
ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

JEAN-MICHEL RAKOTOSON

MARIA LUISA SEOANE
Numerical approximations of the relative rearrangement : the piecewise
linear case. Application to some nonlocal problems
ESAIM: Modélisation mathématique et analyse numérique, tome 34, no 2 (2000),
p. 477-499
<http://www.numdam.org/item?id=M2AN_2000__34_2_477_0>

© SMAI, EDP Sciences, 2000, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse
numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_2000__34_2_477_0
http://www.esaim-m2an.org/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/
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Modélisation Mathématique et Analyse Numérique

NUMERICAL APPROXIMATIONS OF THE RELATIVE REARRANGEMENT:
THE PIECEWISE LINEAR CASE.

APPLICATION TO SOME NONLOCAL PROBLEMS *>**

JEAN-MICHEL RAKOTOSON1 AND MARIA LUISA SEOANE2

Abstract. We first prove an abstract resuit for a class of nonlocal problems using fixed point method.
We apply this result to équations révélant from plasma physic problems. These équations contain terms
like monotone or relative rearrangement of fonctions. So, we start the approximation study by using
finite element to discretize this nonstandard quantities. We end the paper by giving a numerical
resolution of a model containing those terms.
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1. INTRODUCTION

In the mathematical models appearing in plasma physics either for the Tokamak modeis or the Stellerators
models, the modelling équations may depend not only on the solution u but also on the distribution function
associated with that function, that is the volume of a level set mu(t) — meas{x 6 Q,,u(x) > t}, t € K, (here, Q
is the mathematical domain). What is more, it might even depend on the generalized inverse of that function
mu, called the decreasing monotone rearrangement of u and denoted by u* and its derivatives u+ or u". For
instance, in the Tokamak models, Grad [25] and Shafranov [51], conjectured that the current flux u (associated
with the magnetic fields and the pressure) can satisfy an équation of the form

-Au(x) - \ufl{mu{u(x)) = f{x)7x e ft

(see also Temam [55,57]). More recently, in the case of a confined plasma in a Stellerator, Dfaz-Rakotoson
(see [15,16] for the modelization, [19] for the mathematical justification and [5] for the numerical solution)
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established that the current field u satisfies the following équation:

ru+(x)f P + w 1 1 / 2 r / M
-Au = a(x) F„2-2 / p'(t)b*u(mu(t))dt +pf{u) \b(x) - b*u(mu(u(x)))\ in fi

./o . L v / J

ti — ̂  on

where
b*u = lim

(u + tb)* — u*

is called, according to Mossino-Temam [34], the relative rearrangement of b with respect to u (see below for
more details).

In this article, we wish to present a method for the numerical approximation of the monotone and relative
rearrangements by using finite éléments Pi. Since very few results are known concerning the regularity of the
derivatives of monotone and relative rearrangement functions, we shall only look at the convergence of the
scheme according to what we know on the first derivative of the monotone rearrangement. (Almost nothing is
known on the second derivatives of these quantities).

As an application in P.D.E, we choose a model which involves the first derivative of the monotone relative

rearrangement and whose nonlinearities are of the same type as those in Grad-Shafranov in the Stellerator

models, say:

-u"(x)-\u:(mu(u(x)))-a(x){F§- J ^ / K X U ^ = ƒ(*)

u(0) = u{\) = 0

The variational problem associated with that problem reads:

' Find u G Hï(Q, 1) such that

(Pv)
ƒ uf(x)vf(x)dx — X / u^(s)v#u(s)ds — I F(u)(x)v(x)dx

Jo JQ JQ

- / f(x)v(x)dx for all v G iJo
x(0,1)

Jo

where F(u)(x) = a(x) \F§ - / p!{u^)u^Kudt\ , a and b are in L°°(0,l), ƒ G L2(0,l), Fo > 0 is a
L Jmu(ö) J +

constant and p a C1-function with pf bounded for the sake of simplicity.
Along this paper, we use the fact that u* G Hx(0,1) if u G ̂ ( 0 , 1 ) and then * [Tnu(u(x))j — u^(mu(u(x))j

a.e.
In order to give a theoretical and numerical resolution of that problem, we shall consider a family of subspaces
Vh of HQ(0, 1) with finite dimension. Then, we shall prove the existence of a function UH G VH satisfying the
following approximate problem

Find such that

Jo Jo
- ƒ F(uh)(x)vh(x)dx

= / f(x)vh(x)dx for all vh e Vh,
Jo

In order to solve problem (Vv) and (7^), we introducé an abstract result which will allow us to consider other
nonlinearities than in (V).
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This abstract resuit reads as follow:
Let (V, || • ||) be a Hubert space continuously and compactly imbedded in a Banach separable space (£f, | - |).
Assume that there exist a family of finite éléments Vh C V and a family of linear operators ü^: V —» Vh such
that lim \\v — Ü^H = 0 for all v € V. Consider B: F x F - > R a bilinear coercive and continuous map and G:

h—>Q

V —> üT(dual of H) a nonlinear continuous map from V-strong into H1 — * — a(H',H) (weak-star topology),
with G having the following growth:

\G(v)U < Ao||v|| + Ai 0 < Ao < ( inf B[v,v]) • f inf ||v||)
\ ||w|=i / v |uj=i /

Then:

i) There exists Uh G Vh such that

B(uh,vh) =< G(uh),vh >, for all vh € 14

ii) There exists u € V such that

ŵ  —> u in F strong B[u, v] =< G(u)yv > for all v 6 V.

It happens that for the kind of operators that we meet in the liter at ure, the map G is not continuous on the
whole space V but only on a subset V of V, containing all Vh] in which case we may assume that H = Hf and
then the continuity of G can be restricted to V C V —> iJ-weak, (for instance if A G £(V, V7) associated with
the bilinear form B then V = D(A) (domain of 4̂) MV/, induced by the norm of V). The above conclusion

h
remains true provided that we show that u G V.

We shall apply statement i) and ii) with V = i?o(0,1) H = L2(0,1)

B(u,v)= f v!vf, <G(u),v>=\ [ u > * u + / F(u)(a;)?;(x)dx + ƒ f(x)v(x)d
Jo Jo Jo JQ

X.

