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STRUCTURAL EVOLUTION OF THE TAYLOR VORTICES *

TIAN M A 1 AND SHOUHONG WANG2

Abstract. We classify in this article the structure and its transitions/évolution of the Taylor vortices
with perturbations in one of the following catégories: a) the Hamiltonian vector fields, b) the divergence-
free vector fields, and c). the solutions of the Navier-Stokes équations on the two-dimensional torus.
This is part of a project orient ed toward to developing a geometrie theory of incompressible fluid flows
in the physical spaces.

Résumé. Dans cet article, nous classons la structure et les transit ions/évolutions des vort ex de Tay-
lor avec perturbations dans l'une des catégories suivantes : a) champs de vecteurs hamiltoniens, b)
champs de vecteurs à divergence nulle, et c) solutions des équations de Navier-Stokes sur le tore bi-
dimensionnel. Cette partie du projet est orientée vers une théorie géométrique des écoulements de
fluides incompressibles dans Vespace physique.
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INTRODUCTION

The Taylor vector fields, or simply the Taylor fields, are referred to the divergence-tree vector fields vnrn on
the two-dimensional torus M = T2 = E2/(2TTZ)2 defined by

vn7Yl = (jn cosnx\ cosmx2,n sinnrri sinma^), (0-1)

where n, m > 1 are integers. The Taylor vortices are referred to the periodic structures of the phase diagram of
the Taylor fields illustrated by Figure 2.2.

It is easy to see that the Taylor fields are Hamiltonian vector fields whose Hamiltonian functions (or the
stream functions) are given by Hnrn(xi,X2) = cosnxi. sinmx2. By the Hodge décomposition, Hamiltonian
vector fields on the torus as well as in a gênerai 2-manifold do not exhaust all divergence-free vector fields.

The study of the Taylor vortices is originated in Taylor's 1923 [49]. In f act, such periodic structure appears
in many problems of mathematics and physics. The Taylor vortex type of periodic structures appear also in the
solutions of many partial difTerential équations; see Bensoussan, Lions and Papanicolaou [4]. We would like to
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structure, block structural stability, structural évolution.
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mention recent very interesting paper by Fannjiang and Papanicolaou [11] studying weak molecular diffusion in
the présence of periodic forced convection.

The main objective of this article is to study the structural évolution/transitions of the Taylor vortices with
either divergence-free vector fields or Hamiltonian vector fields perturbations. As we know, divergence-free
vector fields appear in many fields of mathematical physics. Two most important examples of divergence-free
vector fields are the velocity field of an incompressible fluid flows, and the super-current of super-conducting
materials.

The main motivation of this and the accompanying articles is to develop a geometrie theory of two-dimensional
incompressible fluid flows in the physical spaces. The motion of an incompressible fluid is governed by the
Navier-Stokes (or Euler) équations, which form an infinité dimensional dynamical System; see among many
others [6-8,18,20-27,34,50]. From the Lagrangian point of view, the velocity field v, which is a solution of the
Navier-Stokes équations, détermines the dynamics of the fluid particles in the physical space the fluid occupies.
To study the geometrical/topological structure of two-dimensional fluid flows in the physical spaces, we adopt
a philosophy including the following main aspects/directions:

1. to develop a gênerai (global) geometrical/topological theory of the velocity vector field v(•, t) at each time
instant, treating the time t as a parameter, and then

2. allowing the time variable to change, to study the structural transitions of the velocity field v.

The study along the first direction was initialized in [29,30,32,33]. The main objective in this direction is to
establish a geometrical/topological theory for divergence-free vector fields on gênerai two-dimensional compact
manifolds with or without boundary- There are connections between the study in this direction and the theory
of measured foliations introduced by Thurston [52] although the motivations are different. There are extensive
studies by geometers and topologists for the measured foliations as well as for the closely related quadratic
differentials; see Fathi and Laudenbach and Poénaru [10], Thurston [52], Strebel [9], and the références therein.
In particular, the connections between the dynamics of divergence-free vector fields and measured foliations will
be addressed in a fortheoming article [32].

One main resuit we proved in [29,33] is a global structural stability theorem of divergence-free vector fields,
providing necessary and sufficient conditions for structural stability of divergence-free vector fields. The study
of structural stability has been one of the main driving force behind much of the development of dynamical
Systems theory; see among many others the work of Peixoto [40], Smale [47], Palis and de Melo [38], Pugh [41],
Shub [42], and the références therein. We are interested in the structural stability of a divergence-free vector field
with perturbations of divergence-free vector fields. We call this notion of structural stability the incompressibly
structural stability or simply structural stability. Notice that the divergence-free condition changes completely
the gênerai features of structurally stable fields as compared to the situation when this condition is not present,
The latter case was studied in a classical paper of Peixoto [40]. The conditions for structural stability and
genericity in the Peixoto theorem are: (i) the field can have only a finite number of singularities and closed
orbits (critical éléments) which must be hyperbolic; (ri) there are no saddle connections; (iii) the non wandering
set consists of singular points and closed orbits.

The necessary and sufncient conditions for a divergence-free vector field we obtain in [29,33] are: (1) v is
regular; (2) ail interior saddle points of v are self-connected; and (3) each boundary saddle point is connected
to boundary saddles on the same connected component of the boundary. The first condition hère requires only
regularity of the field and so it does not exclude centers which are not hyperbolic and excluded by (i) above.
The second condition is of a completely different nature than the corresponding one in the Peixoto theorem.
Namely, condition (ii) above excludes the possibility of saddle connections. In contrast, (2) amounts to saying
that ail interior saddles are self-connected! Namely, the interior saddles occur in graphs whose topological form
is that of the number 8, being the singularities themselves hyperbolic.

