0h) o, (8)ds  — /0 F(un) (@)on(z) dz
= /01 f(z)vp(z)dz for all vy, € Vp.

In order to solve problem (P,) and (P!), we introduce an abstract result which will allow us to consider other
nonlinearities than in (P).
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This abstract result reads as follow:

Let (V,|| - ||) be a Hilbert space continuously and compactly imbedded in a Banach separable space (H,| - |).
Assume that there exist a family of finite elements V;, C V' and a family of linear operators II: V — V}, such
that ’llin}) |[v —pv]| = 0 for all v € V. Consider B: V x V — R a bilinear coercive and continuous map and G:

V — H'(dual of H) a nonlinear continuous map from V-strong into H' — x — o(H', H) (weak-star topology),
with G having the following growth:

< . , e
(G@)ls < ool + X1 0< 20 < (_inf Blo,u]) - (inf ol
Then:

i) There exists up € V4, such that

B(un,vn) =< G(un),vn >, for all vy € V3
ii) There exists u € V such that
up — u in V strong  Blu,v] =< G(u),v > forallve V.

It happens that for the kind of operators that we meet in the literature, the map G is not continuous on the
whole space V but only on a subset V of V, containing all V,; in which case we may assume that H = H’ and
then the continuity of G can be restricted to V C V — H-weak, (for instance if A € £(V,V’) associated with

the bilinear form B then V = D(A) (domain of A) U Vi induced by the norm of V). The above conclusion
h

remains true provided that we show that u € V.

We shall apply statement i) and ii) with V = H}(0,1) H = L2(0,1)

1 1 1 1
B(u,v)=/0 u'v', < G(u),v >=/\/0 uiv*u+/0 F(u)(x)v(m)dx+/0 f(z)v(z)dz.

The “main” difficulty will be to prove the continuity of G from V-strong into L2(0, 1)-weak. So we shall introduce
some appropriate new lemmas (see Lem. 3.1 to Lem. 3.4).
As a consequence of this analysis, we derive a stability result for u; of the form:

V2|fli2 + lajooc

for |A| < 1.
Y or [A] <

[uhlrzo,1) <
We also obtain for statement ii) the convergence of the scheme.
Some qualitative properties for the solutions of the continuous and discrete problems are given: when f is
symmetric (that is f(z) = f(1 — z)), we will show the existence of symmetric solutions. When Af < 0, Aa < 0,
then every solution u of (P,) is such that the set {z: v/(z) = 0} is of measure zero. We shall also provide the
rigidity matrix associated with the discretized problem.

For convenience for the reader, we start by recalling some useful notions on the monotone and relative
rearrangements.

2. MONOTONE AND RELATIVE REARRANGEMENTS OF A FUNCTION:
DEFINITIONS AND PROPERTIES

Since the numerical schemes that we shall present below are in one dimension, we restrict the introduction
of this section to functions defined on [0,1]. Let u be a real valued Lebesgue measurable function defined on
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]0,1[. For t € R, we denote by {u > t} the set {z €]0,1{,u(z) > t}, and by {u =t} the set {z €]0, 1], u(z) = t}.
The Lebesgue measure of any measurable set E is denoted |E| or meas(F); in particular, the measure of the
above level sets are denoted by, [u > ¢, ju = t|.

Definition 2.1. A measurable function u on ]0,1[ has a plateau at o value t if lu =t| > 0.

We set P(u) = {z €]0,1[: |u = u(z)| > 0}.
The distribution function associated with u is the real valued function t € R — m,(t) = |u > t|.

Definition 2.2. For a measurable function u, the generalized inverse of its distribution function is called the
monotone decreasing rearrangement, that is the function u. with finite value on on ]0,1[ given by: if s € [0,1],
then u.(s) = Inf{t € R: ju > t| < s} and u.(1) = essinf {u(z),z € [0,1]}.

Properties of the monotone rearrangement

i) The monotone decreasing rearrangement u. of u is equimeasurable to u, that is for allt € R |u > t| =
|u. > t|. This implies in particular that the integral of F'(u) over the level set {u > t} is equal to the integral
of F(u.) over the level set {u. > t}, whenever F is a real valued Borel function with F'(u) integrable on
0,1)].

i1) [If u]belongs to the Sobolev space W1P(0,1),1 < p < oo, then us belongs to the same space and we have
the inequality:

[uile0,1) < 14lLr(0,1)s
where we denote by |.|pr(0,1) the norm in the Lebesgue space LP(0,1).

For more details on these properties, see G. Talenti [52], Rakotoson-Temam [49], Mossino [36], Hardy Littlewood
and Polya [27].

2.1. Definition and properties of the relative rearrangement

Let uw € L*(0,1) and b € L?(0,1),1 < p < oco. For a fixed s in [0,1], we denote by B, the restriction of b to
the level set {¢ = u«(s)}. Define on [0, 1] the function w by

s—|u>u.(s)}
w(s) = / b(z) dz + / (By).(t) dt.
{u>u.(s)} 0

tb * T Wx
Then, w is in the Sobolev space W1P(0,1) and the quotient _(yi_)__u

LP(0,1)-weak if 1 < p < oo, in L*(0, 1)-weak-* if p = co and for the topology o(L(0,1), L>°(0,1)) for p = 1.
The function w’ is called the relative rearrangement of b with respect to u and is denoted by b,-

converges to w' as t \, 0, in

Properties of the relative rearrangement
Let u € L'(0,1) and b € LP(0,1),1 < p < co. Then,
i) The map b € LP(0,1) — by, € LP(0,1) is a contraction. In particular, we have the main inequality:

[bsulLo(0,1) < [blLr(0,1)-

ii) If ® is a nondecreasing function on R , then ®(u)., = ®(u.) provided that ®(u) € L'(0,1).

iii) If up, is a family of functions such that us; converges strongly to a function w in H(0,1) = W2(0,1) and
if | {z: v/(x) = 0} | = | {=z: up,(x) = 0} | = 0, then b.,, converges strongly to b., in LP(0,1), provided that
1<p<oco.