The "main" difflculty will be to prove the continuity of G from y~strong into L2(0, l)-weak. So we shall introducé
some appropriate new lemmas (see Lem. 3.1 to Lem. 3.4).
As a conséquence of this analysis, we dérive a stability resuit for Uh of the form:

I^IL2(O,I) ^ 1 n\ f o r lAi < 1 -

We also obtain for statement ii) the convergence of the scheme.
Some qualitative properties for the solutions of the continuous and discrete problems are given: when ƒ is
symmetrie (that is f(x) = f(l — #)), we will show the existence of symmetrie solutions. When Xf < 0, Xa < 0,
then every solution u of (Vv) is such that the set {x: uf{x) = 0} is of measure zero. We shall also provide the
rigidity matrix associated with the discretized problem.

For convenience for the reader, we start by recalling some useful notions on the monotone and relative
rearrangements.

2. MONOTONE AND RELATIVE REARRANGEMENTS OF A FUNCTION:
DÉFINITIONS AND PROPERTIES

Since the numerical schemes that we shall present below are in one dimension, we restrict the introduction
of this section to functions defined on [0,1], Let u be a real valued Lebesgue measurable function defined on
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]0,1[. For t G K, we dénote by {u > t} the set {x G]0,1[, u(x) > £}, and by {u = t} the set {x G]0,1[, u{x) = ij-
The Lebesgue measure of any measurable set E is denoted |JE7| or meas(.E); in particular, the measure of the
above level sets are denoted by, |u > t|, \u — t\.

D é f i n i t i o n 2 . 1 - A m e a s u r a b l e f u n c t i o n u o n ] 0 , 1 [ ̂ a s a p l a t e a u a t a v a l u e t i f \ u = t \ > 0 .

We set P(u) = {x G]0, 1[: |U - u(x)\ > 0}.
The distribution function associated with u is the real valued function t e R - > mu(t) = \u > t\.

Définition 2.2. For a measurable function u} the generalized inverse of its distribution function is called the
monotone decreasing rearrangement, that is the function u* with finite value on on ]0,1[ given by: if s G [0,1[,
thenu*(s) =ïni{t G R: \u > t\ < s} and u*(l) = essinf {u(x)7x G [0,1]}.

Properties of the monotone rearrangement

i) The monotone decreasing rearrangement u* of u is equimeasurable to u, that is for all t E R \u > t\ =
|u* > t\. This implies in particular that the intégral ofF(u) over the level set {u > t} is equal to the intégral
of F(u+) over the level set {u* > t}} whenever F is a real valued Borel function with F(u) integrable on
[0,1].

ii) If u belongs to the Sobolev space W1)3:)(0,1), 1 < p < oo, then u* belongs to the same space and we have
the inequality:

| U in/Up(0l))
where we dénote by | . |LP(O,I) ihe norm in the Lebesgue space Lp(0,1).

For more details on these properties, see G. Talenti [52], Rakotoson-Temam [49], Mossino [36], Hardy Littlewood
andPolya[27].

2.1. Définition and properties of the relative rearrangement

Let u G Lx(0,1) and b G Lp(0,1), 1 < p < oo. For a fixed s in [0,1], we dénote by Bs the restriction of b to
the level set {u = it*(s)}. Define on [0,1] the function w by

b(x)dx+ / (Bs)*{t)dt.

Then, w is in the Sobolev space HAl)P(0,1) and the quotient * converges to wf as t \ 0, in

, l)-weak if 1 < p < cx>, in L°°(0, l)-weak-* if p = oo and for the topology ^(L^O, 1), L°°(0,1)) for p = 1.
The function w' is called the relative rearrangement of b with respect to u and is denoted by b*u.

Properties of the relative rearrangement

Let u G L^O, 1) and b € Z,P(0, 1), 1 < p < oo. Then,
i) The map b £ £p(0,1) —> b*u G Lp(0,1) is a contraction. In particular, we have the main inequality:

| 6 * « | L P ( 0 , 1 ) - l^|lrP(O,l)'

ii) If $ is a nondecreasing function on R , then 3>(u)*u = $(w*) provided that $(u) G ̂ (0 ,1) .
iii) If u/i is a family of functions such that Uh converges strongly to a function u in iürl(0,1) = W1)2(0,1) and

if | {x: v!{x) = 0} | = | {x: u'h(x) = 0} | = 0, then b*Uh converges strongly to b*u in Lp(0,1), provided that
1 < p < oo.

One can also define the monotone and relative rearrangements associated with weighted functions. The défi-
nitions and properties given above can be carried naturally by making use of weighted spaces when necessary.
In particular, if a is a weight function then the distribution function m^ of a Lebesgue measurable function u
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with respect to the weight a is m£(£) = / a{x)dx. lts generalized inverse, that is the monotone decreasing
J{u>t}

rearrangement of u with respect to a, is denoted u% and satisfies for s G [0, / a(x)dx[
Jo

ut (s) = Inf {t € R: ma
u{t) < s) •

For more details on weighted relative rearrangement, we refer the reader to Rakotoson-Simon [48]. The link
between relative rearrangement and weighted rearrangement is given in the following lemma:

Lemma 2.1. Let u e W1'1^, 1) be such that | {x: u\x) = 0} | = 0 and let b <E L°°(0,1) satisfy essinf b > 0.
Then:

h (m u (*\w <{rnu{u{x)))
Ku(mu(u(x))) = {uïy{rnbu{u{x))y

This lemma is proven in Dïaz-Rakotoson [19].
We shall also use the following mean value formula; for a complete statement, we refer the interested reader

to Mossino-Temam [34], Mossino [36], Rakotoson-Simon [47].

Lemma 2.2. Let u, b be two functions in L2(0,1). Then, there exists a linear continuons operator from L2(0,1)
into L2(0,1) denoted by Mu^ such that for all g e L2(0,1), one has:

/ g{s)b*u{s) ds = MUib(g)(x)b(x)dx.
Jo JQ

Furthermore, one has for x e]0, l[\P(u), Mu${g)(x) — g{mu(u(x))): if g vanishes on P(u*) then MbjU(g)(x) =
0, forx eP(u).

