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LEAST REGRET CONTROL, VIRTUAL CONTROL
AND DECOMPOSITION METHODS*

JACQUES-LOUIS LIONS1

Abstract. "Least regret control" consists in trying to fmd a control which "optimizes the situation"
with the constraint of not making things too worse with respect to a known référence control) in
présence of more or less significant perturbations. This notion was introduced in [7]. It is recalled on a
simple example (an elliptic System, with distributed control and boundary perturbation) in Section 2.
We show that the problem reduces to a standard optimal control problem for augmented state équations.
On another hand, we have introduced in recent notes [9-12] the method of virtual control, aimed at the
"décomposition of everything" (décomposition of the domain, of the operator, etc). An introduction
to this method is presented, without a priori knowledge needed, in Sections 3 and 4, directly on
the augmented state équations. For problems without control, or with "standard" control, numerical
applications of the virtual control ideas have been given in the notes [9-12] and in the note [5]. One
of the first systematic paper devoted to all kind of décomposition methods, including multicriteria, is
a joint paper with A. Bensoussan and R. Temam, to whom this paper is dedicated, cf. [1].
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Received: October 18, 1999.

1. INTRODUCTION

1.1. Least regret control

Let us first recall what "least regret control!' is ail about. We present it on the simplest possible example.

Let £1 be a (bounded) open set in Rd (d = 2,3 in most of the applications), with (smooth) boundary dÜ — I\
In Ü we are given a second order elliptic operator

(î . i)
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where <zo. a%i3 G Li (0) satisfy a.e.

d
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d

^ C » 2 , « o > c , c > 0 .
2 = 1

state z of the équation is given by the solution of

Az = vlo in ft, (1.2)

Z - ^ onr , (1.3)
dn A

where

= open set contained in Q, v e L2(ö)}v = control variable,

o = characteristic function of ö,

= conormal derivative with respect to A,

L2(F), g = perturbation (or unknown) variable.

(Condition (1.3) is taken through a weak variational formulation).

Problem (1.2)-(1.3) admits a unique solution:

We then introducé the cost function

J(v,9) = \ f p{x){z{v,g) - zofdx + i f v2 dx (1.6)
* Ja * Jo

where p is given in L°°(r£),p > 0, and where ZQ is the "optimal" state we wish to get close to, taking mto
account the "cost of the control" (expressed by the term | fo v2dx in (1.6)).

If g is known, say g — go, J(v, g) does not depend on g, and the problem we wish to solve is to find

inf J(v,g0).

This is a standard problem of optimal control for distributed Systems, in one of the simplest possible case.
Cf. [6]. D

But here we have a perturbation on the boundary, expressed by g. We assume that, by tradition or by formai
computation, one is used to apply a "nominal pohcy", i.e. that one uses

v = vo given in L2(O). (1.7)

We want to choose v in the best possible way with respect to (1.6), with the natural constraint that we do not
want to deteriorate the situation with respect to the traditional pohcy v — VQ. Analytically, this is expressed by
the problem to find

inf .sup [J{v,g) - J(yo,g)]. (1.8)
v 9
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/ƒ there is a solution, it is called "pohcy without regret". But (1.8) is too restrictive. There is no solution of
(1.8) in général. Hence the introduction of the following (relaxed) problem

where 7 is > 0 and "small".

inf sup|j(r;,<7) - J{vQ,g) - \ ƒ g2 dT j , (1.9)

Problem (1.9) admits (in the present situation) a unique solution v (see below in Sect. 2) which is called
"pohcy with least regret", or "least regret control".

Remark 1.1. The notions of "without regret control" or "least regret control" have been introduced in [7],
The notion of regret was first introduced by [13] (a référence indicated to me by D. Gabay, after publication

of the note [7]).
The notion of "least regret control" is completely gênerai and immediately extends to évolution problems and
non linear Systems.
It has be extended in [3] to multi criteria and multi agents. D

Our goal hère is to study (1.9) with the state given by (1.2) (1.3), with the cost function gwen by (1.6), m
the framework of Décomposition Methods.

1.2. Décomposition methods

Given any problem involving a partial differential operator A (of any type) in a domain Q, an important
question is to décompose A and, or, the domain SI, so as to "eut the problem in a large number of small and
simple pièces" (with parallelism in sight).
A huge amount of work is devoted to these methods (no attempt is made for a significant bibliography). A
systematic paper was devoted to these questions, namely [1] (a paper which seems to have been forgotten,
including by his authors...). D

In a series of notes [9-12] we have introduced the technique of virtual control for "the décomposition of every-
thmg" (domain décomposition, décomposition of operator), applied in [5] to décomposition of the "energy space".

Our goal is to show hère that these techniques can be applied to least regret controls problems. D

In order not to snow the ideas under complicated technicalities we present the virtual control technique in
Section 3 for the problem (1.9) in a single preliminary framework, somewhat connected with fictitious domains,
further extensions being briefly indicated in Section 4.