One can also define the monotone and relative rearrangements associated with weighted functions. The defi-
nitions and properties given above can be carried naturally by making use of weighted spaces when necessary.
In particular, if a is a weight function then the distribution function mg of a Lebesgue measurable function u
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with respect to the weight a is m2(t) = / a(xz)dz. Its generalized inverse, that is the monotone decreasing
{u>t}

1
rearrangement of u with respect to a, is denoted u? and satisfies for s € [0, / a(z)dz|
0

ug(s) = Inf{t € R: mi(¢t) < s}-

For more details on weighted relative rearrangement, we refer the reader to Rakotoson-Simon [48]. The link
between relative rearrangement and weighted rearrangement is given in the following lemma:

Lemma 2.1. Let u € WbH1(0,1) be such that | {z: v'(z) = 0}| = 0 and let b € L>(0,1) satisfy essinfb > 0.
Then:

This lemma is proven in Diaz-Rakotoson [19].

We shall also use the following mean value formula; for a complete statement, we refer the interested reader
to Mossino-Temam [34], Mossino [36], Rakotoson-Simon [47].

Lemma 2.2. Let u,b be two functions in L%(0,1). Then, there exists a linear continuous operator from L2(0,1)
into L?(0,1) denoted by M, such that for all g € L?(0,1), one has:

/O 9(5)ban(5) ds = /0 Mo s(9)(@)b(z) da.

Furthermore, one has for  €]0,1[\P(u), My 5(9)(z) = g(mu(u(x))): if g vanishes on P(u) then My . (g)(z) =
0, for z € P(u).

3. SOME THEORETICAL RESULTS FOR SOME VARIATIONAL NONLOCAL PROBLEMS

We begin this section by introducing an abstract result which will cover the resolution of (P,) and of the
discrete problem (P1).

Through out this paper, we shall consider a Hilbert space (V,| - ||) and a separable Banach space (H,| - |)
satisfying:
H1) V is a continuously and compactly imbedded in H; thus, ]iflfl lv|| > 0.

U=

H2) There exist a family of finite elements V;, C V and a family of linear operators I1j, such that ’llirr%) |lv—1Tpo]| =
0,forallveV.
We also consider a nonlinear map G from V into the dual space H' of H satisfying;:
H3) G is continuous from V-strong into H'-weak-star (i.e. for the topology * — o(H', H)).
We then have the:

Theorem 3.1. Assume that H1) to H3) hold and let B: V x V — R be a bilinear form which is coercive (in
the sense that o = | iﬁlf1 B(v,v) > 0), continuous (i.e. sup B(u,v) =M < +0o0).

loli= full=flvli=1
Assume that G has the following growth:

HA4) There exists 0 < My < 'ililfl [lv]l and 0 < A1 € R such that: |G(v)|« < Aol|vl| + M1 for allv € V. Then,
[v]=

i) there exists up € Vi, such that
B(uh,vh) =<< G(uh),vh >, Yup € V3,

ii) there exist w € V and a (subsequence) up € V such that up, converges strongly to u in V, where u solves:
B(u,v) =< G(u),v> forallveV.
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Proof of Theorem 3.1

m
Let m = dimV}, and {¢1, - ,om} be a basis of V. Define the following scalar product on V}, for v = Z'Uj(pj
j=1

m m
and w = Z'lUj(Pj: [v,w] = Z vjw;. We introduce the map T,,: V3 — Vj, by setting

j=1 j=1
TV = Z[B(v, w;)— < G(v),p; >]p;. To prove statement i) of Theorem 3.1, we see that for all v € V},
Jj=1

[Tmv,v] = B(v,v)— < G(w),v > > a|v||? — Xollv| - [v] — Ar]v|
> (e inf [l2ll = 2o ) [olle] = Malol.

Thus, [Tv,v] — +00 as [v,v] — +o0o0. Furthermore, T}, is continuous, the continuity of B and G yield
that. We conclude with Brouwer’s fixed point theorem to obtain: the existence of u;, € V}, such that Tr,up =
A
0, B(un,vn) =< G(up),vr > for all v, € Vi, and ||up| < Constant = A S—
o ll}lf llz]l — Ao
zl=1
We consider v € V' and a subsequence still denoted by uj, such that up, — u weakly in V and H-strong and
G(up) — 4, in H'-weak-star.
Let v € V. Then, one has:

B{up,Ipv) =< G(up), v > (1)
| B(un, Hpv) — B(up,v)| < (Constant) - |Jv — Hpv|| (2)
| < G(up), Ipv > — < G(up),v > | < Coljlv — Muu||. 3)
From relation (1) to (3), we deduce:
B(u,v) = }llirr%) B(up, Ipv) = }llirrb < G(up),v >=< by, v >. (4)

Let us show that }Lin%) f|lur, — ul| = 0. It suffices to show that }llin}) B(up,up) = B(u,u). One has:
}llirr%) < G(un),un >=< £y,u > since |up — u| =30,

that is ’{ir% B(up,un) = B(u,u). By the continuity of G, we deduce that £, = G(u). O

Remark 3.1. Suppose that the map G is only continuous on a subset V of V containing all the V},. In that
case, statement i) as well as the strong convergence remain true. Furthermore, if we can show that u € V, then
the conclusion of the second statement ii) is also true. Let us give an example of such a situation:

We replace assumption H3) by the following one:

H5) Let A be the linear continuous operator from V to V' defined by < Av,w >= B(v,w) for all v, w and
let us denote by D(A) its domain. We assume that H = H’, G maps V into H and its restriction to

D(A)U ( U Vh) =V is continuous from (V, || - ||)-strong into H-weak.
h>0
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Then:
Theorem 3.2. Assume that H1), H2), H}), and H5) hold. If B is the same bilinear form as in Theorem 3.1,

then we have the same conclusions as in Theorem 3.1.