3. SOME THEORETICAL RESULTS FOR SOME VARIATIONAL NONLOCAL PROBLEMS

We begin this section by introducing an abstract result which will cover the resolution of (Vv) and of the
discrete problem (Vy).
Through out this paper, we shall consider a Hubert space (V, || • ||) and a separable Banach space (iï", | • |)
satisfying:
Hl) 1/ is a continuously and compactly imbedded in H\ thus, inf \\v\\ > 0.

|u|=i

H2) There exist a family of finite éléments VH C V and a family of linear operators n^ such that lim \\v—U.hv\\ =

0, for all v€V. ~*
We also consider a nonlinear map G from V into the dual space Hf of H satisfying:

H3) G is continuous from V-strong into iJ'-weak-star (ie. for the topology * — o~(H\ H)).
We then have the:

Theorem 3.1. Assume that Hl) to H3) hold and let B: 7 x ^ - ^ 1 be a büinear form which is coercive (in
the sense that a = inf B(v,v) > 0), continuous (i.e. sup B(u,v) = M < +ooj.

N M HI=IMI=i
Assume that G has the following growth:

H4) There exists 0 < Ao < a inf ||v|| and 0 < Ai G R such that: |G(v)|* < A0||v|| + Ai for all v G V. Then,
| v | = l

i) there exists Uh G Vh such that

B(uh,vh) =< G(uh),vh >, \fvh e Vh

ii) there exist u £V and a (subsequence) Uh € V such that Uh converges strongly to u in V, where u solves:
B(u}v) =< G(u),v > for all v e V.
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Proof of Theorem 3,1
m

Let m = dimT/̂  and {ipi, • • * , <fm} be a basis of Vh- Define the following scalar product on Vh for v = / J Vj<pj

and w = ^^Wjifj: [v,w] = ^^VjWj. We introducé the map Tm: Vh —> Vh by setting

(^, ^ j ) " < G(v), ipj >]ipj. To prove statement i) of Theorem 3.1, we see that for all v £ Vh

[rmv,v] = B(v,v)- < G(v),v > > a\\v\\2 - XQ\\v\\ • \v\ - \x\v\

> la inf | |z| | — AQ) ll^lll^l — Ai|f |.
V \z\—i /

Thus, [TmV^v] -^ +oo as [v,v] —• +oo. Furthermore, Tm is continuous, the continuity of B and G yield
that. We conclude with Brouwer's fixed point theorem to obtain: the existence of Uh G Vh such that TmUh =

= < G(uh),Vh > for all ̂  G V̂  and llu/JI < Constant = 1
. r I I I I .

a mi \\z\\ — Ao

We consider u G V and a subsequence still denoted by Uh such that Uh —*- u weakly in V and if-strong and
G(uh) —̂  ̂ w in iJ'-weak-star.
Let v €V. Then, one has:

,nhv) =< G(uh),nhv > (ï)

-B(uh,v)\ < (Constant)- ||v - Uhv\\ (2)

! <G(uh),ILhv> - <G(uh),v> | <C0\\v-Uhv\\. (3)

From relation (1) to (3), we deduce:

B(u,v) = lim B(uh,ILhv) = lim < G{uh),v >=< £u,v > . (4)
h—>0 h—^0

Let us show that lim \\UH — u\\ = 0. It sufBces to show that lim B(uh,Uh) = B(u,u). One has:
h—^0 h—>0

lim < G(uh)i Uh > = < tuiu > since |tx/i — u

that is lim B(uhyUh) = B(u,u). By the continuity of G, we deduce that £u = G(u). D
h—»0

Remark 3.1. Suppose that the map G is only continuous on a subset V of y containing all the Vh- In that
case, statement i) as well as the strong convergence remain true. Furthermore, if we can show that u ê V , then
the conclusion of the second statement ii) is also true. Let us give an example of such a situation:

We replace assumption H3) by the following one:
H5) Let A be the linear continuous operator from V to Vf defined by < Av,w >= B(v,w) for all v,w and

let us dénote by D(A) its domain. We assume that H = H', G maps V into H and its restriction to

D(A) U f M Vh) = V is continuous from (V, || • ||)-strong into if-weak.
h>0
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Then:

Theorem 3.2. Assume that Hl), H2), H4)f and H5) hold. If B is the same bilinear form as in Theorem 3.1,
then we have the same conclusions as in Theorem 3.1.

Proof. The proof of statement i) is the same as in Theorem 3.1. while for the statement ii), the function u is
found as a strong limit of a séquence Uh> and belongs to D(A) since Au = £u G H. Thus, G(uh) —> G(u) in
if-weak, which implies that £u = G(u). D

Other situations will be given in the applications below when V is not a vector space. In order to verify
the hypotheses satisfied by G when it involves the relative rearrangement 6*u, we introducé the following weak-
convergence:

Lemma 3.1. Let v e 1^(0,1), 0 = XP(V*) ^e characteristic function of P(v*). If vn tends to v in L1(0,1)-
strong then the séquence (1 — 6)b*Vn converges weakly to (1 — 6)b*v in IP-weak whenever 1 < p < -hoo and
6eLP(0, l ) .

Proof Let (f e C[0,1]. Without loss of generality, we may assume that 0 is continuous and equal to 1 on P(v*).
Then, by the mean value theorem, we have

f p{l - 0)b*Vnds = f MVri>b{(p(l-6))b(x)dx.
Jo Jo

(5)

For convenience, we introducé the following notations, for x G]0,1[:

Pn(x) = \vn > Vn{x)\ Jn(x) = /3n(x) + \vn = Vn(x)\
j3(x) = \v> v(x)\ 7(x) = j3{x) + \v = v(x)\.

Prom the définition of the mean value operator, one can deduce that:

inf ^(1 - 9){a) < MVnib(<p(l - 9))(x) < sup ^(1 - Ö)(a). (6)

From relation (6), we then deduce for all x:

inf (p(l - 0)(a) < liminf MVntb(<p(l -

limsup MUn b(^(l - 9)){x) < sup

If x e P{v), then [f3(x)^{x)\ C P(v*) and (1 - 9)(er) = 0 for a G [0(x)yj(x)], which implies that
lim MVnjb(<p(l - 9))(x) = 0. If x $ P(v)> then @(x) = -y(x) £ P(v*) and then lim MVntb(<p(l - 9))(x) =

<p((3)(x). We have shown that for all x e]0,1[,

lim M„n
n—*<X)

We conclude with Lebesgue's and the mean value theorems to find:

lim f tp(l - 6)b*Vnds = f Mv,b(ip(l - 9))b(x)dx = f tp(l - 9)b*vds (7)
n ^ ° ° J o Jo Jo

We end by a classical density argument. D
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Remark 3.2. This lemma is true in any dimension and also for p = +oo.

