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LEAST REGRET CONTROL, VIRTUAL CONTROL
AND DECOMPOSITION METHODS*

JAcQuEs-Louls Lions!

Abstract. “Least regret control” consists in trying to find a control which “optimizes the situation”
with the constraint of not making things too worse with respect to a known reference control, in
presence of more or less significant perturbations. This notion was introduced in [7]. It is recalled on a
simple example (an elliptic system, with distributed control and boundary perturbation) in Section 2.
We show that the problem reduces to a standard optimal control problem for augmented state equations.
On another hand, we have introduced in recent notes [9-12] the method of virtual control, aimed at the
“decomposition of everything” (decomposition of the domain, of the operator, etc). An introduction
to this method is presented, without a priori knowledge needed, in Sections 3 and 4, directly on
the augmented state equations. For problems without control, or with “standard” control, numerical
applications of the virtual control ideas have been given in the notes [9-12] and in the note [5]. One
of the first systematic paper devoted to all kind of decomposition methods, including multicriteria, is
a joint paper with A. Bensoussan and R. Temam, to whom this paper is dedicated, cf. [1].
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1. INTRODUCTION
1.1. Least regret control

Let us first recall what “least regret control’ is all about. We present it on the simplest possible example.

Let §2 be a (bounded) open set in R? (d = 2,3 in most of the applications), with (smooth) boundary 8Q =T.
In 2 we are given a second order elliptic operator

Ap = ~ 0 Op 1.1
‘P—’Z“a?i azj(x)ga;; +app (1.1)

4,7=1
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where ag. a,, € L*=(f2) satisfy a.e.

d d
> @) =ed ¢ ap=c, ¢>0.
2 3=1 =1

The state z of the equation is given by the solution of

Az=vlp inQ, (1.2)
0z

= T 1.
SZ _g on, (13)

where
O = open set contained in 2, v € L2(0), v = control varable,

1o = characteristic function of O,

% = conormal derivative with respect to A, .
g € L*(T"), g = perturbation (or unknown) variable.
(Condition (1.3) is taken through a weak variational formulation).
Problem (1.2)—(1.3) admits a unique solution:
z = z(v,g9) € H'(Q). (1.5)
We then introduce the cost function
J(v,g9) = 1 / p(x)(2(v, g) — 20)*dz + l/ v? dz (1.6)
2 Jo 2Jo

where p is given in L>(Q),p > 0, and where zp is the “optimal” state we wish to get close to, taking nto
account the “cost of the control” (expressed by the term % [, v?dz in (1.6)).

If g is known, say g = go, J(v, g) does not depend on g, and the problem we wish to solve is to find
I%f J(U> gO)

This is a standard problem of optimal control for distributed systems, in one of the simplest possible case.

C¥. [6]. O

But here we have a perturbation on the boundary, expressed by g. We assume that, by tradition or by formal
computation, one is used to apply a “nomanal policy”, 1.e. that one uses

v=wp givenin L%(O). (rn

We want to choose v in the best possible way with respect to (1.6), with the natural constraint that we do not
want to deteriorate the situation with respect to the traditional policy v = vo. Analytically, this is expressed by
the problem to find

i%f-sgp [J(v,9) — J(vo, 9)]- (1.8)
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If there is a solution, it is called “policy without regret”. But (1.8) is too restrictive. There is no solution of
(1.8) in general. Hence the introduction of the following (relaxed) problem

i%f szp [J('u,g) — J(vo,g) — % /1“ g2 dI‘], (1.9)

where 7y is > 0 and “small”.
Problem (1.9) admits (in the present situation) a unique solution v (see below in Sect. 2) which is called

“policy with least regret”, or “least regret control”.

Remark 1.1. The notions of “without regret control” or “least regret control” have been introduced in [7].
The notion of regret was first introduced by [13] (a reference indicated to me by D. Gabay, after publication
of the note [7]).

The notion of “least regret control” is completely general and immediately extends to evolution problems and
non linear systems.

It has be extended in [3] to multi criteria and multi agents. O

Our goal here 1s to study (1.9) unth the state gwen by (1.2) (1.3), with the cost function gwen by (1.6), n
the framework of Decomposition Methods.

1.2. Decomposition methods

Given any problem involving a partial differential operator A (of any type) in a domain €2, an important
question is to decompose A and, or, the domain 2, so as to “cut the problem in a large number of small and
simple pieces” (with parallelism in sight).

A huge amount of work is devoted to these methods (no attempt is made for a significant bibliography). A
systematic paper was devoted to these questions, namely [1] (a paper which seems to have been forgotten,
including by his authors...). O

In a series of notes [9-12] we have introduced the technique of virtual control for “the decomposition of every-
thing” (domain decomposition, decomposition of operator), applied in [5] to decomposition of the “energy space”.

Our goal 1s to show here that these techniques can be applied to least regret controls problems. O

In order not to snow the ideas under complicated technicalities we present the virtual control technique in
Section 3 for the problem (1.9) in a single preliminary framework, somewhat connected with fictitious domains,
further extensions being briefly indicated in Section 4.

