Semi-global C 1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems
ESAIM: Modélisation mathématique et analyse numérique, Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 399-408.
@article{M2AN_2000__34_2_399_0,
     author = {Li, Ta-Tsien and Rao, Bopeng and Jin, Yi},
     title = {Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {399--408},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {2},
     year = {2000},
     mrnumber = {1765666},
     zbl = {1024.93027},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_2_399_0/}
}
TY  - JOUR
AU  - Li, Ta-Tsien
AU  - Rao, Bopeng
AU  - Jin, Yi
TI  - Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 399
EP  - 408
VL  - 34
IS  - 2
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_2000__34_2_399_0/
LA  - en
ID  - M2AN_2000__34_2_399_0
ER  - 
%0 Journal Article
%A Li, Ta-Tsien
%A Rao, Bopeng
%A Jin, Yi
%T Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 399-408
%V 34
%N 2
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_2000__34_2_399_0/
%G en
%F M2AN_2000__34_2_399_0
Li, Ta-Tsien; Rao, Bopeng; Jin, Yi. Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems. ESAIM: Modélisation mathématique et analyse numérique, Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 399-408. http://www.numdam.org/item/M2AN_2000__34_2_399_0/

[1] M. Cirià, Boundary controllability of nonlinear hyperbolic Systems. SIAM J. Control 7 (1969) 198-212. | MR | Zbl

[2] M. Cirinà, Nonlinear hyperbolic problems with solutions on preassigned sets. Michigan Math. J. 17 (1970) 193-209. | MR | Zbl

[3] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract Systems with applications to waves and plates boundary control problems. Appl. Math. Optim. 23 (1991) 109-154. | MR | Zbl

[4] Li Ta-Tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems. Research in Applied Mathematics 32, Masson, John Wiley (1994). | MR | Zbl

[5] Li Ta-Tsien and Zhang Bing-Yu, Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225 (1998) 289-311. | MR | Zbl

[6] Li Ta-Tsien and Yu Wen-Ci, Boundary Value Problems for Quasilinear Hyperbolic Systems. Duck University, Mathematics Series V (1985). | MR | Zbl

[7] J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson (1988) Vol. I.

[8] K. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson, John Wiley (1994). | MR | Zbl

[9] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | MR | Zbl

[10] E. Zuazua, Exact controllability for the semilinear wave equation. J, Math. Pures Appl. 69 (1990) 1-32. | MR | Zbl