Lemma 3.2. Let v G L1(0,1)} 9 = XP(V*) be the characteristic function of P{v*) and vn be a séquence of
ly1 (0,1) converging to v, almost everywhere and in Lx(0,1). We set, for x G [0,1]

I(vn)(x)= [ ^ „ ( v W ) ) , ™«»(0)] (resp J(v)(

and we dénote by Xi{vn)(x)yesp Xi{v)(x)) the characteristic function of I(vn)(x)(resp I(v)(x)j. Then, for all

a G [0,1],<7 ^ \v > v+(x)\, a ^ \v > O|; one has

lim (1 - 0)(a)xï(vn)(x)(cr) = (1 - 0)(<?)Xi{v)(x)(v)-

Proof. Let a G [0,1], a ^ \v > O| and a / |u > v+(a:)|.
Note that we always have

\v > 0| < lim inf \vn > 0| < lim sup|t?n > 0| < \v > 0|

and,
\v > v+(x)\ < lim inf|?;n > vn+(x)\ < lim sup|^n > vn+(x)\ < \v > ^+(x)|

So, if a < \v > 0| or a > \v > ^+(^)|, then for large n, Xi(vn)(x)(&) = Xi(v)(x)(&) = 0.
If a G]|f > 0|, \v > v+(x)\[) then the same conclusion holds, that is Xi{vn)(x)(^) = X/(v)(x)(cr) = 1 for large n.
lier e]\v > 0\,\v >0|] and \v = 0| > 0, or a é\\v > v+{x)\,\v > v+(x)\] and \v = v+(x)\ > 0, then (1 -O)(cr) = 0 .

D

Leraraa 3,3, Under the same assuvrvpiions as in Lemma 3.2, if v>n G Hj(0,1) converges strongly to v, then for
all x G [0,1]

f1 ' f1

h~*° Jo Jo
whenever b G L2(0,1), pf G C(E) and |p'(t)| < c2; /or oH t e l , p(ö) = 0.

Proof. Prom Coron's result (see [13]), we have vf
h^ —> v* in L2(0,1) and pf(vh*) —>• jp;(^*) in L2(0,1).

Then, from the above result, we have (1 — 9)xi(vh)(x)(')vh P\vh*) —»• (1 — @)Xi(v)(x)(')v*Pf(v*) in L2(0, l)-strong
and (1 - 0)b*Vh -* (1 - 0)b*v weakly in L2(0,1).
Since (1 — 6)2 = (1 — 6) (remember that 0 is a characteristic function), we then deduce the result from the two
last convergences. D
As a conséquence of this lemma, we have the,

Corollary 3.1 (of Lemma 3.3). Under the same assumptions as in Lemma 3.3, the map v G i?1(0,1) —• F(v) G

L2(0,1) is continuous for the strong topology. Rere, F(v)(x) = a(x) \FQ — / p^
L Jmv(0)

Proof Let vn be a séquence converging to a function v in i /^O, 1). Let ö(.) be the characteristic function of
P(v*). Since vi(<?) = 0 whenever a G P(t;*), one then has using Coron's continuity result that

lim
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Using the fact that
\hvjL*<\b\L^

we dérive that:

lin^ / O(s)v'w(s)pf(vn*(s)xi(Vn){x)(s)b*vnds = O. (8)

Jo

Thus, if we write

rmVn(vn+(x)) ni

'W /
- O(s))v'n*(s)pf(yn*(s)xi(Vn)(x)(s)b*Vn{s)ds

+ ƒ 6(3Wn*(S)p'(Vn*(s)Xl(vn)(x)($)b*vn(
s)ds>

Jo
we can apply Lemma 3.3 and the above convergence to find that F(vn)(x) —> F(v)(x) Vx. Prom the main
estimâtes on the monotone rearrangement and relative rearrangement (see Sect. 1), we dérive that:

\F(vn)(x)\ < Hoo [FO + \b\l{]0A)\p(vn)\^{0A)] < constant (10)

We conclude with Lebesgue's theorem. D

Lemma 3.4. i) For any v G #o(0,1), the map b e L2(0,1) —• / v'+(s)b*vds is linear and continuons.
Jo

ii) For a fixed b € L2(0,1), the map v € VF1)2(0,1) —> / v+(s)b*vds is continuons for the strong topology

^ 2 ( )

Proof. Prom the mean value theorem (see Lem. 2.2), one has MVjb{v*)(x) = vfAmv{v{x))\. Thus

which shows the linearity of the map. The continuity is a conséquence of Schwartz's inequality and the main
inequalities for v* and b*v (see Sect. 1, properties of the monotone and relative rearrangements). For the state-
ment ii), the proof is similar to that performed in Corollary 3.1 of Lemma 3.3. D

Theorem 3.3. Let Vh be afamily offinite éléments in H^(0,1) such that there exists afamily oflinear operators
lift from HQ(Q, 1) in Vh satisfying lim \v — Uhv\Hi^0^ = 0. Then, there exist a solution Uhof (V^) and a solution

u e fl^(0,1) n tf2(0,1) of (Vv), provided that |A| < 1.