Proof. The proof of statement i) is the same as in Theorem 3.1, while for the statement ii), the function u is
found as a strong limit of a sequence u, and belongs to D(A) since Au = £, € H. Thus, G(un) — G(u) in
H-weak, which implies that £, = G(u). O

Other situations will be given in the applications below when V is not a vector space. In order to verify
the hypotheses satisfied by G when it involves the relative rearrangement b..,,, we introduce the following weak-
convergence:

Lemma 3.1. Let v € L!(0,1), 6 = xp(v.) the characteristic function of P(v.). If v, tends to v in L'(0,1)-
strong then the sequence (1 — 0)b.,, converges weakly to (1 — )by, in LP-weak whenever 1 < p < +oo and
be LP(0,1).

Proof. Let ¢ € C[0,1]. Without loss of generality, we may assume that 8 is continuous and equal to 1 on P(v.).
Then, by the mean value theorem, we have

1 1
| ot = 0bunds = [ My, p(o(1 - 0)bla)d. (5)
0 0
For convenience, we introduce the following notations, for z €]0, 1[:

Brn(x) = |un > vn(z)|  Yn(x) = Balz) + |Un = vn(z)]
B(z) = |v > v(z)| v(z) = B(z) + |v = v(z)].

From the definition of the mean value operator, one can deduce that:

nf p(1-0)(0) < Muple(1—0)(@) < swp (1 0)(0). (6)
Ue[ﬂn(z):"fn(z)] ae[ﬁn(z)v'ﬁt(m)l

From relation (6), we then deduce for all z:

inf 1—6)(0) < liminf M, s(o(1 — 0))(z) <

Bl (1= 0)(o) < Timinf M, o(e(1 — 0))(0) <

lim sup M, (¢(1 — 6))(z) < sup (1 —08)(o).
n o€[B(z),v(x)]

If z € P(v), then [B(z),v(z)] € P(v.) and (1 — 6)(c) = 0 for 0 € [B(z),v(z)], which implies that
7}1_)120 My, p(p(1 —8))(z) = 0. If z ¢ P(v), then B(z) = v(z) ¢ P(v.) and then 71131;0 My, p(p(1 = 0)(z) =
©(B)(z). We have shown that for all z €]0, 1],

Jim My, b(0(1 = 0))(z) = (p(1 - 8))(B(z)) = Mop(¢(1 — 6))(2).

We conclude with Lebesgue’s and the mean value theorems to find:
1

1 1
lim O(1 — )by, ds = / M, p{p(1 — 6))b(z)dx = / p(1 — 6)by,ds (7
0 0 0

n—oe

We end by a classical density argument. O
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Remark 3.2. This lemma is true in any dimension and also for p = +oc.

Lemma 3.2. Let v € L'(0,1), § = xp(v,) be the characteristic function of P(v.) and v, be a sequence of
L*(0,1) converging to v, almost everywhere and in L*(0,1). We set, for z € [0,1]

I(wn)(@) = [my, (vn+@))), Mo ()] (resp 1(0)(a))

and we denote by X1(v,)(x) (Tesp X I(v)(x)> the characteristic function of I(v,)(x) (resp I (v)(m)) Then, for all
o €(0,1],0 # |v > vy (z)|, o # |v> 0|, one has

lim (1 —0)(0)X1(wn) () (@) = (1 = 0)(0)X1(v)(2) ()

n—-+oc

Proof. Let 0 € [0,1],0 # |v > 0] and o # |v > vi(z)].
Note that we always have

|v > 0] < lim inf|v, > 0] < lim sup|v, > 0] < |v > 0|

and,
v > vy (z)| <lim inflv, > v, (2)] < lim suplv, > v, (2)] < v > v4(2)|
So, if 0 < |v > 0] or 0 > v > vy (z)|, then for large n, X1(v,)(z)(0) = XI1(w)@)(0) = 0.
If o €]|lv > 0], |v > vy ()|, then the same conclusion holds, that is X1(v,)@)(¢) = X1(v)(z)(0) =1 for large n.
If o €]lv > 0|,]v > 0[] and jv = 0| > 0, or & €]|v > v4 (), |v > v4+(z)|] and |v = vy (z)| > 0, then (1—6)(c) = 0.
O

nverges strongly to v, then for

1 1
Jim [0 = 0060 (@05 (@8 01) @b () = [ (1= 010101 (00 )9 (1) o)

whenever b € L2(0,1); p’ € C(R) and |p'(t)| < cg, for all t € R, p(0) = 0.

Proof. From Coron’s result (see [13]), we have v}, — v} in L?(0,1) and p'(v,) — p'(v«) in L2(0, 1).

Then, from the above result, we have (1 —0)X1(v,) () ()0} 2 (Vh.) = (1 = 0)X1(w)(w) (-) V4P (vs) in L2(0, 1)-strong
and (1 — 6)buy, — (1 — 0)bs, weakly in L2(0,1).