Moreover, a direct conséquence of the Peixoto structural stability theorem and the above theorem is that no
divergence-free vector field is structurally stable under gênerai Cr vector fields perturbations. Such a drastic
change in the stable configurations is explained by the fact that divergence-free fields preserve volume and so
attractors and sources can never occur for these fields. In particular, this makes it natural the restriction that
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saddles in the boundary must be connected with saddles in the boundary on the same connected component,
in the third condition.

The study in the second direction aims in particular at the connections between the solutions of the Navier-
Stokes (or Euler) équations and the dynamics of the velocity fields in the physical space. Progress has also
been made in this direction recently in [31], where we proved that for any external forcing in an open and dense
subset of Ca(TM) (0 < a < 1), all steady state solutions of the two-dimensional Navier-Stokes équations are
structurally stable.

In this article, we classify the structure and its transitions/évolution of the Taylor vortices under small
perturbations of either the Hamiltonian vector fields or divergence-free vector fields on the two-dimensional
tor us. The main ideas and results of this article include the following aspects:

1. A concept called block structure of Hamiltonian vector fields is introduced.
2. The phase structure and its transitions of the Taylor vortices are fully classified in terms of the block

structure.
3. Both Hamiltonian and non-Hamiltonian methods of breaking saddle connections of unstable divergence-

free vector vector fields are introduced.
4. The structure and its transition of the Taylor vortices are also discussed in the context of the solutions of

the Navier-Stokes équations of an incompressible fluid.

Although most discussions in this article are restricted to the Taylor fields, it is hoped that the method and
the ideas presented will be useful in understanding the structure and its transitions of other relevant physical
problems.

1. PRELIMINARIES

Let M be a two-dimensional C r + 1 (r > 1) compact orientable manifold with a natural symplectic structure
of the Riemannian area. Let Cr(TM) be the space of all Cr vector fields on M. If r = k + a with k > 0 an
integer and 0 < a < 1, then v G Ck(TM) and all derivatives of v up to order k and a-Hölder continuous.

A vector field v G Cr{TM) is called regular if all singular points of v are non-dégénérât e. We set

Dr(TM) = {ve Cr(TM) | div v - 0} ,

Dr
0(TM) = {v£ Dr{TM) | v is regular},

Hr(TM) = {ve Dr{TM) |v is a Hamiltonian vector field},

where div is the divergence operator on M,
Let v G Dr(TM) be a divergence-free vector field, then it is easy to see that (see [29,33]):

1. A non-degenerate interior singular point of v must be either a saddle or a center, and a non-degenerate
boundary singular point must be a saddle point;

2. The set of all closed orbits of v is open.

Based on these basic properties of divergence-free vector fields, we have the following définitions.

Définition 1.1. Consider a divergence-free vector field v G Dr(TM).
1. Let p G M be a center of v, then there is an open neighborhood C of p, such that for any x € C(x ^ p),

the orbit 3>(x, t) is closed. The largest neighborhood C of p of this type is called a circle cell of p.
2. Let B C M be an open set, such that for any x E B, the orbit 3>(x,£) is closed, and any connected

component E of dB is not a single point. Then B is called a circle band of v.
o

3. A closed domain ficM (i.e. cl Q= ü) is called an ergodic set of v e Dr(TM) if for any x e ft with the
w-limit set u)(x) not a singular point of v, UJ(X) = ft.

4. An orbit with its end points is called a saddle connection if its a and u> limit sets are saddle points.
Moreover, a saddle connection 7 is called a self saddle connection if a(j) — ^(7).
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Then we have the following structural classification and stability theorems of Hamiltonian vector fields
(see [32]).

Theorem 1.2. (Structural Classification Theorem). Let v G Hr(TM)(r > 1) be regular. Then the phase
diagram of v consists of a finite numher o f connected components of the following types:

1. circle cells and circle bands, and
2. saddle connections.

Theorem 1.3. (Structural Stability) A Hamiltonian vector field v € Hr(TM)(r > 1) is structurally stable
under Hamiltonian vector field perturbations if and only if

1. v is regular; and
2. all saddle connections are self saddle connections.

Moreover, the set Hl (TM) of all Cr structurally stable Hamiltonian vector fields is open and dense in Hr(TM).

Remark 1.4. As we know, Hamiltonian vector fields are divergence-free, but in gênerai do not exhaust all
divergence-free vector fields. For a divergence-free vector field, the phase diagram may also contain ergodic sets
in addition to circle cells, circle bands and saddle connections in the structural classification theorem. See [32]
for details.

2. B L O C K S T R U C T U R E

2.1. Block s t r u c t u r e of Hami l ton ian vector fields

Hereafter, we always dénote by M = T2. By the Hamiltonian structural classification and stability theorems,
we see that each saddle point of a stable Hamiltonian vector field has exactly two saddle self-connections.
Obviously, each saddle self-connection is a simple closed curve.

Définition 2.1. Let v be a stable Hamiltonian vector field on a torus T2, and Q C T2 be an invariant set of v.

1. Q is called a Z^-block if Q is homeomorphic to an open disk such that dQ is a saddle self-connection of
a saddle point p G ÔQ, and the other saddle seif-connection of p, as a closed chain, is not homoiogicai to
zero in #i(T2);

2. Q is called an 5-block if Q is homeomorphic to an open disk such that dQ consists of two saddle self-
connections of a saddle point p G dQ;

o

3. Q is called a T-block if Q is a closed domain such that the interior Q does not contain singular points of
t>, and T2 — Q consists of D and 5-blocks of v.

In the above définition, the letters Z?, S and T stand for disk, sphère and torus respectively; see Figure 2.1
for schematic pictures of the D, S and T—blocks.