Proof. We define a function G : H£(0,1) -> L2(0,1) by setting

(G(v),<p) = \ [ v'*(s)ip*v(s)ds + f F(v)(x)<p(x)dx + f f{x)ip(x)dx
Jo Jo Jo

for all v e H£(0,1) for all, tp e L2(0,1). We have

\G(v)\LHo,i) < |A||^U2(Oïl) + l a U ^ o + t&li42
(Osl)|p(^)|^2

(Oïl)] -h 1/1^(0,1)- (H)
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By Young's inequality, one deduces that: Ve > 0, 3c£ such that:

\G(v)\L2{0A) < (|A| + e)\v\Hii0A) + lolooç,. (12)

Furthermore, the map G is continuous from HQ(0, l)-strong m to £2(0, l)-weak. (This is a conséquence of
f1

Corollary 3.1 of Lem. 3.3 and Lem. 3.4). Setting B(v, <p) = / v'tp', V = H£(0,1), H = L2(0,1), we then have,
Jo

choosing 0 < e < 1 — |A|:
| A | + e < l < inf B(v,v) • inf \v\v.1 ' - \ v \ v = 1

 v ; \v\H=i] l v

We can apply Theorem 3.1 to deduce that there exists Uh G Vh such that B(uhyVh) = (G(uh),Vh) VÜ^ G Vh and
u G V such that B(u, v) = (G(u), v) Vu G V. Since -u" = G(u) e L2(0,1) , we deduce that u e H2(0,1). D
Prom Theorem 3.1, we also deduce a stability result for the discrete problem, that can be written as:

-f lalopc
' ' '

where c dépends only on a, 6, FQ.
As an application of Theorem 3.2, one has the following existence result.

Theorem 3.4. Let f e L2(0,1), b e L°°(0,1) g G C(R), p > 0, 6 > 0 and ƒ < 0.
Then, there exists u G H2(0,1) n i?o(0) 1) T^ön trivial) solution of

ƒ « y -h / g{u*)Kuif*u = f (f
Jo Jo Jo

forall(peH£(0,l).

Proof. We set <p3(x) = \/2 sin(jTrx), iJ = £2(0,1), F = iï^O, 1), and Vm = span{y?i, y?2, * * - ,

= I vf<p' = <

with D(A) = flJ(0,1) n ^ 2 ( 0 , 1 ) , V = {̂  G D(A), measure {x : v\x) = 0} = 0} |J{0}. For v G ̂ ( 0 , 1 ) , we

define G(v) as a solution of (G(v),ipj = — / 5(v*)6*v(5)y?*v(s)ds + I fip for all <p G L2(0,1). Therefore,

G(u) G L2(0,1) and one has

By Theorem 1 of [46] and Lemma 3.1, we infer G is continuous from f V, | • |#i(o,i)) into L2(0, l)-weak. Thus

H4) is satisfied. Assumptions Hl), to H2) are easily checked. Since b > 0, g > 0, then there exists h > 0 such
that —u"(x) + h(x) = /(x) , and if \u' = 0| > 0, then /i(cr) = f(x) a.e. on the set {v! = 0}, which contradicts
the fact that ƒ < 0. Therefore, u EV. We may then apply Remark 1 of Theorem 3.1. Arguing by contradiction,
we see that u ^ 0. D

4. SOME QUALITATIVE ASPECTS OF A SOLUTION OF (Vv) AND (V„)

We start this section by studying the existence of symmetrie solutions (with respect to - ) whenever ƒ is

symmetrie.
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For a measurable function v on [0,1], we set vs(x) = v(l — x), x G [0,1],

We shall say that a function v G L1(0,1) is symmetrie if v(x) = v(l — x) a.e. We set

Lg(0,1) = {v G £2(0,1) such that v is symmetrie}

ff£,(0,l) = ^ ( 0 , 1 ) 0 ^ ( 0 , 1 ) .
Proposition 4.1. Lei u be a solution of (V). Then, the function us is also a solution whenever ƒ G L^(0, l),
a and b are also symmetrie.

Proof. First, we observe that u and us are equimeasurable (i.e. mu == mus). Thus, u% =• u* and for ail
v G L2(0,1), we have from the mean value theorem and a change of variables,

[l<(tKu(t)dt = [\ui)'(\us>u(x)\)vs(x)dx
Jo Jol

 v '

= ƒ (ut)'(\u'>u*(x)\)v{x)dx (13)

Jo

If 6 is symmetrie, then bluS = b*us = 6* .̂ By a simple change of variables, we then have:

F{u){x)vs(x)dx= / F(us)(x)v(x)dx.
Jo

For any v G H&(0,1), we have vs G i^(0,1) and

/ u'(x)(vsy{x)dx-\ u^(t)vlu{t)dt - F(u)(x)vs(x)dx= f(x)vs(x)dx, (14)
Jo Jo Jo Jo

that is

f1 f1 f1 f1

- u'(x)vf(l-x)dx-\ (ul)f{t)v*us(t)dt- F(us)(x)v(x)dx = fs(x)v(x)dx. (15)
Jo Jo Jo Jo

So if fs = f, then this last équation reads

f1 f1 f1 f1

I le t I \Jb)U [ JU J LI JU — A. I [il^j \LjUmiiS\LtkXo — I JT \LL J[JU}U\JJJ\JLJU — I J \JbJUyJb\\XJb^ V /

Jo Jo Jo Jo

that is us is a solution of (V). •

Theorem 4.1 (Existence of a symmetrie solution). If f G £g(0,1) and a and b are also symmetrie, then there
exists a symmetrie solution u G HQ(0, 1) n# 2 (0 ,1) .

Proof The set i?o,s(0ï 1) °f symmetrie functions is a closed subset of HQ(0> 1). Thus, this space is a Hubert
separable space endowed with the usual scalar product of HQ(0, 1). So, let {<fi, • • • , <^m, • • • } be a hilbertian
basis of HQ (0,1). We define V^ to be the vector space spanned by {y>i, * • • ,<pm}. Reconsidering the same
operator Tm as in Theorem 2.1 defined by:
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with
f1 f1 f1 f1

aj = / v'(x)<fj(x)dx - X / v+(x)<pj+v(x)dx — / F(v)(x)(pj(x)dx - / f(x)(pj(x)dx.
Jo Jo Jo Jo

We have, since <pj is symmetrie, Tmt> G V^- So, the same argument as in the preceding paragraph (see Theor. 3.1
using Brouwer's fixed point theorem) shows the existence of u^ G V^ such that T^u^ = 0. Thus. there exist
a function u G HQ S (0 , 1) and a subsequence still denoted by u^ such that u^ —• u in HQS(0,1) weak and
uniformly in C[0,1]. The function u solves for all v G HQS(0, 1)

f u'(x)v'(x)dx-\ f <(t)u*u(t)dt- / F(u)(x)v(x)dx = / /(a;)ï;(a;)da;. (17)
Jo Jo Jo Jo

Let u € 2*3(0,1). Then, tu = V + V e H^s(0,1). So, one has from relation (17):

\\ f u'(x)v'(x)dx-\ f tii(t)T7.»(t)dt — / F(u)(x)v(x)dx - f fv]
J° i "'O ! ! "'O /° (18)

- A / « , - / FK)(x)Kx)da; - / /«'l = 0.i [ / /
LJo Jo

By a change of variables, one has:

/ u'{x)(va)'(x)dx= f (us)'(x)v'{x)dx= f u'(x)v'(x)dx
Jo1 X J o 1 Jo

/ f(x)vs(x)dx= f fs(x)v(x)dx= f f(x)v(x)dx (19)
°i ° i ° i i
f F{us){x)vs{x)dx= f F{u){x)vs(x)dx= f F(us){x)v{x)dx - f F(u)(x)v{x)dx.