Since (1 — 6)2 = (1 — ) (remember that 6 is a characteristic function), we then deduce the result from the two
last convergences. O
As a consequence of this lemma, we have the,

Corollary 3.1 (of Lemma 3.3). Under the same assumptions as in Lemma 3.3, the mapv € H*(0,1) — F(v) €

(04 (2)) 12
L2(0,1) is continuous for the strong topology. Here, F(v)(z) = a(x) [Fg - / p'(v*)v;bwdc‘,]Jr )
™M (0)

Proof. Let v, be a sequence converging to a function v in H'(0,1). Let 6(.) be the characteristic function of
P(v.). Since v, (o) = 0 whenever o € P(v.), one then has using Coron’s continuity result that

1
lim / [vl,.(s)8(s)|> ds = 0.
n—oo 0
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Using the fact that
bsv, L2 < 0|12,
we derive that:

1
lim 0(5),, (8)D' (Una (8) X1 (vn) () () Daw, 5 = 0. (8)
n—0 O

Thus, if we write

Moy, (Vn+(2)) 1
/ o b= | =05 310 e (Dt r 0 (8D (5) s

1 ©)
+ / B(5)0lsr ()0 (0 (5) X1 (o ) ()b (5) d,
0

we can apply Lemma 3.3 and the above convergence to find that F(v,)(z) — F(v)(z) Vz. From the main
estimates on the monotone rearrangement and relative rearrangement (see Sect. 1), we derive that:

|F (0n)(@)] < laloo | Fo + 1bl7550,1) (o)l 2 0,1, | < constant (10)

We conclude with Lebesgue’s theorem. O

1
Lemma 3.4. i) For any v € H}(0,1), the map b € L?(0,1) — / v}, (8)bsyds is linear and continuous.
0

1
i) For a fized b € L%(0,1), the map v € WH2(0,1) — / vl (8)bayds is continuous for the strong topology
0
of W12(0,1).

Proof. From the mean value theorem (see Lem. 2.2), one has M, (v, )(z) = v, (mv (v(x))) Thus

/01 VL (5)bayds = /01 ol (mo(0(2)) ) ble)de

which shows the linearity of the map. The continuity is a consequence of Schwartz’s inequality and the main
inequalities for v} and b, (see Sect. 1, properties of the monotone and relative rearrangements). For the state-
ment 43}, the proof is similar to that performed in Corollary 3.1 of Lemma 3.3. ]

Theorem 3.3. Let V}, be a family of finite elements in H} (0, 1) such that there exists a family of linear operators
0, from H(0,1) in Vi, satisfying fljn}) |v—IIhv| 30,1y = 0. Then, there ezist a solution upof (Ph) and a solution

u € H}(0,1) N H?(0,1) of (P,), provided that |\| < 1.

Proof. We define a function G : H3(0,1) — L?(0,1) by setting
1 1 1
©w.9) =2 [ v(soneMs+ [ FOI@peds + [ fa)olz)da
0
for all v € H}(0,1) for all, ¢ € L?(0,1). We have

IGW)Iz2(0,1) < NIV [12(0,0) + laloo | Fo + [bl3ar0 1y [P0 20 1y | + 1F122(0,1)- (11)
( ’ ) 0( £l )
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By Young’s inequality, one deduces that: Ve > 0, Sc. such that:
|G()|L20,1) < (|A] + 5)}U|H3(0,1) + |a]ooCe (12)

Furthermore, the map G is continuous from H{(0,1)-strong into L2(0,1)-weak. (This is a consequence of
1

Corollary 3.1 of Lem. 3.3 and Lem. 3.4). Setting B(v, ¢) = / vy, V = Hj(0,1), H= L*(0,1), we then have,
0

choosing 0 < e <1 —|A|:
AM+e<1< inf B(v,v)- inf |v|y.
jvly=1 [vo|p=1

We can apply Theorem 3.1 to deduce that there exists up € V3, such that B(un,vr) = (G(up), vn) Yup € V3 and
u € V such that B(u,v) = (G(u),v) Vv € V. Since —u” = G(u) € L?(0,1) , we deduce that w € H?(0,1). O
From Theorem 3.1, we also deduce a stability result for the discrete problem, that can be written as:

2
bl < Y - Iaiooc for [ < 1,

where ¢ depends only on a,b, Fp.
As an application of Theorem 3.2, one has the following existence result.

Theorem 3.4. Let f € L?(0,1),bec L*°(0,1) g€ C(R), g >0, b>0 and f < 0.
Then, there ezists u € H?(0,1) N H}(0,1) (non trivial) solution of

1 1 1
/ u'y’ + / 9(Us)bru P = / fe
0 0 0

for all o € H}(0,1).

Proof. We set ¢, (z) = v/2sin(jnz), H = L*(0,1), V = H}(0,1), and V,, = span{p1, 2, - , m}

1
B(v, ) = / v =< Av,p >,
0

with D(A) = H}(0,1) (N H?*(0,1), V = {v € D(A), measure {z : v/(z) = 0} = 0} |J{0}. For v € H}(0,1), we
define G(v) as a solution of (G(v),tp) = —/0 (V) bay (8) P (s)ds + /01 fp for all ¢ € L?(0,1). Therefore,
G(v) € L?(0,1) and one has
IG(®)|z2(0,1) < 19(V)]oolbloo + 1 flz2(0,1)
By Theorem 1 of [46] and Lemma 3.1, we infer G is continuous from (V, | 1az (0,1)) into L2(0, 1)-weak. Thus

H4) is satisfied. Assumptions H1), to H2) are easily checked. Since b > 0, g > 0, then there exists A > 0 such
that —u”(z) + h(z) = f(z) , and if |[u’ = 0] > 0, then h(z) = f(z) a.e. on the set {v' = 0}, which contradicts
the fact that f < 0. Therefore, u € V. We may then apply Remark 1 of Theorem 3.1. Arguing by contradiction,
we see that u # 0. O

4. SOME QUALITATIVE ASPECTS OF A SOLUTION OF (P,) AND (Ph)

. . . . 1
We start this section by studying the existence of symmetric solutions (with respect to 5) whenever f is
symimetric.
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For a measurable function v on [0, 1], we set v*(z) = v(1 ~ z), z € [0, 1].
We shall say that a function v € L1(0,1) is symmetric if v(z) = v(1 — z) a.e. We set

L%(0,1) = {v € L?(0, 1) such that v is symmetric}

Hj,(0,1) = Hg(0,1) N L2(0, 1).