Définition 2.2. Let Q C M be a circle cell of v e Dr(TM). We call that Q has a right-hand orientation (resp.
a left-hand orientation) if the interior of Q is on the left side of dQ (resp. on the right side of 9Q), traveling in
the direction of the orbits of v on dQ,

The right-hand and left-hand orientations for the D and 5-blocks of a stable Hamiltonian vector field v on
T2 can be defined in the same fashion.

The Hamiltonian structural stability theorem tells us that a stable Hamiltonian vector field v on T2 has a
block décomposition as follows

T2 = fi + uf=0Di 4- U%=1Ak with Do = 0. (2.1)

Here ft is a unique T-block, A(0 < i < I) are D-blocks and A*(l < k < K) are 5-blocks of v, which are
topologically equivalent to a block structure as shown in Figure 2.1 below.

The following theorem shows that each stable Hamiltonian vector field on T2 has exactly one T—block, at
least two S—blocks and possibly zero D—blocks.
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FIGURE 2.1. Ai and A2 are two 5-blocks with left-hand and right-hand orientations respeo
tively, D\ and D2 are .D-blocks with left-hand and right-hand orientations, and Q is a T-block.

Theorem 2.3. A Hamiltonian vector field v G Hr(TM) is structurally stable m Hr(TM) if and only if v has
a block décomposition as in (2.1), Moreover, for any stable Hamiltonian vector field v G Hl(TM) on M = T2

;

1. v has at least two S-blocks and the number K of the S-blocks ofv is even, z.e. K — 2m(m > 1). Moreover
half of the S-blocks have right-hand orientation and the other half have left-hand orientation;

2. v has exactly one T-block.

Proof Thanks to the structural classification and stability theorems, it is easy to see that a Hamiltonian vector
field v G Hr(TM) having block décomposition as in (2.1) is a necessary and sufficient condition for v being
structurally stable in Hr(TM).

Hence it suffices to prove Assertions 1 and 2. To this end, let v G Hl(TM) be a stable Hamiltonian vector
field. Notice that the boundary of each 5-block Ak has two saddle self-connections, say Fi and F2 as shown in
Figure 2.1, and the orientation of closed orbits in Q, near Y\ are reverse to the orientation of the closed orbits
in Q, near F2. Obviously, a D-block does not reverse the orientation of the orbits in Q, Therefore the number of
5-blocks of v must be even, t. e. K = 2m, and m of these 5-blocks have right-hand orientation, and the other
m 5-blocks have left-hand orientation.

Now we show that m > 1. Assume otherwise, i.e. m — 0, then the T-block Çt of v is a compact manifold with
boundary, which consists of closed orbits and saddle self-connections of v. Let v = dH#: where H G Cr+l{M)

o o

is a Hamiltonian function. Then ail orbits in Çt are level lines, and there is an orbit 7 (ZÇt such that H takes
the maximum value on 7.

For any point g G 7, we take an orthogonal coordinate System (£1,0:2) o n the tangent space Tq(T
2) with the

origin at q and the Xi-axis tangent to 7 at q. Since 7 is a level line of H, and H takes the maximum value at
g G 7 along with X2~axis, we have

which implies that v — 0 on 7, contrary to v being regular.
The proof is complete. D

In this article, we study the structural évolution of the Taylor fields on the Torus under the perturbation of
either Hamiltonian vector fields or gênerai divergence-f ree vector fields.

Définition 2.4. 1. Let 1*1,̂ 2 E Hl{TM) with block décompositions as in (2.1). We say that v\ and v2 have
isomorphic block décompositions if there exists a homeomorphism (p: M —> M such that tp takes the D, S
and T-blocks of v\ to the L>, S and T-blocks of v2 respectively, preserving the D and S-block orientations.
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2. The set of the stable Hamiltonian vector fields with isomorphic block décompositions is called a block iso-
morphic class, and the set of the topologically equivalent Hamiltonian vector fields is called a topologically
equivalent class.

2.2. Block structure of divergence-free vector fields

We start with block stability theorem for divergence-free vector fields introduced in [32].

Définition 2.5. A regular v G DQ(TM) is called a basic vector field if M can be décomposition into invariant
blocks a s M = fl uILo ^* w ^ n emP^y intersections between them, AQ — 0 and such that

1. each Ak is an open flow-invariant sub-manifold which is homeomorphic to an open disk, and O is a
compact invariant sub-manifold with genus one, and

2. for each 1 < k < K, v\Ak is a self-connection vector field,
o

3. v has only one saddle point in each <9A/c(l < k < K), and has no singular point in Q.

We dénote by Dr
B(TM) the set of all Cr basic vector fields.

Theorem 2.6. (Block Stability Theorem [32]) Letv G Dr
B(TM) be a basic vector field with block décomposition

M = Çl U^L0 Ak- Then there exists a neighborhood O C Dr(TM) of v such that

1. each v\ G O has block décomposition M = Q^ U^o ̂ H which is isomorphic to that of v;
2. V\A% is topologically equivalent to ̂ i\A(i) for v\ G Ö;

3. there is a dense set O c O such that for any v\ G O,^ 1 ) is an ergodic set of v\; and
4. Dr

B(TM) is open and dense in Dr(TM).

The différences between the block structures of the divergence-free vector fields and the Hamiltonian vector
fields are as follows: 1). there are no 5-blocks in the block structure of basic divergence-free fields; 2) the
T-block £1 of a basic divergence-free vector field is a manifold, which may be an ergodic set. Furthermore, it
is easy to see that no divergence-free vector fields on the torus is structurally stable under the perturbation in
Dr(TM)< due essentiaily to the existence of ergodic sets=

2.3. The Taylor fields

Let

M = R2/(27rZ)2.