We now proceed with (1.9) and the introduction of the augmented state equations. O

2. AUGMENTED SYSTEM

2.1. Preliminary computations

Let us introduce the states y = y(v) and ¢(g) defined by

——=0on T, (2.1)

AcszinQ,aan%:g on I, (2.2)
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so that

z(v, 9) = y(v) + ¢(g).

(2.3)

Moreover in order to (slightly) simplify the exposition and without restriction (in linear problems) we assume

that
Vo = 0.
Then
1 1
J(v,9) = J(vo,9) = 5 / ply — 20)* dl' — / pZSdF+/py<de
2 Jr 2 Jr r
(where we have written y for y(v), ¢ for ¢(g) ), or

T(v,g) — T (v0,9) = J(2,0) — J(vo,0) + / oy,

We then introduce the function n defined by

A'np=0 in$, 822* =py onT,

where A* denotes the adjoint of A.

/ pycpdl“z/ngdl“
N r

JI

so that

J(v,g)—.](vo,g)—% /ng dI‘:J('u,O)—J(Uo,O)-%/P 'r]gdl"~% V/ngdI‘.

Therefore

| sup.[J(v,g)~J(v0,g)—% /Fg2dI‘ji =

_ 1 2
= J(v,0) J(v0’0)+2’7/p77 dr.

(2.4)

(2.6)

(2.7)

(2.8)

We now have to minimize the expression in (2.8). Of course J(vg,0) is fixed. Therefore the problem reduces to

. 1 2
1111]f [J('U,O)-i—if; /1‘ i dI’}

where n = n(v), the state {y(v),n(v)} being given by the solution of the augmented system (2.1) (2.6).

A few remarks are now in order.

(2.9)

O
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2.2. Remarks

Remark 2.1. Problem (2.9) is now a standard problem of optimal control for a distributed system, when the

state equation is a set of two elliptic equations (2.1)—(2.6) (coupled by the boundary condition 6—2% = py).

It is therefore “normal” that the general methods of virtual control apply to the present situation! We simply
show in Section 3 how the methods of O. Pironneau and the A. already referred to can be adapted to the present
situation. O

Remark 2.2. One can also view “least regret” as a way to “increase the robustness” of the control, subject to
perturbations on the boundary. O

Remark 2.3. Let us assume that we do have some information on the perturbation g, expressed by
g € G = closed convex subset of L%(T). (2.10)

Then of course (2.9) is replaced by

inf .[J(v,0)+ sup (/ ng dI‘—Z/ g° dI‘)]. (2.11)
v ge G\JT 2Jr

Section 3 can be applied to (2.11). O

Remark 2.4. We can see in the above situation why the introduction of v > 0 is necessary (in general). Indeed
if v = 0 (control without regret), one should have n = 0 on I'. Therefore (2.6) implies that n = 0 in , so that
y = 0 on I' and the problem amounts to finding

inf & f v? dz (2.12)
2 Jo
for all v’s such that
9y
Ay=vlp,y=0and —— =0 on T, (2.13)
6‘n,4
the solution being v = 0! 0

Remark 2.5. For non linear state equations, the decomposition (2.3) is of course not valid. One then replaces
J(v,9) by
aJ
J(’U) + < _a_g(vag)ag)
if the state equation is differentiable with respect to g, and which makes sense in case (2.10) with G “small”. O

We now introduce a virtual control technique.

3. VIRTUAL CONTROLS

3.1. Embedding and virtual controls

We embed 2 (which can have a “complicated” boundary) into a large set € (say a cube, or a sphere) and we
introduce a new system in 2. It is an “extension to ©” of the augmented system introduced in Section 2.1.
Let w and w, be two open sets contained in Q/Q (cf. Fig. 1).

Let A denote any extension of A into €, A being elliptic strictly coercive in € (this is possible!).
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Q
0)*
r
O,
FIGURE 1
We now introduce the following system:
Ajg=vlep+Ax,
A*f = px. (3.1)

i, 7 subject to any “simple” boundary condition on o0

(for instance we can make the coefficients of A periodic in € and take periodic boundary conditions). In (3.1)

x (resp. x.) denotes the characteristic function of w (resp. w.), and A and u are (for the time being) arbitrary
functions,

M€ LA(w), p € L¥(wy). (3.2)

They are the virtual control. O

Remark 3.1. Of course the restrictions of 4,7 to Q, say y,n, satisfy Ay = vlp, A*n = 0 in Q, but do not
satisfy in general the boundary conditions for y and n! The virtual controls have precisely to be chosen in such
. a way that these boundary conditions are satisfied, at least approximately. This is possible, as we now show. O

Given v € L*(0), it is possible to choose A € L*(w) and p € L?(w.) in such a way that
a9y on .
—|L2 ond |—— — 2
| B s 1220 Bna Pyl (r) 3.3)

are arbitrarily small.
Indeed, let us consider the mapping

oy  0n -
A hd ! _ A4
B B s Y (3.4)
from L?(w) x L?(w*) — L%(T") x L*(T).
Its range is dense.