Proposition 4.1. Let u be a solution of (P). Then, the function u® 15 also a solution whenever f € L2(0,1),
a and b are also symmetric.

Proof. First, we observe that u and u® are equimeasurable (1.e. m, = mys). Thus, v? = u, and for all
v € L?(0,1), we have from the mean value theorem and a change of variables,

/0 (s (B)dt = /0 l(ui)'(lus>u(x)|>vs(m)dx
-/ l(uiy(lus > w*(2)|)o(z)dz (13)
= /0 (u8) () Vins (£)dt.

If b is symmetric, then b, = biys = biy. By a simple change of variables, we then have:

1 1
/ F(u)(z)v®(z)dx = / F(u®)(z)v(z)dz.
0 0

For any v € H(0,1), we have v¢ € H}(0,1) and

/01 o' (z)(v®) (z)dz — )\/01 ul, (t)vs, (t)dt — /01 F(u)(z)v®(z)dz = /01 f(z)v*(z)dz, (14)

that is

_ /0 ' o/ (2)v' (1 — z)dz — A /O 1(uz)' £)0ens (£)dE — / F(u®)(z)v(z)dz = / F5(@)(z)dz. (15)

So if f¢ = f, then this last equation reads

/0 (w®) () (z)dx — )\/0 (ul) () Vays ()d2 —/0 F(u®)(z)v(z)dz :/0 f(z)v(z)dz, (16)

that is u® is a solution of (P). g

Theorem 4.1 (Existence of a symmetric solution). If f € L2(0,1) and a and b are also symmetric, then there
exists a symmetric solution u € Hy(0,1) N H2(0,1).

Proof. The set Hj ((0,1) of symmetric functions is a closed subset of H§(0,1). Thus, this space is a Hilbert
separable space endowed with the usual scalar product of H}(0,1). So, let {¢1, - ,@m, -} be a hilbertian
basis of Hé’s(O, 1). We define V,5 to be the vector space spanned by {¢1, - ,¢m}. Reconsidering the same
operator T, as in Theorem 2.1 defined by:

Tmv(z) = Z a;p,(z
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with
1 1 1 1
0= [ V@@ -2 [ @@ - [ Fo)ae @~ [ Hope da

We have, since ; is symmetric, T,,v € V,3,. So, the same argument as in the preceding paragraph (see Theor. 3.1
using Brouwer’s fixed point theorem) shows the existence of u$, € V,3, such that T,,us, = 0. Thus, there exist
a function u € Hj¢(0,1) and a subsequence still denoted by u§, such that u, — u in H§ (0,1) weak and
uniformly in C[0,1]. The function u solves for all v € H§ ,(0,1)

fo (@) (@)dz - A /0 (B (t)d — /0 " Plu)(@)o(e)dz = /0 ' fay(o)ds. (17)

8
Let v € H}(0,1). Then, w = vty

€ H; ,(0,1). So, one has from relation (17):

%[/01 o' (z)v'(z)dz — / L (B)van (t)dt —/ F(u)(z)v(z)dz ——/ fv]

+3 /O (0 (Bt~ A /0 / Fu)(@)o(e)dz / ] =0.

By a change of variables, one has:

(18)

/ o () (v (z) dz = / WY (@) (z) dz = /0 (@) (2) de
/ flz) s(:r)dx—/ o (x)v( x)d:c—/ Ff(@)v(z)d= (19)
/ F(u®)(z)v®(z) d1:~/ F(u)(z)v® x)dx—/ Fu®)(z)v(z)dz —/ F(u)(z)v(z)dz.

So by relations (13, 18, 19), one finally obtains:

1 1 1 1
() — ! (T — v = v(z or 10,1).
fo o (@) (@) dz — A /0 o, (2)van () deo /0 F(u)(z)v(z)dz /0 F(@)o(=) dz for all v € HL(0,1)

O

Theorem 4.2 (Maximum principle). Let u be a solution of (P). If A <0,a <0 (respA>0,a>0) and f >0
(resp f <0), thenu >0 (resp u < 0).

Proof. We set M(t) = —t_ = min(¢,0). Then, M(u) € H}(0,1). We obtain (using Sect. 1 and the fact that
a<0):

/{USO}(“’W&)dz -2 / u,M(u.) = / M)+ /0 ' Fu)(e)M(u)(o)ds <0, (20)

that is

u. (0)

/ () (z)dz + X / M(t)dt <0 (21)
{u<0}

u. (1)

Since A\ < 0, one has:

sup u

/ (W) (z)de =0 = / t_dt : infu > 0.
{u<0} infu
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The proof of the second case (i.e. A > 0,a >0, f < 0) is the same as above, replacing —t_ by ¢;. Indeed, in
this case, we have the following identity:

/ (') (z)dz + %ui*(O) = /1 f@)uy(z)dz + /1 F(u)(z)uy (z)dz. (22)
{u2>0} 0 0

O
Theorem 4.3. Let u be a solution of (P). Then

i) If f #0,2a <0 in [0,1], u— has no plateau, that is meas(P(u_)) =0.
i) If \f <0,2a <0 in [0,1], then the set {z: u'(z) = 0} is of measure zero.

Proof. 1f meas(P(u_)) # 0, then there exists a number ¢ < 0 such that |u = t| > 0. Since u € H?(0,1),
dtu,
u'(r) =0= —d:—(mu(u(x)) a.e. x € {u = t}. Using the equation satisfied by u, one has f(z) = 0 a.e. on

{u = t}. This contradicts the assumption on f.