The Taylor fields are defined by

Vnm = (m cosn#i cosmx2,n sinnxi sinma^), (2.2)

where n, m > 1 are integers. The Hamiltonian functions (or the strearn functions) of (3.1) are given by

Hnm(xi,X2) =cosnxi sinma;2. (2.3)

From (2.2), it is easy to see that each Taylor field vnrn has Anm saddle points and 4nm centers. The saddle
points of Vnm are

( — \ 7T, —7T 1 , fci = 0 , 1 , • • • , 2n — 1; &2 = 0 , 1 , • • • , 2m — 1;
\ 2n m J

and the centers of vnrn are

/fa 2fa + l \ fcl = 0 ! 2 n - l ; fc2 = 0 , 1 , • - , 2 m - 1.
\ n 2m J
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FIGURE 2.2

For instance, the phase diagrams of the Taylor fields 1*22 are shown in Figure 2.2.
By the structural stability theorem, the Taylor fields (2.2) are unstable because they are not self-connection

fields. Since the set of ail stable Hamiltonian vector fields H^(TM) is open and dense in Hr(TM), under a
perturbation in Hr(TM), a Taylor field vnm will be transformed into a stable Hamiltonian vector field. We
consider the problem what and how many types of stable Hamiltonian vector fields one can obtain by perturbing
slightly the Taylor field vnrn with either Hamiltonian fields or gênerai divergence-free vector fields. The key
procedure is to break saddle connections of the Taylor vortices. In next section, we shall introducé some methods
of breaking saddle connections, and then we will study the questions raised for the Taylor fields.

3. METHODS OF BREAKING SADDLE CONNECTIONS

In this section we introducé some methods to break saddle connections of the Taylor vortices. The main tool
is the tubular flow introduced in the following lemma.

Lemma 3.1. Let L c M be a Cr simple closed curve, and B G M be an open annulus with L being one
connected component of dB.

1. There exists a divergence-free vector field v € Dr(TM) with

V|M-B=0, t?|B^0. (3.1)

2. The vector field (3.1) can be chosen as a Hamiltonian vector field if and only if L G M, as a closed chain7

is homological to zero.

The proof of this lemma is given in [32].

3.1. Hamiltonian breaking method
We know the local structure of the flow pattern of a Taylor field vnrn is as shown in Figure 3.1 (a) below.
For a saddle point q which is connected with other saddle points, we set an open annulus B with dB

rétractable to q in M, and take a Hamiltonian vector field w as in Lemma 3.1 (see Fig. 3.1(a)). Then for any
À > 0 sufficiently small the pattern Figure 3.1(a) of v transforms to the pattern in Figure 3.1(b) of v + Xw. We
call this method Type I Local Breaking Method at the saddle point q.

Notice that by reversing the orientation of iu, the saddle points are connected slightly differently as illustrated
by Figures 3.1 and 3.2.
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FIGURE 3.1
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FIGURE 3.2

Remark 3.2. The perturbation field w can be constructed analytically as foliows. Let O <
given small numbers and ip e C°°[0, oo) such that

r^(r) = l i f r > r 2 ,
tp(r) = 0 if r < ri,

(r) € (0,1) and increasing if r € (n,r2).

Then for 0 < n < r2 small, the divergence-free vector fields

< r2 be two

(3.2)

w2 = curl [1 - i>(\(xux2) - (xi>4)\)}>
(3.3)

are typical examples of the perturbation field in Figures 3.1 and 3.2 respectively. Hère (a;?, x%) is the coordinate
of ç, ri and r2 the radii of the inner and outer circles of the circle band B. D

3.2. Non-Hamiltonian breaking method

As we know the Hamiltonian vector fields do not exhaust all divergence-free vector fields. We now construct
two typical families of non-Hamiltonian divergence-free vector fields, and apply them to the flow structure of
the Taylor vortices.
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FIGURE 3.3. Type II Local Breaking Method- The segment ab (resp. cd) in (b) is the same as
ab (resp. cd) in (a). In (b), any orbit passing through a point in the open segment ab is periodic.
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FIGURE 3.4. Type III Local Breaking Method.

Consider again the saddle point q, which is connected by four saddle connections. In the Hamiltonian case,
the closed curve L with zero homology has to be chosen to intersect each of the four saddle connections at
least one time. In the non-Hamiltonian case, we can chose L to intersect either one or three of the four saddle
connections as shown in Figures 3.3(a) and 3.4(a) below. Then for any À > 0 sumciently small the pattern
Figure 3.3(a) (resp. Fig. 3.3(a)) of v transforms to the pattern in Figure 3.3(b) (resp. Fig. 3.3(b)) of v + \w. We
call the method illustrated in Figure 3.3 Type II Local Breaking Method at the saddle point q, and the method
corresponding to Figure 3.4 Type III Local Breaking Method at the saddle point q.

4. STRUCTURAL ÉVOLUTION OF THE TAYLOR FIELDS WITH HAMILTONIAN

PERTURBATIONS

4.1. Structural évolution of the gênerai Taylor fields

Our first main resuit is the following theorem on the structural évolution of the gênerai Taylor field v
m<n). In next subsection, we shall study the detailed structural évolution of vu.