We now proceed with (1.9) and the introduction of the augmented state équations. D

2. A U G M E N T E D S Y S T E M

2.1. Preliminary computations

Let us introducé the states y = y(v) and tp(g) deflned by

dv
Ay = vlo in Q , ^ - = 0 on r, (2.1)

dnA

Aif = Q in Ü, -¥- = y o n r , (2.2)
ÔUA
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so that
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(v,g) =y(v)+tp{g). (2.3)

Moreover in order to (slightly) simplify the exposition and without restriction (in linear problems) we assume
that

v0 = 0.

Then

J{v,g)~ J(vOig) = - / p{y - zo)2 dF-- ƒ pz%dF + / pypdF
* JT Z Jr JT

(where we have written y for y(v), (p for ip(g) ), or

J(v,g) - J(vo,g) = J(v,0) - J(vo,O) + / pytpdT.
JT

We then introducé the function rj defined by

A*rj = 0 in ÎÎ, = py on T,

where A* dénotes the adjoint of A.

The set {y,rj} given by (2.1) (2.6) is the augmented state.
Using (2.6) one has

so that

Therefore

(2.4)

(2.5)

(2.6)

/ pytp dr = rjg dr
JT JT

J(v, g) - J(vo,g) - \ J g2 dr = J(v, 0) - J(v0,0) + ƒ r,g dr - | ƒ g2 AT. (2.7)

(2.8)
[ f 1

J(v,g) - J(vö,g)-j- g2 dF\ =1
 JT J

= J(v, 0) - J(u0) 0) H ƒ ?72 dr.
27 i r

We now have to minimize the expression in (2.8). Of course J(VQJO) is fixed. Therefore the problem reduces to

where 77 — 7}(v), the state {y(v)^v(v)} being given by the solution of the augmented system (2.1) (2.6).
A few remarks are now in order.

(2.9)

D
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2.2. Remarks

Remark 2.1. Problem (2.9) is now a standard problem of optimal control for a distributed System, when the
state équation is a set of two elliptic équations (2.1)-(2.6) (coupled by the boundary condition ^ ^ = py).
It is therefore "normal" that the gênerai methods of virtual control apply to the present situation! We simply
show in Section 3 how the methods of O, Pironneau and the A. already referred to can be adapted to the present
situation. D

Remark 2.2. One can also view "least regret" as a way to "increase the robustness" of the control, subject to
perturbations on the boundary. D

Remark 2.3. Let us assume that we do have somt information on the perturbation g, expressed by

g e G = closed convex subset of L2(V). (2.10)

Then of course (2.9) is replaced by

inf . \j(v,0) + sup ( f m dr - 1 f g2 d r ) ] . (2.11)

Section 3 can be applied to (2.11). D

Remark 2.4. We can see in the above situation why the introduction of 7 > 0 is necessary (in gênerai). Indeed
if 7 — 0 (control without regret), one should have rj = 0 on F. Therefore (2.6) implies that 77 = 0 in O, so that
y = 0 on F and the problem amounts to finding

inf- f v2

2 Jo
dx (2.12)

^ JO

for all u's such that

Ay = vlo , y = 0 and —— = 0 on T, (2.13)
onA

the solution being v = 0! D

Remark 2.5. For non linear state équations, the décomposition (2.3) is of course not valid. One then replaces

J(v) + (—{v,g),g)

if the state équation is differentiable with respect to <?, and which makes sense in case (2.10) with G "small". •

We now introducé a virtual control technique.

3. V I R T U A L C O N T R O L S

3.1. Embedding and virtual controls

We embed Q (which can have a "complicated" boundary) into a large set Û (say a cube, or a sphère) and we
introducé a new System in Û. It is an "extension to Ùn of the augmented System introduced in Section 2.1.
Let LJ and a;* be two open sets contained in Û/Ù (cf. Fig. 1).

Let A dénote any extension of A into Cl, Â being elliptic strictly coercive in Û (this is possible!).
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FIGURE 1

We now introducé the following System:

Ây — vlo + A

(3.1)

y, 77 subject to any "simple" boundary condition on dCl

(for instance we can make the coefficients of A periodic in Ù and take periodic boundary conditions). In (3.1)
X (resp. x*) dénotes the characteristic function of OJ (resp. w*), and A and ju are (for the time being) arbitrary
fonctions,

AeL», (3-2)

They are the virtual control. D

Remark 3.1. Of course the restrictions of y,fj to ÎÎ, say y,r), satisfy Ay = vlo,A*r] = 0 in fi, but do not
satisfy in gênerai the boundary conditions for y and 77! The virtual controls have precisely to be chosen in such
a way that these boundary conditions are satisfied, at least approximately. This is possible, as we now show. D

Given v e L2(O), it is possible to choose X e L2(u) and p e L2(UJ*) in such a way that

dy drj
and

are arbitrarily small.