Jo Jo Jo Jo

So by relations (13, 18, 19), one finally obtains:

f1 f1 f1 f1

/ u'{x)v\x) dx - X / <(x)v*u(x) dx- F(u)(x)v(x)dx = / f(x)v(x) dx for all u G H^(0,1).
Jo Jo Jo Jo

n
Theorem 4.2 (Maximum principle). Let u be a solution of (V). If X < 0, a < 0 (Vesp À > 0, a > 0) and f > 0

ƒ < 0 ?̂ iften u > 0 (resp u < 0).

Proof We set M{t) = -t- = min(i,O). Then, Af(u) G i^(0,1). We obtain (using Sect. 1 and the fact that
a < 0 ) :

f {uf)2{x)dx~X f u'*M(u*) = f fM{u)+ f F(u)(x)M{u){x)dx < 0, (20)
J{u<0} JO Jo Jo

that is

f (u')2(x)dx + A f * Af (t) d* < 0 (21)

Since A < 0, one has:
psixpu

/ \u ) (^Jda: = 0 = /
J{u<0} Jinfit
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The proof of the second case (z.e. À > 0,a > 0, ƒ < 0) is the same as above, replacing — t- by t+ . Indeed, in
this case, we have the following identity:

f {u')2(x)àx + ̂ u* (0) = f f{x)u+{x)àx + f F(u){x)u+(x)dx. (22)
J{u>0} 2 JO JO

D

Theorem 4.3. Let u be a solution of (V). Then

i) If f ^ 0, Aa < 0 in [0,1], U- has no plateau, that is measf P(u_)j = 0.

ii) If A ƒ < 0, Aa < 0 in [0,1]; then the set {x: uf(x) = 0} is of measure zero.

Proof. If meas(P(w_)) ^ 0, then there exists a number t < 0 such that \u = t\ > 0. Since u G H2(Q, 1),

utf{x) = 0 = * {rnu(u(x)\ o.e. x G {u = t}. Using the équation satisfied by w, one has /(x) = 0 a.e. on

{u = i}. This contradicts the assumption on ƒ.
The proof of the second statement follows a similar idea, ie . if the measure of the set {x: uf(x) = 0} is positive,
then un{x) = 0 on that set and then équation (V) leads to:

0 < - A 2 ^ ^ (|u > u(x)} - Xa(x)F0 = Xf(x) < 0.

D

5. NUMERICAL APPROXIMATION OF THE MONOTONE AND RELATIVE RE ARRANGEMENTS

OF PIECEWISE LINEAR FUNCTIONS. THE MONODIMENSION AL CASE

We begin this section by some results concerning the properties of the monotone and relative rearrangements
of piecewise linear continuous functions.

Let A = {0 = xo < x\ < . . . < Xiv+i = 1} be a mesh on [0,1]. and below {ipj} ._^ dénotes the basis of the
piecewise linear functions space relative to A, defined by ¥>j(xi) = &ij-

The ordered values

Au = sort {u(xo),tt(xi),.. .IX(XJV+I)} = {t$ = minttj < t\ < • • • < £M =

= m0 = mu(t0) > m i = mu(ti) > > mM = rnu(tM) = 0}

give us the meshes of Iu — [minu^maxtij] and il* = (0, |O|), (duplicated values must be suppressed and these
meshes may have M + 1 < N + 2 points).

Proposition 5.1. Letu(x) = V j otjipj be a piecewise linear continuous function related to the mesh A. Then,
j=o

the distribution function mu and the decreasing rearrangement are also the piecewise linear functions related to
meshes Au and Am . Furtheremore,

i - miti+1 rm+i - rrij
+ * if t € lt

m ^ t ) - \ o i f t > t M

|f2| if t < t0
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FIGURE 1. Cases al
1 > 0.

FÏGURE 2. Cases a%
x < 0.

and

u* (s) = 5
m%+\ — ml

tf s e [mï+i,mz]. (24)

Proof. Let aj — and â  = be denned on each interval. Let

ïît>ut,a\ <0
if t < u%,a\ > O

if t G (mi

if t:
x%+\ if t < uz+i,a\ < O

be the extended inverse of uk x ^ showed in Figures 1-2 if a\ ^ 0.

The measure can be exactly computed by:

a{>0 a{<0

(25)

where Af(t) = {z: t < maxIn^tXï+i}}. Since the functions X% are piecewise linear continuous, it is the same for
mu if u has not plateau. In another case, \u = i,| > 0 is the jump at the value tt. D
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Remark 5.1. Derivatives of u* (respectively mu) are not defined at the mesh points but they are constant on
each interval (mz+lïm7) (repectively (t2ît î+i)). Inside each interval we have:

m'u(t)= £ -X'At)+ E X'}(t)= J2 - s i g K ) ^ + 1 ^ J (26)
j€AT(t) j€AT{t) jeN* (t) + 1

a[>0 a{<0

where A/**(£) = {i. min{wz,^+i} < t < m a x f u ^ v i } } , if t / u3 for all j = 0 ,1 , . . . N + 1.

Proposition 5.2. /ƒ6 zs apiecewtse hnear positive function, mb
u(t) = / 6(x) dx zs apiecewise quadratic

J{x u(x)>t}
function related to mesh Au.

Proof As in the previous proposition, we find the 6-weighted measure

a{<0 a[=0

\9(x3+i)-9(X3(t))]+ E \3{X3(t))-g(x3)]+ J2 9{xJ+i) - g(x3)

a[—0 a{<0 a{=0

where g is a primitive of 6, which is a quadratic function. •

Theorem 5.1. Let b andu be ptecewise linear functions, where u has not plateau. Then the relative rearrange-
ment %s a piecewise hnear function.