'nm\-L ^

Theorem 4.1. Let vnm(l < m < n) be a Taylor field. Then for any sufficiently small neighborhood O C
Hr(TM) ofvnm and v £ OnHr

s(TM), we have
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FIGURE 4.1. Single circles are used to dénote the tubular fiows near saddle points
well as in figures hereafter.

hère as

1. the number K = 2R of the S-blocks ofv satisfies

1 < R < n; (4.1)

2. /or eac/i i2(l < R<n) there is a v G O n Hr
s{TM) such that v has exactly 2R S-blocks;

3. in each S-block of v G O n H^(TM), there are at least 2m centers (or 2m — 1 saddle points) ofv; and
4. when m = 1, ail circle cells in right hand D and S blocks (resp. in left hand D and S blocks) are right

hand orientation (resp. left hand orientation).

Proof. Step 1. Let L C M be an invariant curve of a vector field v, and pi, • • • ,Pk € L be the saddle points of
v on L. These saddle points divide L into m segments 71, • • * ,7m? which are orbits of v. L is called an orbit
curve if the limit sets of the orbit 7^(1 < i < m) satisfy

a(7*+i)> 1 < i < m - 1.

For example, the boundary Fi U 1?2 of an S-block A^ in Figure 2.1 is an orbit curve. If a closed orbit curve L,
as a closed chain, is homological to zero, then there must be an open set A C M such that dA = L, and we say
that L is rétractable if the closure Â is rétractable to a point in M.

It is easy to prove the following lemma; we omit the details of the proof.

Lemma 4.2. Let ^ ^ G Dr(TM) be regular with vn —> v(n —• 00), and Ln be a closed orbit curve ofvn. Then
there are a closed orbit curve L of v and a subsequence still denoting by Ln such that Ln —> L(n —> 00), and

1. L is homological to zero if and only if Ln are homological to zero.
2. If L is rétractable, then Ln are rétractable.
3. Let dAn — Ln and dA = L and Ân —> Â. Then for any n sufficiently large the number of centers ofvn in

An equals to the number of centers ofv in A.

Now we come back to prove Assertions 1-4. Since a Taylor field vnrn(l <m<n) has 4nm centers, and from
the flow pattern of vnm (see Fig. 2.1) we can see that each open set A enclosed by a closed non-retractable
orbit curve must contain at least 2m centers. Hence Assertions 1 and 3 follow from Lemma 4.2.

Step 2. Proof of Assertion 2. We proceed in a few cases as follows.

Case R = n: We first construct vector fields in ö D Hl{TM) with exactly 2R = 2n S-blocks. Consider a
non-retractable closed orbit curve L enclosing exactly 2m circle cells, and having exactly 2m self-intersecting
points 01,-•• ,Ç2m-
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FIGURE 4.2. Single circles are used to dénote the tubular flows near saddle points qj hère as
well as in figures hereafter.

FIGURE 4.3

Then we apply the Type I Local Breaking Method with clockwise tubular flows described at the end of the
previous section to the Taylor field at the saddle points qi{l < i < 2m — 1); see Figure 4.1. The flow pattern
in Figure 4.1 transforms to the flow pattern in Figure 4.2. Next apply again the Type I Local Braking Method
near the saddle point q^m still with clockwise tubular flow, the flow pattern transforms into that in Figure 4.3,
which contains one 5—block A±.

Next we consider a non-retractable closed orbit curve L enclosing exactly 2m circle cells, and with 2m self-
intersecting saddle points saddle points pi, • • • 3P2m-iïP2m as shown in Figure 4.3. Applying the Type I Local
Breaking Method with counter-clock-wise tubular flows near these saddle points, we obtain another S—block5

which we call A^ enclosing the saddle points pi, • • • 5P2m-i; see Figure 4.4. Inductively, in exactly 2n steps5

the flow pattern in Figure 4.2 will be transfered to the flow pattern having exactly 2n S—blocks.

Case R = 1: We construct vector fields in O flHr
s{TM) with exactly 2R = 2 5-blocks.

As in the previous case, we obtain an 5—block as shown in Figure 4.3. Then, instead of the counterclockwise
tubular flows, we apply the Type I Local Breaking Method with clockwise tubular flows near the saddle points
Pw* ,^2m-iîP2m- We obtam then 2m D-blocks as shown in Figure 4.5.

Repeating this procedure 2n — 2 times and then applying the Type I Local Breaking Method to the last
non-retractable orbit curve on the right of the S~block Ai with clockwise tubular flows, we obtain another
S—block and ail other saddles are connected <£o a D—block as shown in Figure 4.5.
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FIGURE 4.4

FIGURE 4.5

t).

FIGURE 4.6

Case 1 < R < n: In this case, we construct the fields in O H Hr
s{TM) having exactly 2R 5-blocks in two

steps. First, we obtain 2R 5—blocks as in the case where R = n; then we break ail other saddles into D—blocks.

Step 3. Proof of Assertion 4- For any v G Ö H jffs
r(TM), v is self-connection. Since each closed orbit curve

of vin contains at least four saddle points. Therefore if a left hand S-block A~ contains a right-hand circle cell
C, then flow pattern adjacent to jC must be as illustrated by Figure 4.6(a).
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FIGURE 4.7

The flow pattern in Figure 4.6(a) can only be obtained by perturbing the flow pattern in Figure 4.6(b) in
the Taylor field. In Figure 4.6(b), there are four different left-hand circle cells Cx.C^.Cz and CA adjacent to
the right-hand circle cell Co, corresponding to C in Figure 4.6(a). Obviously there is no such structure in the
flow pattern of v\n- Assertion 4) is proved.

The proof is complete. D

4.2. Uniqueness of the structural évolution of vu

When m = n = 1, we have the following uniqueness resuit of the structural évolution of the Taylor field v\\.
In next subsection, we shall construct analytically the perturbation fields, and will make connections between
the solutions of the Navier-Stokes équations.

Theorem 4.3. There is a neighborhood O C Hr(TM) of vu such that O H Hl{TM) consists of exactly one
topologically equivalent class. The standard phase portrait of the topologically equivalent class O n Hl(TM) %s
as shown in Figure 4.7.