The proof of the second statement follows a similar idea, i.e. if the measure of the set {z: v/(z) = 0} is positive,
then u”(z) = 0 on that set and then equation (P) leads to:

0< —AQEJr—u’i(|u>u(x)) —Aa(z)Fy = M f(
P a 0 =Af(z) <0.

O

5. NUMERICAL APPROXIMATION OF THE MONOTONE AND RELATIVE REARRANGEMENTS
OF PIECEWISE LINEAR FUNCTIONS. THE MONODIMENSIONAL CASE

We begin this section by some results concerning the properties of the monotone and relative rearrangements
of piecewise linear continuous functions.

Let A={0=29 <21 <... <zn+1 =1} be a mesh on [0,1]. and below {<pj}].v+1 denotes the basis of the

3=0
piecewise linear functions space relative to A, defined by ¢;(z;) = &;;.
The ordered values

Ay =sort {u(zo),u(z1),... u(@n+1)} = {to = minu; <t; <--- <ty = maxu;}

Am ={|Q=mo = my(to) = m1 =my(t1) > - = mpy = my(ty) = 0}

give us the meshes of I, = [minu;, maxu;] and Q. = (0, |Q]), (duplicated values must be suppressed and these
meshes may have M + 1 < N + 2 points).

N+1
Proposition 5.1. Let u(z) = Z ap; be a piecewise linear continuous function related to the mesh A. Then,

j=0
the distribution function m, and the decreasing rearrangement are also the piecewise linear functions related to
meshes A, and A,,. Furtheremore,

Myp1t; — Mty Mipr — My

tif ¢ € [t tisa] i=0,... M—1,
may(t) = ti —tita tiv1 —t; isti

0 if t >ty
|Q| ift<t0

(23)
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Umin Uy U] Umaz

Lit1

Umaz

FiGURE 2. Cases a,! < 0.

and

t 1—t m,t 1—m 1t
’U,*(S): 1+ 7 g — 11+ 1+102

: s € . 24
Mgyl — M,y M1 — M, ¥ (mesr, ) @)

UyTog]l — Upp1 T Upp1 — U )
Proof. Let a} = ——+2 2117 and oy = =+ be defined on each interval. Let
Lol — Ty Tot1 — Tn
T, if t>u,,a} <0
z, if t<u,,a? >0
t—ahy . .
X.(t) = o if ¢t € (min {u,, U1}, max{t,, Uy41}) = Iy,
1
ZTot1 if £ > uyp1,0; >0
Tyt1 if t < upy1,0} <0

be the extended inverse of u|[ showed in Figures 1-2 if o} # 0.

Ty3Tr41]

The measure can be exactly computed by:

my(t7) = Z (@41 — X, (8)] + Z (X, (t) — z,] + Z (2341 — 2] (25)

JEN(t) IEN(Y) JEN(Y)
al>0 a] <0 al=0

where N (t) = {2: t < max {u,,u,+1}}. Since the functions X, are piecewise linear continuous, it is the same for
m,, if u has not plateau. In another case, |u = t,| > 0 is the jump at the value ¢,. 0
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Remark 5.1. Derivatives of u, (respectively m,) are not defined at the mesh points but they are constant on
each interval (m,41,m,) (repectively (t,,t,+1)). Inside each interval we have:

— T
mO= Y X0+ Y X0 = 3 -sigla}) 22 (26)
IEN (D) JEN(2) JEN. (1) 7+l T
al>0 al<0

where N, (¢) = {z. min {u,, 4,11} < ¢t < max{u,, u,41}},if t #u, forall 3 =0,1,... N + 1.

Proposition 5.2. Ifb 1s a preceunse linear positwe function, m2(t) = / b(z) dz 1s a preceunse quadratic
{z u(z)>t}
function related to mesh A,,.

Proof. As in the previous proposition, we find the b-weighted measure

X, (t) Ty41
)= Y [t Y / Dzt 3 / b(z) da

sen(n Y X (0 JEN(B) JEN()

al>0 al<0 al=0

= }: [9(zy+1) — g(X, (¢ Z [9(X,(t)) — g(=z;)] + Z 9(z;41) — 9(z,)
JEN(t) JEN(t) JEN (L)
a]=0 al <0 a]=0
where g is a primitive of b, which is a quadratic function. Oa

Theorem 5.1. Let b and u be precewsse linear functions, where u has not plateau. Then the relative rearrange-
ment 15 a preceunse linear function.

Proof. Following Propositions 5.1 and 5.2, it suffices, in order to compute the b-measures, to solve the linear
system:

a,t? + Bty + 7, = ml(t,)
ey + Bty +n = my (g y) (27)
a1t12+1 + ﬁztz-i-l + % = mZ(tl-Fl)

at extremities and at the middle point, ¢, 1 in the interval [t,,t,+1]. Consequently, the relative rearrangement
is a piecewise linear function inside each interval (m,1,m,):

( *( ) 20,u.(s) + 5,
*u(s) (Z*(j))) - ?nz+1 —m, ? (28)

tz+1 - tz

where the coefficients ,, 3, are given on each interval (¢,,%,+1) by

2
o, = A—tz(mf+1 - 2mf+% +m?) (29)
b b
m,, ., — M 2
B o= =t = oa(mlyy —2ml ) (b + 1) (30)

whith At, = t,41 — t,. O
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Remark 5.2. If b is continuous and u is monotone, N,(t) (see Rem. 4.1) must a unique element, and the
relative rearrangement is continuous. But, in another case, there are two or more elements in the set N, (),
and the continuity can not be assured as we will show in the example below.