Indeed one shows first (by duality and a unique continuation argument) that the range of A — % is dense

in L2(T") (7 depends only on ), once v is fixed). Then it suffices to show that u — 6%—‘— has a dense range in
L?(T") (which is exactly the same result than for §). O
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If X and p are chosen according to (3.3), problem (2.9) is approximated (as closely as we want) by
inf J (v) (3-5)
v

where

Fw) =1 /F (i~ z0)? AT+ /O v dx+% /P ()2 dr. (3.6)

In order to proceed one penalizes the conditions (3.3). We introduce

J (v, )—j(v)+i/ 99 2dr+i (6'7 - >2dI‘ (3.7)
MK = 2e T (9n,4 2e r BnA‘ Py ’

where € is fixed “small”. Then an approximation of the least regret control problem considered here, is given by
the solution of the problem.

inf . (v, A, ). (3.8)
Y, A 1
Remark 3.2. Problem (3.8) certainly looks more complicated than the formulation (2.9)! But

1. the domain Q is chosen to be much simpler than €;

2. the method presented here can be thought of as an introduction to domain decomposition for least regret
control problems. O

0] o
Remark 3.3. Let’s suppose we shall be happy with the (small) errors f‘a%y;hnr) <er, lgnn: — Pyl <1

One has then to choose ¢ in (3.7) so that these conditions are (approximately) satisfied. This can be made
more precise by transforming (3.7) by a duality argument (based on Fenchel-Rockafellar duality theorem, cf.
for instance [2]), as it is used in a different situation by [4]. O

Assuming that € has been chosen in (3.7), we now give a simple algorithm of approximation of (3.8).

3.2. Algorithm

We do not use in this section the state y,7n given by (2.1) (2.6). Therefore we drop here the symbols ~ in
equation (3.1) and in the functional (3.7).
The first variation of J (v, A, ) is given by

1
JJ(v,/\,u)=/p(y—zo)5y+/ v6u+—/n<5n
r o YJr
1 [ 8y 86y 1 / an ) déy )
S R el A - = 9
+5 r Ong Ona +5 F(anm Py Ong-« POy (3.9)

where we skip the surface and volume elements dI" and dz.

We introduce now the adjoint functions p and 7 defined as follows:

. 1 dy 8 1 o
/ﬁpAso=/p(y—zo)so+— —y-i——/r( u —py>p<p. (3.10)
r

eJr Ony Ona €
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Vo € H2(), satisfying the approximate boundary conditions on 8§, and

- 1 1 on ov
AT = = ‘Il+—/( - )— 3.11
/s')‘,r Y /r‘17 € Jr\Ona- o on ( )

V¥ enjoying the same properties than ¢ above.
We use in (3.10)—(3.11) the weak transposed solutions of the problems involved, as in [8].
We now plug ég for ¢ (resp. dn for ¥) in (3.10) (resp. (3.11)). We obtain

6‘7:/~n/~16y+[7r/i*5n+/ vov.
Q o) o

Using the first variations of (3.1), we finally obtain

6J:/(n+v)6v+/n6A+/ wop. (3.12)
(@] w w*

One can then use the simple gradient algorithm
,Un+1 =" — p(nn + ,Un)
P (3.13)

ptt = — pr”

which is convergent for p > 0 and small enough. 0

4. REMARKS

Remark 4.1. Let us consider again the augmented state equations (2.1)-(2.6) and let us introduce a domain
decomposition

Q=0UQ (4.1)
with overlapping, i.e. Q1 N Qs # @.
We set
i =00,n00, S;=004N80;, j#1i (4.2)
so that
o0; =, US;.
we introduce two sets
w,wsx C Q2 NQY (4.3)

(compare to Sect. 3). We define

x: = characteristic function of O NQ; (x; can be zero)
(4.4)
X, X» = characteristic function of w,w,.
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We now define y;,7; in ;, in the following fashion:
Ay =vixa + Axin €,
gfi =0on 89,

Alm = px«in

om _
Féz—pylon I'y,0on &

(4.5)

Agys = vax2 — Ax in {23,

Oys _
6—T‘EAL2—-OOH 692,

A3m2 = —px in g,

On _
6—7%—@2011 I‘g,Oon Sz

where A; = restriction of A to §2; and where v, x1 + v2x2 = vle.
If one chooses (as it is possible) the virtual controls A and p in such a way that

(4.6)

y;,7; are “approximately” Oon S; (in the

(4.7
L?(S;) topology)

then extending y;,7; in ¥;,7; by 0 outside §2;, one has approzimately
A(gl =+ :lj2) =vlpin 2,
A*(71 +72) =0in Q2

0

4.8
m(171+?72)=00n o, “8)

57‘24* (1 + 72) = p(§1 + §2) on 9N

One can then proceed in a similar manner as in Section 3.2, that it is not necessary to make explicit. Od

Remark 4.2. The above method readily extends to the case where
Q=0U...UQpN,

where the covering is overlapping. d

Remark 4.3. One can also apply in the present situation all the various methods introduced in [9-12] and
in (5], loc.cit. O
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