Proof. By Claims 1), 3) and 4) in Theorem 4.1, each v G Ö H H^(TM) has a block décomposition isomorphic
to the standard décomposition

M = il + A+ + A' (4.2)

where Q is a T—block, A+ and A are 5—blocks with right hand and left hand orientations respectively.
Therefore, v has a saddle connection diagram isomorphic to that as shown in Figure 4.7. By the Topological
Classification Theorem in [32], Theorem 4.3 follows. D

5. STRUCTURAL ÉVOLUTION OF THE TAYLOR FIELDS WITH DIVERGENCE-FREE VECTOR
FIELD PERTURBATIONS

The structure évolution of the Taylor fields under the perturbation of divergence-free vector fields is quite
different. In this section, we only give an example to show the différence.

Due mainly to these différences, under a perturbation in DT{TM) a Taylor field vnm may be transformed
into a vector field which has 4nm D-blocks, i.e. each center corresponds to a £)-block. More precisely, for a
Taylor field vnrn and any sufficiently small neighborhood Ö C Dr(TM) of vnmi the number K of the .D-blocks
oiv £ön Dr

B{TM) satisfies

2 < K < 4mn,
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FIGURE 5.1

(a) (b)

FIGURE 5.2

and for each K(2 <K< 4mn) there are vEOn Dr
B(TM) such that v have K i>blocks.

We now illustrate this point with the following example.
Consider the Taylor field v\\ = {cos xi cosx2,sinxi sinX2}, which has the flow pattern as shown in Figure

5.1(a). By Lemma 3.1, we take a tubular incompressible vector field W\ as in Figure 5.1(a). Under the
perturbation X\W\ the flow pattern in Figure 5.1(a) of vu becomes the pattern in Figure 5.1(b) ofvn+XiWi(X >
0). Then take two tubular incompressible vector fields w2 and W3 as in Figure 5.1(b). Under the perturbation
of X2W2 and A3W3(À2 > 0,À3 > 0), the flow pattern (b) will be transformed into the flow pattern (c) of
vu + X1W1 + X2W2 + A3U73, which is as desired.

Of course, there are other ways to break the saddle connections of t>n. For instance, using the Type I
Local Breaking Method (with Hamiltonian perturbations), we obtain the flow pattern as shown in Figure 4.7.
Then applying the Type II Local Breaking Method as shown in Figure 5.2(a), we obtain the block structure
Figure 5.2(b). In this case, the final flow pattern Figure 5.2(b) has a T block and two D blocks, each of which
contains two centers and an eight-shaped saddle connection.

In fact, it is easy to see that there is a neighborhood Ö C Dr(TM) of v±i such that ö n Dr
B{TM) consists

of exactly five topologically equivalent class, including the two given in Figures 5.1(c) and 5.2(b).

6. STRUCTURAL ÉVOLUTION OF THE TAYLOR FIELDS AS SOLUTIONS
OF THE NAVIER-STOKES ÉQUATIONS

Since the velocity field of fluid flows is governed by the hydro-dynamical équations, it is necessary to consider
the structural évolution of the Taylor fields with the perturbations of the solutions of the Navier-Stokes équations.
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We explore this objective in two aspects: 1) treat the Taylor fields as the steady state solutions of the
Navier-Stokes équations, and 2) treat the Taylor fields as initial fields of the time-dep endent Navier-Stokes
équations.

We start with the following Navier-Stokes équations on the torus M = T2 = M2/(2TTZ)2:

— + u - Vn + Vp - Au = ƒ, x G M,

div u = 0,

t4(xi + 2TT, X2) — u{x\, 0̂2 + 2?r) = n(xi, X2

u(x;0) = UQ(X).

For any u E Dr(TM), we have the following Fourier expansion:

(6.1)

(6.2)

(6.3)

(6.4)

oi(nxi+mx2)

= — 00

00

n,m=—00

v—n—m = Onr

= 0.

(6-5)

By the Hodge décomposition, we have

(Cr{TM) = Dr(TM) © Gr(TM),

l Gr(TM) =

Hère W contains ail harmonie fields with dimension

It is easy to see that

dim H = 2 the first Betti number of M.

= {u= (a, 6) |a,

(6-6)

(6-7)

In view of the Fourier expansion, if aoo = &00 — 0, then u given by (6.5) is a Hamiltonian field, whose
Hamiltonian function is given by

H = -i
n,rn= — oo

m
(6.8)

Theorem 6.1. /ƒ ̂ 0 e Hr(TM), ƒ e Hr-2(TM) © G r"2(TM)(r > 2), i/ien tAe 50/tóon n o/ (6.1-64) is a
ont parameter family of Hamiltonian vector fields, Le. u(-;t) G Hr(TM) for any t>0.
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Proof. Let

Pi: Dr{TM) —> Hr(TM),

P2:D
r(TM) —>W,

P3: Cr(TM) —> Gr(TM),

be the projection operators.
First we claim that for any

P2[u'Vu] = Q Vu£Dr(TM). (6.9)

Indeed it sufrlces to show that

/ u-Vu = 0 \/ueDr(TM). (6.10)
JT2

By the Hodge décomposition, let

dijj dip
+ a

where ip G C r + 1(M), and aiya2 are constants. Then direct computation shows (6.10) holds true; therefore (6.9)
holds true.

Now let u satisfy the Navier-Stokes équations (6.1-6.4), and set u — u\ + u2,Ui = Piu,u2 — P2u. Then by
(6.9) we dérive easily

—— -h Pi[u • Vu] - Aui = Pif,

du2

Wi(x;0) =uo(x),

{u2(x;0) = 0 .