Proof Following Propositions 5.1 and 5.2, it suffices, in order to compute the 6-measures, to solve the linear
System:

<*,*?+/?.*.+ 7* =rnb
u(tt) }

<*t2
t+i + M + f + 7* - rnb

u(tï+i) \ (27)
a t ^ + 1 + p ^ + 1% = mb

u (tx+1 ) J

at extremities and at the middle point, i l + i , in the interval [^,t ï+i]. Consequently, the relative rearrangement
is a piecewise linear function inside each interval {m%+i,m%):

h (,_rnbu(u*(s)) _ 2atu*{s)+0t

i2+i —1%

where the coefficients at,pz are given on each interval ( i^i i+i) by

^ 6 + i - 2 m * + è + m f ) (29)

A = l+l
Au

 l - ^ 2 K + i ~ 2m t
b

+| + mt
b)(tt+1 + tt) (30)

whith At» = t t + i - t%. D
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Remark 5.2. If b is continuous and u is monotone, N*{t) (see Rem. 4.1) must a unique element, and the
relative rearrangement is continuous. But, in another case, there are two or more éléments in the set A/**(£),
and the continuity can not be assured as we will show in the example below.

Example. Let O = (0, f), O* = (0, |fl|) = (0, f), b(x) = 3x and

u(x) =

In this case

7
2

6 - s

0 < x < 1

Kx<2

2<x<%

0<s< f

which is not continuous at | .

6. NUMERICAL SOLUTION OF THE VARIATIONAL NONLOCAL PROBLEM

We shall begin by solving the variational problem {Vv) in the case a{x) = 0. If ƒ is a symmetrie function
and we take a suitable mesh, the discrete problem turns into a linear system with tridiagonal matrix but, in
more gênerai cases, the nonlocal terms will be treated by a fixed point algorithm.

In order to find a numerical solution we consider the usual Pi finite element approach.
Let A = {0 — xo < x\ < - * • < XN+I = 1} be a mesh in the interval [0,1]. We consider the space Vh —

iv G CT°[0,1]: v(ö) = v(l) = 0, v\r x^ i G Fi, tor aiH = 0 ,1 , . . . N >. Thus, the discrete variational problem

reads:

{ Find Uh G Vh such that
f1 u'h(x)v'h(x) dx-X f" u'MivhU^a) da - C f(x)vh(x) dx - 0 for all vh G Vh.

Jo JQ JO

We are looking for a solution of {V^Q) without plateau. In that case, by using previous results, we obtain

f1 '
f h'

Jo
£ da

M-l

i=ö

As (v/i)*« is continuous on each interval, values (vh)*uh (
m^+! ) a r e well defined. Thus, the variational formulation

can be rewritten as:

{Findjuh G Vh such that
rl M-l !
/ vfh(x)v'h(x)dx - X ^2 (vh)*uh(rni+±)(uh*(mi) - u^(m i + i ) ) - / f(x)vh(x)dx = 0

Jo i=1 Jo
for all vh
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The previous variational problem amounts to solving a finite dimensional system associated with a basis
oiVh:

•yh y

N

Find un =

/ v!h(x)<pf
k(x)àx -

Vh such that

M-l

- f f(x)<pk(x)dx = O
Jo
for all k = 1,2,. . .TV

The key of this result is the linearity in the test function Vh proved in Lemma 2.4.
Values rrii and (^)*t i (^+i) can be easily computed by using the mesh values Ui and a suitable function

7]: {0,1,2,.. .N + 1} —» {0,1,2,... M} such that t^) = Ui (rj is well defined since there are not repeated
values t).

6.1. The symmetrie case

The biggest difïicults to write the nonlinear system ÇPyO)f is the explicit expression of the measures and
rearrangements as function of the values {̂ o, ui, U2Ï • • • ujsf, Uiv+i}, the mesh {xo, x±, X2> - -. XN-> %N+I) and the
permutation 77. Even though, we can compute them by using formulas (23-24-28-29-30), we shall have "nice"
équations only in very particular cases.

Thanks to the qualitative properties of the solution, if ƒ is a positive symmetrie function (f(x) = ƒ (1 — x)),
we can suppose that u has not plateau and that it is positive, symmetrie respect to the middle point in the
interval (0,1) (ie. u(x) = u(ï — #)), which is its unique maximum, and the minimum is reached on the boundary.
Purthermore, we are going to consider a spatial mesh A {0 = XQ < X\ < • • • < XN+\ = 1} with equidistant points,
(Le. h ~ Xi — Xi-i for all i — 1,... N + 1) and N odd (so, the middle point of the interval is x JV+I and the

N + 1
discrete solution has no plateau). Then, M = —-— and

JV
2

<i <

Now, the relative rearrangements of the piecewise linear basis related to mesh A can be exactly computed.
More precisely we have

Proposition 6.1. i) If 1 < i <
N

? then

2h

l 0

if s G (mu

if 5 G (mi

otherwise.
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N + 1
n) Jf ö < % - N> then
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xt+1

2h
if s G ( m ^

2h
— if s G (rn^-

otherwise.

%%%) If % = — - — , then
2

otherwise.

By using this expressions in (VyQY we obtain the hnear problem

Fmd u 6 Vh such that
u0 = 0

(n)

for ail z = 1 , . . .

f %+1 u'(x)<p[(x) dx - A^ [u t_! - ^ + 1 ] - f %+1 f(x)<pt(x) dx = 0

/ v! (x)ip[

i u yxj^p%yxj (ix — A— \uz+\ — iLï—ij — J j\Xj(pi\xj ax — u

J V - 1

- AT K _ i - - I +1 f(x)<pz(x)àx = 0

for i =

for ail % = , ...N,

= 0

which can be reduced to a hnear System whose matrix reads

Ah =

/ 2

( 1H A
h 4

0
0

0

V o

hl 4 - ï +

~~h. ~~
0
0

0
0

A
4

A
4

2
h

1 A
h 4

0

0
0

0
0

f +

0
0

A
4

A
2

A
4

0
0

0
1 A
h 4

2
h

1 A
/i 4

— - 4- -

0
0

0
0

2

~h "*" 4

0
0

0
0

_I _ A
4

This matrix is a M-matrix if 0 < A < | (see [61]) and satisfies a discrete maximum principle (if b > 0, then
the solution of Ah,u = b satisfies u > 0) according to the results for the continuous problem.
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6.2. The nonsymmetric case

When ƒ is not symmetrie, we cannot expect a symmetrie solution. Then, the nonlinear system
solved by using a fixed point algorithm.