Example. Let Q = (0, 2), 2. = (0,Q]) = (0, §), b(z) = 3z and

0<z<1

z
le+l 1<2<2
2%+ 3 S

u(z) =

In this case

6—s 0<s
bew(s) = . %

which is not continuous at %

6. NUMERICAL SOLUTION OF THE VARIATIONAL NONLOCAL PROBLEM

We shall begin by solving the variational problem (P,) in the case a(z) = 0. If f is a symmetric function
and we take a suitable mesh, the discrete problem turns into a linear system with tridiagonal matrix but, in
more general cases, the nonlocal terms will be treated by a fixed point algorithm.

In order to find a numerical solution we consider the usual Py finite element approach.

Let A = {0=2zp<z1 <---<zZn41 =1} be a mesh in the interval [0,1]. We consider the space V;, =
e ~o - N PN _ '

{v € €0, 1] w(0) = v(1) = 0, v, i

reads:

= . e s | , . .
2o,z04q] € F1, forail s =0,1,. ..N I Thus, the disciete variational problem
Tt

Find up € V;, such that

(Pl /;1 ), (z)v} () dz — )\/01 U}, (0) (VR wny, (0) do — /01 f(z)vn(z)dz = 0 for all v, € V.

We are looking for a solution of (P)) without plateau. In that case, by using previous results, we obtain

. M-1 ,m, 4
[ @) (0o = > | U () 2asuna(0) + ) (Tf:i—— :n) 4
M-1
- }: (V) sun (Mg 1) (Une (Ms) — Upi(Miy1)).
=0

As (vp)«y 18 continuous on each interval, values (vp)xy, (M, +%) are well defined. Thus, the variational formulation
can be rewritten as:

{Find}uy, € Vy such that

1 M-1 1
/O Uy @)V} (2) Az = A 3 (0h)eun (Mg ) (Uhe (1) — (i) - / f(@)vn(z)dz = 0

i=1

for all vy, € V.
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The previous variational problem amounts to solving a finite dimensional system associated with a basis {wk}fj:l
of Vh:

N
Find up = Zukcpk € Vi, such that

(Po) ! . i !
[ @)h(2) o = A Y (k)ewn (i ) ne (i) — wna(misa)) = [ f(@hpu(a) do =0
0 i=0 0

forallk=1,2,...N

The key of this result is the linearity in the test function v, proved in Lemma 2.4.
Values m; and (@ )su(m; +%) can be easily computed by using the mesh values u; and a suitable function

7: {0,1,2,...N +1} — {0,1,2,... M} such that t,;y = u; (n is well defined since there are not repeated
values t).

6.1. The symmetric case

The biggest difficults to write the nonlinear system (PJ))’ is the explicit expression of the measures and
rearrangements as function of the values {uo,u1,u2, ... un,un+1}, the mesh {zg,z1,%2,...2N§,ZN+1} and the
permutation 1. Even though, we can compute them by using formulas (23-24-28-29-30), we shall have “nice”
equations only in very particular cases.

Thanks to the qualitative properties of the solution, if f is a positive symmetric function (f(z) = f(1 — z)),
we can suppose that u has not plateau and that it is positive, symmetric respect to the middle point in the
interval (0,1) (i.e. u(z) = u(1—1)), which is its unique maximum, and the minimum is reached on the boundary.
Furthermore, we are going to consider a spatial mesh A {0 = 2o < 21 < -+ < zy+1 = 1} with equidistant points,
(i.e. h==;—z;—1 foralli=1,...N +1) and N odd (so, the middle point of the interval is Ty and the

N+1
discrete solution has no plateau). Then, M = ;_ and
N+1
ool 0<i< T
ne) =
N-i+1 N+l <i<N+1

Now, the relative rearrangements of the piecewise linear basis related to mesh A can be exactly computed.
More precisely we have

+1

N
Proposition 6.1. 1)) If1<i<

, then
Xi— «\8)) —Ti— .
1(u (2}3) L o ifse (mi, mi_1)
ikulS) = Xi Ux\S)) — T 1
Pisu(S) _ X (2)}1 i s € (Mg, ma)

0 otherwise.
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N+1
w) If \;_ <1< N, then
X’L u*(s)) —Z 1
X S f s € (Mg, M)
ku = Xoo1(us(8)) — zo— i
e (5) -1 ;h)) L 5 € (Mge), M)
0 otherwise.

N +1
w) Ifv = T+’ then

(pz*u(s) = { Xz*l(u*(}sl)) = if s€ (m“ml—l)

otherwise.

By using this expressions in (P)’ we obtain the lnear problem

Find u € V}, such that
ug = 0
ZTyt1 1 Lay41
[ @@ oAzl -l - [ f@)e @) de=0
To—1 Ty—1
N-1
foralle =1,... ——
. - 2
241 1 241
o) [ @@ ar - A iy~ 20w - [ @)z de =0
(P1) ZTy—1 Ei Jx1
N+1
fors = ——
s . 2
41 1 21
/ w(z)p, (x) dz — A (U1 — Upa] — / f(@)p.(z)dz =0
Ty—1 4 ZTo—1 N 3
for all 2+ = —;——,...N,
\ uny41 =0
which can be reduced to a linear system whose matrix reads
2 1, A
b, okt o | o o0
R R “rtid
A
k-3 3 |-p+3| o 0o
A= | 0 R S I £ 0 0
0 0 0 [-2+3]| § -%i-1
0 0 0 0 -++2 2 33
0 . 0 0 0 -3+3 2

This matrix is a M-matrix if 0 < A < # (see [61]) and satisfies a discrete maximum principle (if b > 0, then
the solution of Apu = b satisfies u > 0) according to the results for the continuous problem.
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6.2. The nonsymmetric case
When f is not symmetric, we cannot expect a symmetric solution. Then, the nonlinear system (P, 0)' is
solved by using a fixed point algorithm.

e Given u,(LLO) eV = {v € C°00,1]: v(0) = ¢g, v(1) = ¢y, Uiz, 5,4,) € P1, for allz =0, 1,...N}, for | =

1,2,..., we find u( = <p0+Zu Yk + Cc1pN+1 € Vh such that

/(u '(2)p)(z) dz =

S () g () (Wl ) — D 1)) + / f(@)pn(a) da
1=0
forall k =1,2,...N.