T h e n u2(^t) = 0 for any t > 0. and the proof is complete. D

T h e s t e a d y s t a t e case . Let vnrn be a steady s ta te solution of the Navier-Stokes équations. Namely,

P i K m • V ^ W ] - AVnm = Pif, (6.12)

for some ƒ G Hr"2(TM) 0 Gr'2(TM)(r > 2). Let w be a another Hamiltonian vector field. Then for any
A > 0, vnrn -f Xw satisfies

f P i [ K m + Aio) • V(vnm + Xw)] - A{vnm + Xw) = P i ƒ + A/,
< A (6.13)
{ ƒ = - P i [w • V v n m + t;nm • Vw + Aw • Vw] + A™.

Therefore by per turb ing the external forcing P i ƒ with Xf (A > 0 small), the évolution of the Taylor vortices
(fields) discussed in this article holds t rue when restricting the per turbat ion fields to the solutions of the steady
s ta te Navier-Stokes équat ions.
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More precisely, for any 0 < a < 1, let

G = L + N : H2+OL{TM) -> HŒ{TM) (6.14)

be a map such that for u G H2+a(TM),

ÏL(u) = - ^ A w ,

\i\T(U) =Px[(u.V)u]. ^ " '

We notice that 1/ : H2JtOL{TM) —• Ha(TM) is a bounded linear operator corresponding to the standard Stokes
équation, and N : H2+ot{TM) —> Ha(TM) is a (7°° nonlinear compact operator. As in [31], we can prove that
there is an open and dense set T of Ha(TM) such that for any g E J7, ail corresponding steady states are
structurally stable in H2+a(TM), and the mapping G: H2+OL(TM) -* Ha(TM) is locally homeomorphic. More
precisely, we have

Theorem 6.2. There exists an open and dense set T of Ha(TM) such that for any g G ÏF,

1. the corresponding steady states of

Pi[v- Vv] - Av = g (6.16)

are gtven by v% G B2+a(TM) (i = 1, • • • , I(g)) for some integer I(g),
2. there exist open netghborhoods N% C XQ ofvl} and an open neighborhood N(f) of g m Ha(TM) such that

for each i = !,*•• J{g),
G:NZ^ N(g)

are diffeomorphtsms. Hère Xo C H2+OL{TM) is the set of ail structurally stable Hamtltonian vector fields
mH2+a(TM).

The proof is achieved using the infinité dimensional said theorem and C 2 + a estimâtes of steady state solutions
of the 2D Navier-Stokes équations. Since is parallel to a similar resuit we obtained in [31], we omit the details
of the proof.

Back to the Taylor field fnm, obviously, Pi f given in (6.12) is in Ha(TM) — T, the complement of an open
and dense subset. P\f can be approximated by éléments in ƒ", and those corresponding steady state solutions
close to the Taylor field vnm are characterized in Theorem 4.1.

The time dependent case. Now we study the structural time évolution of the solutions of the Navier-Stokes
équations wit h the Taylor field as an initial data. Let

u(*sO) = vnm,

f o = Vnm ' Vi;nm - A^n m +

where vn7n is the Taylor field. Then the solution u(x,t) of (6.1-6.3) with initial condition u(-\0) = vnm can be
expressed near t = 0 as

U(x,t) = Vnm +tv + o{t). (6.18)

Therefore, it is expected that there is an open and dense set S C Hr~2{TM) ® Gr~2(TM) such that for any
ƒ G S there is a t0 > 0 such that the solution u(-7t) G Hr

${TM) for any t G (O,to). Studies along this direction
will be conducted elsewhere.



436 T. MA AND S. WANG

Acknowledgments. The authors are grateful to G. Papanicolaou for suggesting us to study the Taylor vortices, and to
anonymous référée for point ing out the connections of our resuit s wit h the measured foliation theory introduced by W.
Thurston [52]. The work was supported in part by the Office of Naval Research under Grant NAVY-N00014-96-1-0425,
by the National Science Foundation under Grant NSF-DMS-9623071. and by the National Science Foundation of China
under Grant 19971062.

REFERENCES

[1] R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley: Reading, MA (1978).
[2] D.V. Anosov and V. Arnold, Dynamical Systems I, Springer-Ver lag, New York, Heidelberg, Berlin (1985).
[3] V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Ver lag, New York, Heidelberg, Berlin (1978).
[4] Alain Bensoussan, Jacques-Louis Lions and Papanicolaou George, Asymptotic analysis for periodic structures, Ser. Studies in

Mathematics and its Applications. 5; North-Holland Publishing Co., Amsterdam (1978) 700.
[5] D. Chillingworth, Differential topology with a view to applications. Pitman, London, San Francisco, Melbourne. Research

Notes in Mathematics, 9 (1976).
[6] A. Chorin, Vorticity and Turbulence, Springer-Verlag (1994).
[7] P. Constantin and C. Foias, The Navier-Stokes Equations, Univ. of Chicago Press, Chicago (1988).
[8] L. Caffarelli and R. Kohn and L. Nirenberg, On the regularity of the solutions of Navier-Stokes Equations. Comm. Pure Appl.

Math. 35 (1982) 771-831.
[9] Strebel, Kurt, Quadratic differentials, Springer-Verlag, Berlin (1984) 184.