• Given uf] e Vh = {v e C°[0,1]: v(0) = c0) v(l) - cu

N

i> for all i = 0,1,. . . # } , for l =

1, 2 , . . . , we find t^ = co<po + + such that

is

lx =[
o
M—l

for all fc = l,2,...iV.

In order to compute relative and decreasing rearrangements of ipk and
the table (the index (Z — 1) is drooped)

in each itération, we must find

11
to
tl

tM

m

rriQ

mi

VTLM

*fc II

<t>kM

(fk(x)dx
- mt

where the two final columns correspond to a generic basis function (p^.
The measures /3* are exactly computed by a numerical quadrature formula of low order (for instance the

middle point or the trapezoidal rules). Furthermore, if uh~~ is without flat régions, the measures are continuous

functions and mt — m a-ijfe), /3?
fc = flVSnfo). So, from (28), we have <$ = (<pk) v-i % t+

Uh
 wfc h

Finally, we have % K ) — t% and the rightside in (31) can be evaluated.
The same technique works for solving the full problem:

N

Find Uh =
fc=i

such that

M - l«1 M~l
/ u'h{x)tp'k(x) dx - X Y^ (^fc)*Ui

where F(uh)(x) = a(x) -L
•mUh(uh+(x))

i

mUh{0)

f1

= / f(x)ipk(x)dx
Jo

1/2

- / F(uh)(x)<pk(x)dx =
Jo

for a l l fc = 1 , 2 , . . . N
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For each fixed point itération we must flnd u^ G Vh the solution of

M-\

E
i=o

f/k[x)àx = f1 F(ut1))(x)fk(x)dx +
Jo

1

U 1 - " ^ ^ f{x)vk{x)àx
h 2 Jo

for all & = l , 2 , . . . i V .

The relative rearrangement b y-i) in the new term F(uh~ ) can be approached inside the intervals
h

by W{ where

*i+l - mi

mi+i —rrii Jf

just by adding two columns in the above table.

rrù = f
J\uh >uh* (m-)

b(x) dx7 i = 0 , . . . M - 1,

6.3. Numer ica l resu l t s

Firstly, we have tested the accuracy and the influence of the mesh on severàl problems for the simplified
model (a(x) = 0). More precisely, given a data function ƒ, we compute the solution u of

f -u"(x) - A<(mtt(u(a:))) = f{x) in (0,1)
\ U(O) = Co U(l) = C!

in the cases:
X-K

Test 1: ƒ (cc) = TT2 sin(Trx) -\—— | COS(TTX)| (the exact solution is u(x) — sin(7ra;)) and,

Test 2: f(x) — 2 + — \/l — 4x(l — x) (the exact solution is u{x) = x(l — x)).

These problems have been solved by using five meshes indexed by their number of points, iV, in view of to
see the influence of the nonlocal term in the approximation order.

Table 1. Errors in L°°-norm.

1 N
Test
Test

1
1
2

1
4
1

.28

.11

11

X

x
io-y

icr3
1.08
2.76

21

X

X

10"3

ÏCT4

4
1

.82

.23

31

X

X

i(r4

10"4
2.71
6.91

41

X

X

10~4

10"b
6.76
1.73

81
X

X

icrb

10~b
5
i

.35

.36

91

X

X

1
10"5 1
10"& 1

The table 1 shows the same approximation order as in the linear problem (Test 1) but there is not exactly
computation when the solution belongs to P2 (Test 2).

Next, a more genera! case is considered, where ƒ and, consequently, the solution u are nonsymmetric:

f 4(1 -

Test 3: f(x) - - 2 - A <

- 3

- 1 - 2^0.25 + Ax{x- 0.5)

8

if x e (0,0.5)

if z e (0.5,1).

,u(x) = x(x — 6.5).
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0. 5

0. 3 _

0. 2 -

0. 1 _
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FIGURE 3. Solution.

Now, the analyse in Section 6.1 is no more valid, but the difficulty coming from the nonlocal terms can be
solved by using the fixed point method. Errors in L°°-norm are repported here below.

N
Test 3

11
2.40 x 10"3

21
1.18 x 10~3

31
9.34 x 10~4

41
6.72 x 10~4

81
3.56 x 1(T4

91 1
3.26 x 10~4 |

In order to test the influence of the approximation of the relative rearrangement of a given function b, we
take f(x) = ir2 cos(7rx) — A^(COS(TTX)) sin(Tnr), b(x) = sin(Tnr) and we solve

f -u"{x) - \g(u(x))b,u(mu(u(x))) = f(x) in (0,1)
\ u(0) = co u ( l ) = c i .

The convergence of fixed point itérations is not assured since the relative rearrangement does not satisfy a
Lipschitz condition related to u. Nevertheless, in some particular cases, it can be proved that

\\b*u-Kv\\<L(b)\\u-v\\

(see [46] for details).
We pose g(u) = u in Test 4 and g(u) — u2 in Test 5 (in both cases the exact solution is u(x) = COS(TT )̂) and

we find the same order of approximation as in the linear problem:

1 N
Test
Test

1
4
5

1
8.40
2.77

11
X

X

10~4

KT3
2
6
.10
.93

21
X

X

10~4

10"4
9.33
3.10

31
X

X

10~5

10~4
5.26
1.74

41
X

X

10~5

10~4
1.32
4.36

81
x 10~5

x 10~5
1.04
3.44

91
X

x

1
10~5

HT5

Fmally, we solve (Vv) with f(x) = 0, b(x) = x2, a(x) = 1, p(x) = — and FQ = 4. The computed solution is

given in Figure 3.

Remark 6.1. Analogous discretization and approximation techniques can be employed for 2 — D and 3 — D
nonsymmetric problems (see [5] for (VS)).
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