(31)

In order to compute relative and decreasing rearrangements of ¢, and ug—l) in each iteration, we must find

the table (the index (I — 1) is drooped)

[t [m]pgr[of]
to | mo | B5 | &5
t1 mi ,61 ¢711c

tm | ma | By | P

k
vr(z)dz qu:—IH——L 1=0,..M—1

/{u(l 1)> (t— 1>(m )} Myy1 — M,

where the two final columns correspond to a generic basis function .
The measures 8¢ are exactly computed by a numerical quadrature formula of low order (for instance the

middle point or the trapezoidal rules). Furthermore, if uh =1 s without flat regions, the measures are continuous

functions and m, = m_a-n(t.), Bf = (L »(t). So, from (28), we have ¢F = (i), «-n (m—zj;l—l+l—>
h h
Finally, we have ug*_l)(ml) = t, and the rightside in (31) can be evaluated.
The same technique works for solving the full problem:
iN’
Find up = Zuktpk € Vh such that
k=1
'Ph , 1 M-1
P [ @@z 2 3 (o) O ) o) — una )~ [ ) @)on(a) s =
0 1=0
:/ f(@)pr(z) dz forallk=1,2,...N
0

1/2

Moy, (Un4 (2))
where F(u)(2) = o(o) |F§ — [ (1) () ()b (5) ds]

muh (0)

..‘L
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For each fixed point iteration we must find u® € V), the solution of

1
/ (W) ()} (z)dz = / F(ul ™) (z)px(z) dz +

M-1

AP ICONE o (&)l (D) — ufl D (ml0)) + / f(@)on(@) da

=0
forallk=1,2,...N.

The relative rearrangement b*u(l—l) in the new term F(ugﬁl)) can be approached inside the intervals [m;41, m;]
h
by w; where

b b
m ., —m! .
w = T =M mg:/ b(z)dz, i=0,...M—1,
Miy1 = M; {87 >l (m)}

just by adding two columns in the above table.

6.3. Numerical results

Firstly, we have tested the accuracy and the influence of the mesh on several problems for the simplified
model (a(z) = 0). More precisely, given a data function f, we compute the solution u of

{ —u"(2) = Aui(ma(u(2))) = f(z) in (0,1)
u(0) = ¢ u(l) =c

in the cases: N
Test 1: f(z) = w?sin(nz) + —;I cos(mz)| (the exact solution is u(z) = sin(wzx)) and,

A :
Test 2: f(z) =2+ 2 1 — 42(1 — z) (the exact solution is u(z) = z(1 — z)).

These problems have been solved by using five meshes indexed by their number of points, N, in view of to
see the influence of the nonlocal term in the approximation order.

Table 1. Errors in L*°-norm.

I N 1] 11 ] 21 | 31 | 41 [ 8 | 91 |
Test 1[[428 x1073]1.08x103[4.82x 10 %271 x107%[6.76 x 10~° [ 5.35 x 10~°
Test 2111 x 1073 [ 276 x 1072 [1.23 x 1072 [ 691 x 1075 | 1.73 x 10~° [ 1.36 x 10~°

The table 1 shows the same approximation order as in the linear problem (Test 1) but there is not exactly
computation when the solution belongs to P2 (Test 2).

Next, a more general case is considered, where f and, consequently, the solution u are nonsymmetric:

4(1 — /0.25 + 4z(z — 0.5)) — if z € (0,0.5)
. ,0.

Test 3: f(z) =—-2—A ,u(z) = z(z — 0.5).
—1—24/0.25+ 4z(z — 0.5) 2 e (051)
3 5,1).
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FiGURE 3. Solution.

Now, the analyse in Section 6.1 is no more valid, but the difficulty coming from the nonlocal terms can be
solved by using the fixed point method. Errors in L®-norm are repported here below.

N 11 21 31 41 81 91
Test 3{[240x 1073 [ 1.18 x 1073 [9.3d x 107% [ 6.72 x 1074 | 3.56 x 10~% [ 3.26 x 1074

In order to test the influence of the approximation of the relative rearrangement of a given function b, we
take f(z) = 72 cos(nz) — A g(cos(nz)) sin(rz), b(z) = sin(nz) and we solve

{ —u"(x) — Ag(u(z))bau(mu(u(z))) = f(z) in (0,1)
u(0) = co u(l) = ¢;.

The convergence of fixed point iterations is not assured since the relative rearrangement does not satisfy a
Lipschitz condition related to u. Nevertheless, in some particular cases, it can be proved that

[bses = baoll < L(B)l|u — o]

(see [46] for details).

We pose g{u) = u in Test 4 and g(u) = u? in Test 5 (in both cases the exact solution is u(z) = cos(rz)) and
we find the same order of approximation as in the linear problem:

I~ [ 1 [ 21 [ 38 [ 4 [ =8 T 9 ]
Test 4 840 x 107 [2.10x 10 2 [ 9.33x 10 ° [ 526 x 10 ° | 1.32x 10 0 | 1.04 x 10
Test 5 || 2.77 x 10 ° [ 6.93 x 10 * [ 3.10x 10 7 | 1.74x 10 % [4.36 x 10 5 | 3.44 x 10~

2
Finally, we solve (P,) with f(z) =0, b(z) = 22, a(z) = 1, p(z) = % and Fy = 4. The computed solution is

given in Figure 3.

Remark 6.1. Analogous discretization and approximation techniques can be employed for 2 — D and 3 — D
nonsymmetric problems (see [5] for (PS)).
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