[10] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces. Astérisque 66—67 (1979).
[11] A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333-408.
[12] H. Hopf, Abbildungsklassen n-dirnensionaler mannigfaltigkeiten. Math. Annalen 96 (1926) 225-250.
[13] D. Gottlieb, Vector fields and classical theorems of topology. Rendiconti del Seminario Matematico e Fisico, Milano 60 (1990)

193-203.
[14] J. Milnor, Topology from the differentiable viewpoint. University Press of Virginia, based on notes by D.W. Weaver, CharLott-

seville (1965).
[15] J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical Systems, and bifurcations of vector fields, Springer-Verlag,

New York, Heidelberg, Berlin (1983).
[16] 3.K. Haie, Ordinary differential équations, Robert E. Krieger Publishing Company, Malabar, Florida (1969).
[17] M.W. Hirsch, Differential topology, Springer-Ver lag, New York, Heidelberg, Berlin (1976).
[18] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).
[19] A. Katok and B. Hasselblatt, Introduction to the Modem Theory of Dynamical Systems, Cambridge University Press (1995).
[20] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que posent l'hydrodynamique. J. Math.

Pures et Appl. XII (1933) 1 82.
[21] J.L. Lions, R. Temarn and S. Wang, New formulations of the primitive équations of the atmosphère and applications. Nonlin-

earity 5 (1992) 237-288.
[22] J.L. Lions, R. Temam and S. Wang, On the Equations of Large-Scale Océan. Nonlinearity 5 (1992) 1007-1053.
[23] J.L. Lions, R. Temam and S. Wang, Models of the coupled atmosphère and océan (CAO I). Computational Mechanics Advance,

1 (1993) 3=54.
[24] J.L. Lions, R. Temam and S. Wang, Geostrophic Asymptotics of the Primitive Equations of the Atmosphère. Topological

Methods in Nonlinear Analysis 4; note "Special issue dedicated to J. Leray" (1994) 253—287.
[25] J.L. Lions, R. Temam and S. Wang, Mathematical study of the coupled models of atmosphère and océan (CAO III). J. Math.

Pures Appl 73 (1995) 105-163.
[26] J.L. Lionsj R. Temam and S. Wang, A Simple Global Model for the General Circulation of the Atmosphère, "Dedicated to

Peter D. Lax and Louis Nirenberg on the occasion of their 70th birthdays". Comm. Pure. Appl Math. 50 (1997) 707-752.
[27] P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford science Publications (1996).
[28] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow. Frontiers of the mathematical sciences: 1985

(New York). Comm. Pure Appl Math. 39 (1986) S187-S220.
[29] T. Ma and S. Wang, Dynamics of Incompressible Vector Fields. Appl Math. Lett. 12 (1999) 39-42.
[30] T. Ma and S. Wang, Dynamics of 2-D Incompressible Flows. Proceedings of the International Conferences on Differential

Equations and Computation (1999).
[31] T. Ma and S. Wang, The Geometry of the Stream Lines of Steady States of the Navier-Stokes Equations. Contemporary

Mathematics, AMS 238 (1999) 193=202.
[32] T. Ma and S. Wang, Block structure and stability of 2-D Incompressible Flows (in préparation, 1999).
[33] T. Ma and S. Wang, Structural classification and stability of divergence-f ree vector fields. Nonlinearity (revised, 1999).
[34] A. Majda, The interaction of nonlinear analysis and modem applied mathematics. Proc. Internat. Congress Math., Kyoto,

1990, Springer-Verlag, New York, Heidelberg, Berlin (1991) Vol. 1.
[35] N. Markley, The Poincaré-Bendixson theorem for Klein bottle. Trans. AMS 135 (1969).



STRUCTURAL EVOLUTION OF THE TAYLOR VORTICES 437

[36] L. Markus and R. Meyer, Generic Hamiltonian Systems are neither integrable nor ergodic. Memoirs of the American Mathe-
matical Society 144 (1974).

[37] J. Moser, Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77 Princeton (1973).
[38] J. Palis and W. de Melo, Géométrie theory of dynamical Systems, Springer-Verlag, New York, Heidelberg, Berlin (1982).
[39] J. Palis and S. Smale, Structural stability theorem. Global Analysis. Proc. Symp. in Pure Math. XIV (1970).
[40] M. Peixoto, Structural stability on two dimensional manifolds. Topology 1 (1962) 101-120.
[41] C. Pugh, The closing lemma. Amer. J. Math. 89 (1967) 956-1009.
[42] Shub, Michael, Stabilité globale des systèmes dynamiques. Société Mathématique de France. Note With an English préface

and summary. Astérisque 56 (1978) iv+211.
[43] C. Robinson, Generic properties of conservative Systems, I, II. Amer. J. Math. 92 (1970) 562-603 and 897=906.
[44] C. Robinson, Structure stability of vector fields. Ann. of Math. 99 (1974) 154-175.
[45] C. Robinson, Structure stability of C1 diffeomorphisms. J. Differential Equations 22 (1976) 28-73.
[46] G. Schwartz, Hodge decomposition-A method for solving boundary value problems. Lecture Notes in Mathematics 1607

Springer-Verlag (1995).
[47] S. Smale, Differential dynamical Systems. Bull. AMS 73 (1967) 747-817.
[48] F. TakenSj Hamiltonian Systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970) 304=312.
[49] G.I. Taylor, Stability of a viscous liquid contained between two rotating cyîinders. Phil. Trans. Roy. Soc. A 223 (1923) 289=343.
[50] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd édition, North Holland, Amsterdam (1984).
[51] R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley (1975).
[52] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19 (1988) 417-431.
[53] V. Trofimov, Introduction to Geometry on Manifolds with Symmetry, MIA Kluwer Académie Publishers (1994).
[54] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York} Heidelberg, Berlin

(1990).
[55] J.C. Yoccoz, Récent developments in dynamics, in Proc. Internat. Congress Math., Zurich (1994), Birkhauser Verlag, Basel,

Boston, Berlin (1994) 246-265 Vol. 1.