Indeed, let us consider the mapping

XyfJ,
dy dfj

dn A ' dn A*
- py

(3.3)

(3.4)

from L2(u) x L2{LÜ*) ^ L2(T) x L2{T).
lts range is dense.
Indeed one shows first (by duality and a unique continuation argument) that the range of A —• ̂ ~ is dense

in L2(T) (y dépends only on A, once v is fixed). Then it suffices to show that \x —> * ^ - has a dense range in

L2(F) (which is exactly the same resuit than for y). •
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If À and fi are chosen according to (3.3), problem (2.9) is approximated (as closely as we want) by

infj{v) (3.5)
V

where

J(v) = \ f P(y~ zo)2 dr + \ f v2 dx + ± f {fff dr. (3.6)
2 Jv 2 Jo 27 Jv

In order to proceed one penalizes the conditions (3.3). We introducé

j(v, x,,) = J(v) +1 l ( £ ) dr + 1 l ( A - p y) dr (3.7)

where e is fixed "small". Then an approximation of the least regret control problem considérée here, is given by
the solution of the problem.

inf J(V,\,IJL). (3.8)

Remark 3.2. Problem (3.8) certainly looks more complicated than the formulation (2.9)! But

1. the domain Ù is chosen to be much simpler than ü;
2. the method presented here can be thought of as an introduction to domain décomposition for least regret

control problems. D

Remark 3.3. Let's suppose we shall be happy with the (small) errors |——U2(r) < ei > ITÏ wU2(r) < ei-
A

One has then to choose e in (3.7) so that these conditions are (approximately) satisfied. This can be made
more précise by transforming (3.7) by a duality argument (based on Fenchel-Rockafellar duality theorem, cf.
for instance [2]), as it is used in a different situation by [4]. D

Assuming that e has been chosen in (3.7), we now give a simple algorithm of approximation of (3.8).

3.2. Algorithm

We do not use in this section the state y,r) given by (2.1) (2.6). Therefore we drop here the symbols ~ in
équation (3.1) and in the functional (3.7).

The first variation of J(v, À, fi) is given by

,\,fi)= / p(y-zo)ôy+ / v8v + - /

gLllf (Â
dnA e Jr\

T dnA dnA e Jr\dnA*

where we skip the surface and volume éléments dF and dx.

We introducé now the adjoint functions p and n defined as follows:

Z;- "h (3I0)
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VV G H2(Û), satisfying the approximate boundary conditions on dû, and

f
7 Jr

f (3.11)

V1^ enjoying the same properties than <p above.
We use in (3.10)-(3.11) the weak transposed solutions of the problems involved, as in [8].
We now plug ög for (p (resp. £77 for \I>) in (3.10) (resp. (3.11)). We obtain

SJ= r]Â8y+ / TTÂ*£T/+ / vSv.
Jù Jù Jo

Using the first variations of (3.1), we finally obtain

ÖJ= f (TJ + v)ôv + f rjÔX + f
Jo JUJ J\o*

One can then use the simple gradient algorithm

(3.12)

\ n + l _ \n n
A — A — pi]

|X n + 1 = f/1 - p7Tn

which is convergent for p > 0 and small enough.

4. REMARKS

(3.13)

D

Remark 4.1. Let us consider again the augmented state équations (2.1)-(2.6) and let us introducé a domain
décomposition

n =
with overlapping, Le. Qi f) Q2 7̂  0-
Weset

so that

we introducé two sets

üj)Uj* c Oi n ÇI2

(compare to Sect. 3). We define

Xi = characteristic function of O H Sli (xi c a n De zero)

X) X* = characteristic function of u>,u;*.

(4.1)

(4.2)

(4.3)

(4.4)
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We now define y%,T]i in ÎÎ,, in the following fashion:

+ Ax in fii ,

i n

= p2/i on Ti ,0 on

417

(4.5)

= ^2X2 - Ax in Q2 ,

(4.6)

T2 ,0 on

where Ai = restriction of 4̂ to i7̂  and where viXi + 2̂X2 —
If one chooses (as it is possible) the virtual controls X and \i in such a way that

yi^Tfi are "approximately" Oon Si (in the

I?{Si) topology)

then extending ŷ Tft in y^r\i by 0 outside îîi, one has approximately

+ 2/2) =

+7/2) =

(4.7)

+ 02) on an.

One can then proceed in a similar manner as in Section 3.2, that it is not necessary to make explicit.

Remark 4.2, The above method readily extends to the case where

where the covering is overlapping.

(4.8)

D

D

Remark 4.3. One can also apply in the present situation all the various methods introduced in [9-12] and
in [5], loc. cit. D
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